Mantle geochemistry: How geochemists see the deep Earth

Don DePaolo/Stan Hart
CIDER - KITP Summer School
Lecture #1, July 2004

Geochemistry 50 years ago dealt with fewer questions and parameters, e.g. Birch (1952)

- How does meteorite chemistry compare with seismic properties of Earth's interior
- Is it Olivine+Pyroxene or other phases?
- How much Fe in the mantle?
- How much Al,Ca,Na,K ("sialic components") is in the mantle ?
- 11 elements of interest: O,Mg,Si,Fe,Ni,Al,Ca,S,Na,K,P

What can geochemistry do in 2004?

- The earth is made of 90 or so chemical elements, about 30 w/isotopic variations
- Chemical/isotopic characteristics can be tied to geological processes *mantle isotopic chemistry is a tracer*
- We can tell where a particular piece of mantle has been in the past and/or what has happened to it
- Radiogenic isotopes provide clocks as well as tracers

Questions for geochemistry

- How deeply does near surface material circulate into the mantle? On what time scale?
- Does the mantle have large scale chemical structure (layering?)
- Does the core exchange material with the mantle? (Do plumes come from the CMB?)
- What are the characteristics of mantle convection in terms of its ability to stir and homogenize heterogeneous materials?
- What features of mantle seismic heterogeneity are thermal and which are chemical?
- What aspects of mantle structure are congenital?, of recent origin?; steady-state features?

Components of geochemistry

- Petrology of the mantle (proportions of minerals or rock types e.g. lherzolite, harzburgite, eclogite, pyroxenite)
- Melting of the mantle
- Trace element composition of the mantle (doesn't affect mineralogy, but can be indicative of history)
- Trace element composition II (water and CO₂) affects melting behavior.
- Isotopic composition of the mantle (from radioactive decay, input from surface reservoirs, input from core?)
- Sampling of the mantle (scale of sampling by magmatism; sampling biases, invisible reservoirs)
- Material balance the sum of the parts must equal the whole Earth for every element and isotope

Recycled Reservoir	Subduction Fl km ³ /yr	ux Predicted Fingerprint
Lithospheric mantle	200	High $\epsilon(Nd,Hf),low^{206}Pb/^{204}Pb,^{87}Sr/^{86}Sr$
Depleted Oceanic crust	20	Slightly lower ε(Nd, Hf), maybe Iceland, Hawaii
Oceanic crust modified by Ph	and Rb loss	High $^{206}P_b/^{204}P_b$, low $^{87}S_r/^{86}S_r = "HIMU"$
Oceanic islands & plateaus	ĩ	Main correlations in Sr, Nd, Hf, Pb space
Altered crust	<10	Changes in K, Rb, Pb, U etc. Extreme isotopic compositions not observed in OIB
Sediment, terrigenous	<1	Highest $87 Sr/86 Sr,$ low $\epsilon(Nd,Hf),$ high Pb, low Nb Concentrations. = "EM-2"
Sediment, pelagic	<1	High 87 Sr/86Sr, lowest ε(Nd), higher ε(Hf) Very low 206 Pb/ 204 Pb, higher 208 Pb/ 204 Pb = "EM-1"
Delaminated subcontinental	lithosphere ??	Alternative origin of "EM-1" OIBs
		Al Hofmann's analysis, 2003

OK, so what do we think we know.....?

Mid-ocean Ridge Basalts.... The typical mantle that melts at MOR's... - is not average mantle material; it is too depleted in LILE - represents a small fraction of the total mantle (10 - 20%) - probably contains recycled continental + oceanic crustal material

Where we are going in the next 2 weeks....

- Lecture 1. Overview: The Geochemists' Earth (reservoirs, budgets and processes). DePaolo.
- Lecture 2. <u>Background A.</u> Initial Conditions the early earth and moon, meteorites, extinct radioactivities, terrestrial reservoirs and lithologies. Hart.
- Lecture 3. <u>Background B.</u> The Tools Systematics and behavior of trace element and radiogenic isotope tracer systems (diffusion, partitioning, spidergrams, radioactive decay, mixing in open systems). Hart.
- Lecture 4. Physics of melting and melt migration: trace element and U-series models. DePaolo.
- Lecture 5. Stable isotopes and rare gases: tracers of the shallow earth and tracers of the deep earth? Hart.
- Lecture 6. Geochemical evolution and fingerprinting of terrestrial reservoirs: Core, Bulk silicate earth (BSE), Continental crust (CC). DePaolo.
- Lecture 7. (continuation of Lecture 6). Geochemical evolution and fingerprinting of terrestrial reservoirs: Primitive upper mantle (PUM), Depleted MORB mantle (DMM) and other mantle domains (HIMU, EM1, EM2, FOZO). Hart.
- Lecture 8. Distribution of heat-producing radioactivities (K, U, Th) in the Earth. Hart.
- Lecture 9. Terrestrial budgets and evolution modeling. DePaolo.

Geochemistry Tutorials....

Exercises: a) Nuts and Bolts: chemistry, mass specs, standards and constants, normalization, precision (Hart).

- Navigating GERM: finding and evaluating geochemical reference data (Hart and DePaolo).
- c) GEOROC and PETDB: the world of MORB and OIB data manipulation (Hart).
- d) MELTS understanding differentiation with the MELTS program (Stolper or Asimow).
- e) Crust-Mantle Box models; Integrating geochemical reservoir models with tomographic and geodynamic constraints (DePaolo).
- f) Melting and melt migration: porous flow and focussed flow models, U-series constraints, spidergram inversions (DePaolo and Hart).