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Driven Systems 

 

 

The basic question: what happens when you shake stuff? 



Driven Systems: Classical Example 

https://www.youtube.com/watch?v=rwGAzy0noU0 
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Pendulum with vibrating pivot: 



Driven Systems: Quantum Example 

Images: Nijmegen, Hamburg, Zurich 

• Atoms and solids in pulsed-laser fields 
 
• Nontrivial dynamical behavior  
   (tunnel ionization, HHG) 
 
• Emergent states of matter 



• Floquet phases 
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• Bloch oscillations 
• New cooling techniques 
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Hot and Cold Atoms 
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Position-Space Bloch Oscillations 

• In a periodic system, static force produces 
oscillatory response (Bloch, Zener 1929) 

 

• Momentum evolves through edge of BZ 

 

• Cold atoms an excellent platform for 
studying such Bloch oscillations (way easier 
than in solids) 

  

• Typically probed in momentum space; 
position-space dynamics initially predicted 
by Zener too small to be observed 



Position-Space Bloch Oscillations 
• Li (light, non-interacting) in lattice enables PSBO observation 

Z. Geiger et al, Phys. Rev. Lett. 120, 213201 (2018) 



Position-Space Bloch Oscillations 
• Li (light, non-interacting) in lattice enables PSBO observation 

But what is it good for? 

Z. Geiger et al, Phys. Rev. Lett. 120, 213201 (2018) 



Position-Space Bloch Oscillations 
• Use 1: directly map phase-space evolution during a Bloch oscillation 

Z. Geiger et al, Phys. Rev. Lett. 120, 213201 (2018) 



Position-Space Bloch Oscillations 
• Use 2: direct imaging of band structure 

 

• x(t) maps directly to E(k): 
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Position-Space Bloch Oscillations 
• Use 2: direct imaging of band structure 

 

• x(t) maps directly to E(k): 

 

 

 

• ARPES-like measurement 

 

• Works in excited bands too… 

Position-space Bloch oscillations are visible and useful. 
 
Next: What if we drive the lattice directly? 

Z. Geiger et al, Phys. Rev. Lett. 120, 213201 (2018) 
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• Adding external driving:  
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 - Allow atoms to Bloch oscillate 
 
 - What happens? 
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Floquet-Bloch Oscillations 

• Putting these techniques together:  
 
 - Apply constant AM drive resonant 
         with s-d transition at finite k 
 
 - Allow atoms to Bloch oscillate 
 
 - What happens? 
 
 
 
 Giant Floquet-Bloch oscillations 

Drive Off Drive On 
Warp Warp 

>1
0

0
0

 Lattice Sites 

Fujiwara et al, Transport in Floquet-Bloch Bands, arXiv:1806.07858 (2018). 



Floquet-Bloch Oscillations 

• Can think of this as evolution in a single Floquet-hybridized s/d band 

d-band transportation Emission + Bloch Oscillation 
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Bloch Oscillation + d-band Excitation 

Fujiwara et al, Transport in Floquet-Bloch Bands, arXiv:1806.07858 (2018). 



Floquet-Bloch Oscillations 

• Allows precise coherent control of long-range transport 

 

 

 

Fujiwara et al, Transport in Floquet-Bloch Bands, arXiv:1806.07858 (2018). 



Floquet-Bloch Oscillations 

• Can couple different pairs of bands at different quasimomenta 

 

 

 

Fujiwara et al, Transport in Floquet-Bloch Bands, arXiv:1806.07858 (2018). 



Floquet-Bloch Oscillations 

• Can image dispersion of hybridized Floquet-Bloch band via PSBOs: 

 

 

 

Fujiwara et al, Transport in Floquet-Bloch Bands, arXiv:1806.07858 (2018). 



Floquet-Bloch Oscillations 

• Can image dispersion of hybridized Floquet-Bloch band via PSBOs 

 

• Flexible tool for band  

    engineering: can sew together 

    Frankenbands arbitrarily 

 

• Some future possibilities: 

 - Topological bands 

 - Metrology 

 - Multi-frequency driving 

 

Fujiwara et al, Transport in Floquet-Bloch Bands, arXiv:1806.07858 (2018). 



