Mantle evolution models

- Some broad generalizations about isotopes in the mantle
- Isotopic evolution and mass balance the Sm-Nd system and 670km coincidence; ε_{Nd} notation
- Box models for average isotopic composition of mantle and crust limits on continental recycling and upper-lower mantle exchange
- Heterogeneity and sampling incorporated into a box model (Kellogg et al. approach)
- (Brief) comments on rare gases

The general (simplified) equation for mantle isotopic evolution, expressed in terms of epsilon values relative to a bulk earth reservoir, can be written in the form (DePaolo, 1983; 1988; Jacobsen, 1988a)

$$\frac{d\varepsilon_m}{dt} \approx f_m Q - \frac{m_d}{M_c X_m} \varepsilon_m$$

where:

$$f_m = \frac{\left(P/D\right)_m}{\left(P/D\right)_{BE}} - 1 \qquad \text{and} \qquad Q = \frac{10^4 \lambda_p \left(P/D\right)_{BE}}{\left(D*/D\right)_{BE}}$$

 X_m = fraction of daughter element remaining in the depleted mantle (m)

 m_d = rate of return of crustal material to the mantle (recycling rate in units mass/time)

 $M_c = mass of crust at time t$

 D^*/D = daughter isotope ratio ($^{143}Nd/^{144}Nd$, $^{87}Sr/^{86}Sr$, etc.)

For Sm-Nd, Q =25.1, $f_m \approx 0.25$ for present day Earth So $f_m Q \approx 6$ Gy⁻¹ whereas $d\varepsilon_m/dt \approx 2$ Gy⁻¹

COMPOSITION OF THE CONTINENTAL CRUST

MAJOR OXIDES (weight percent)

	R & F	T & M
SiO ₂	59.1	57.3
TiO_2	0.7	0.9
Al_2O_3	15.8	15.9
FeO	6.6	9.1
MnO	0.1	0.18
MgO	4.4	5.3
CaO	6.4	7.4
Na ₂ O	3.2	3.1
K_2O	1.88	1.1
P_2O_5	0.2	

TRACE ELEMENTS (in ppm except where noted) R&F T&M R&F T&M

Li	11	13	Ba	390	250
Be		1.5	La	18	16
В		10	Ce	42	33
Sc	22	30	Pr	5	3.9
V	151	230	Nd	20	16
Cr	119	185	Sm	3.9	3.5
Co	25	29	Eu	1.2	1.1
Ni	51	105	Gd	3.6	3.3
Cu	24	75	Tb	0.56	0.6
Zn	73	80	Dy	3.5	3.7
Ga	16	18	Ho	0.76	0.78
Ge		1.6	Er	2.2	2.2
As		1	Tm		0.32
Se		0.05	Yb	2	2.2
Rb	58	32	Lu	0.33	0.3
Sr	325	260	Hf	3.7	3
Y	20	20	Ta	1.1	1
Zr	123	100	W		1
Nb	12	11	Re, ppb	0.4	
Mo		1	Os, ppb	0.005	
Pd, ppb		1	Ir, ppb		0.1
Ag, ppb		80	Au, ppb	3	
Cd, ppb		98	Tl, ppb		360
In, ppb		50	Pb	12.6	8
Sn		2.5	Bi, ppb		60
Sb		0.2	Th	5.6	3.5
Cs	2.6	1	U	1.42	0.91

Sources:
R & F. Rudnick, R. L. and D. M. Fountain. 1995. Rev. Geophys. 33: 267-309.
T & M: Taylor, S. R. and S. M. McLennan, 1985. The Continental Crust: its composition and evolution. Blackwell Scientific Publishers, Oxford; Taylor, S. R. and S. M. McLennan. 1995. Rev. Geophys. 33: 241-265.

addition, continental crust may be recycled into the depleted

mantle, creating another subreservoir (2.ib).

