Geochemistry: Terrestrial budgets and evolution modeling

M antle evolution models

» Some broad generali zations about isotopes in the mantle

* |sotopic evolution and massbalance - the Sm-Nd system
and 670kn coincidence; €4 notation

» Box modelsfor average isotopic composition o mantle
and crust - limits on continental recycling and upger-lower
mantle exchange

» Heterogeneity and samplingincorporated into a box model
(Kellogget al. approad)

» (Brief) comments on rare gases

What iswrong with this picture?

Qceanic

We will come back to this...

Donald DePaolo, UC Berkeley (KITP CIDER 7/24/04)
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Mid-ocean Ridge Basalts.....

The typical mantle that melts at MOR's...

- is not average mantle material; it is too depleted in LILE
- represents a small fraction of the total mantle (10 - 20%)
- probably contains recycled continental + oceanic crustal material

Mantle Plumes...

- Exist

- Bring materials up from depth that are different from the ambient upper mantle

- Consist of material that is not primitive (usually “less depleted” than MORB)

- Sometimes contain Helium that looks primitive (but with Nd, Sr, Pb, Hf that does
not look primitive)

Donald DePaolo, UC Berkeley (KITP CIDER 7/24/04)
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Island Arcs and Backarcs.....

The typical mantle that melts at arcs...

- is depleted in LILE but less so than for MORB
- is typically affected by subducted materials via fluids

Mantle map in terms of what is “depleted” or “enriched”
in incompatible elements:

Most highly depleted zones (in LILE)

Partly enriched zones (in LILE

\Sted with scattered enricheg, regi
: ons

\e5 de?

Recycled materials with addi-
tions of *He from core?
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To trace back through time we need older rocks

Proterozoic
. r B Archean

Not many MORB analogues; must use island arc analogues

Ancient depleted mantle representatives
12 =

<> Shirey, 1991 (compiled)

[0 Bennettetal, 1993

© Jacobsen and Dymek, 1988

@ Bowring and Housh, 1995
Vervoort et al,, 199%
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The general (simplified) equation for mantle isotopic evolution, expressed in terms of epsilon
values relative to a bulk earth reservoir, can be written in the form (DePaolo, 1983; 1988,
Jacobsen, 1988a)

de, 3 m,
2 "B
where:
P L PR _0'APID),
" (PID)y (D*/D),,

X, = fraction of daughter element remaining in the depleted mantle (m)

my = rate of return of crustal material to the mantle (recycling rate in units mass/time)
M, = mass of crust at time t

D*/D = daughter isotope ratio ("*Nd/'*Nd, ¥Sr/%Sr, etc.)

For Sm-Nd, Q =25.1, f,, = 0.25 for present day Earth
Sof,,Q=6Gy! whereasdeg,/dt =2 Gy

Donald DePaolo, UC Berkeley (KITP CIDER 7/24/04)
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COMPOSITION OF THE CONTINENTAL CRUST

MAJOR OXIDES (weight percent)
R&EFT&M
Si10,  59.1 573

TiO, 07 09
ALO; 158 159

FeO 6.6 9.1
MnO 0.1 0.18
MgO 44 53

CaD 64 74
NayO 3.2 3.1
K,0 188 1.1
P,05; 0.2

TRACE ELEMENTS (in ppm except where noted)
R&F T&M R&F T&M
Li 11 13 Ba 390 250
Be 15 La 18 16
B 10 Ce 42 33
Sc 22 30 Pr 39
\' 151 230 Nd 2 16
Cr 119 185 Sm 39 35
Co 25 29 Eu 1.2 1.1
Ni 51 105 Gd 36 33
Cu 24 75 Th 0.56 0.6
Zn 73 80 Dy 35 3T
Ga 16 18  Ho 0.76 0.78
Ge 1.6 Er 22 22
As I Tm 0.32
Se 0.05 Yb 2 22
Rb 58 32 Lu 0.33 0.3
Sr 325 260 Hf 37 3
Y 20 20 Ta 1.1 1
Zr 123 100w 1
Nb 12 Il Re.ppb 04
Mo 1 Os,ppb 0005
Pd. ppb 1 Ir.ppb 0.1
Ag, ppb 80  Au, ppb 3
Cd, ppb 98  TL ppb 360
In, ppb 50 Pb 126 8
Sn 2.5 Bi.ppb 60
Sb 02 Th 36 35
Cs 26 1 U 1.42 091
Sources:
R & F: Rudnick, R. L, and D. M. Fountain. 1995, Rev. Geophvs. 33: 267-309.
T & M: Taylor. S. R. and 5. M. McLennan. 1985. The Continental Crust: its
composition and evolution. Blackwell Scientific Publishers, Oxford;
Taylor, S. R.and §. M. McLennan. 1995. Rev. Geaphys. 33: 241-265.

Donald DePaolo, UC Berkeley (KITP CIDER 7/24/04)
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Kellogg et al., 2002
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Fig. 4. Cartoon illustrating our model for the creation of
subreservoirs in the depleted mantle. (A) At each time step.
we partially melt a portion of the bulk depleted mantle (Res-
ervoir 2) to create a chemically fractionated melt and residue.
(B) The melt is added to the mean crust (Reservoir 3).
whereas (C) the residue is put back into the depleted mantle,
resulting in the creation of a new subreservoir (2.ia). (D) In
addition, continental crust may be recycled into the depleted
mantle, creating another subreservoir (2.i/b).
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Fig 11, (A) Model MORB and OIB data plotted on real data. By increasing the source region available to the OIBs, we shift
the distribution towards the undepleted composition, These calculations employ the time-dependent mass transport history with
continental recyeling and assume 2 100 km sampling length seale. (B) Histograms of the model data shown sbove. The light, dot-
ted curves represent the real histograms, as previously shown in Fig. 1A, In both cases we fail 1o reproduce some of the less de-
pInLed of more enriched material observed in the real data

J.B. Kellogg et al.| Earth and Planerary Seience Lerters 204 (2002) 183-202
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Fig. 12. Synthetic data from our preferred model. All parameters identical to those in Fig. 11 but recycled continental
material is enriched in Sm, Nd, and Rb, and depleted in Sr relative to the bulk continental crust.

Donald DePaolo, UC Berkeley (KITP CIDER 7/24/04)
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Figure 11 Evolution of the AustralianIndian plate in the steady state mixing model of Van
Keken & Zhong (1999). Snapshots of the particles that composed the plate at time 0 are shown at

From VanKeken, Hauri, Ballentine, 2002
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Mantle map in terms of what is “depleted” or “enriched”
in incompatible elements:
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