Floquet-Bloch Oscillations 

• Can image dispersion of hybridized Floquet-Bloch band via PSBOs 

 

• Flexible tool for band  

    engineering: can sew together 

    Frankenbands arbitrarily 

 

• Some future possibilities: 

 - Topological bands 

 - Metrology 

 - Multi-frequency driving 

 

Fujiwara et al, Transport in Floquet-Bloch Bands, arXiv:1806.07858 (2018). 

Can engineer Floquet bands to control transport. 
 
Next: Does driving necessarily heat things up? Can we 
create metastable or prethermal Floquet “phases” of 
interacting matter? 
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“Floquet Matter” 
• Non-equilibrium steady states of driven interacting systems 

 - Application example: condensed matter in pulsed laser fields 

  

 

• Role for cold atom quantum emulation 

 - Microscopically well-understood system 

 

 

• Open Questions: 

 - Conditions for (meta)stability?  Thermalization? 

 - Can drive force “phase transitions?” 

 - Effect of interactions? 

 - Prethermal “memory?”  

 - Dynamics of quantum information?  

 

Image: Hamburg 



Experiment: Quantum Kapitza Lattice 

• Goal: realize Kapitza physics in a many-body quantum system 

• Optical lattices easily modulated, but need ~1000% modulation 

• Possible with two independent phase-shifted lattices: 
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Experiment: Quantum Kapitza Lattice 

• Goal: realize Kapitza physics in a many-body quantum system 

• Optical lattices easily modulated, but need ~1000% modulation 

• Possible with two independent phase-shifted lattices: 

 

(plus interactions) 



• Vary modulation frequency and amplitude to explore Floquet “phase diagram” 

• Experimental Protocol: double quench 

– Load atoms into time-average lattice  

– Fixed A (static lattice depth)  

– Quench to driven lattice with some α (modulation depth) and Ω (frequency of drive) 

– After some drive time, quench back to static lattice and bandmap 

• Results depend on α and Ω 

 

 
A = 10 Er, α = 5 (-50Er  50Er) 

25 kHz 
Ω = 0.22 

 

2.5 MHz 
Ω = 22.2 

Experiment: Ultrastrong Lattice Modulation 



Quantifying ergodicity 

• f0 = fraction of atoms in ground band after modulation 

      Quantitative measure for characterizing non-ergodicity 

Singh et al, arXiv:1809.05554 (2018). Theory in collaboration w/ Eckardt & Heyl; more details here  



• Can map out Floquet phase diagram describing how state depends 
on a and W 

• Ground band occupation an IPR quantifying Floquet localization 

• Theoretical expectation based on periodic Gibbs ensemble (PGE): 

 

Floquet Phase Diagram: Experiment 

Theory: André Eckardt, Markus Heyl (MPIPKS Dresden) 
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Floquet Phase Diagram: Experiment 

• Can map out Floquet phase diagram describing how state depends 
on a and W 

• Ground band occupation an IPR quantifying Floquet localization 

• Interactions modify but do not destroy the “phase diagram” 

 

Singh et al, arXiv:1809.05554 (2018). 



• All band occupations can be mapped as a function of drive 
parameters, both theoretically and experimentally 

Fully characterizing a Floquet state 

Theory 

Experiment 

Singh et al, arXiv:1809.05554 (2018). 

       Complete experimental characterization of the PGE 



• At each point on the “phase diagram” one can measure the full time 
dynamics 

Time evolution of Floquet Phases 

Singh et al, arXiv:1809.05554 (2018). 



• Observation of two Floquet prethermalization plateaux 

• Long-time behavior depends on drive parameters & interactions 

Moving beyond theory: the long-time limit 

Singh et al, arXiv:1809.05554 (2018). 



• Prethermal plateau recovered by increasing drive frequency 

• High-frequency and strong interactions  sub-Joule heating 

Moving beyond theory: the long-time limit 

Singh et al, arXiv:1809.05554 (2018). 



 Clean, tunable realization of Floquet matter & Floquet prethermalization 

 Can study dependence of properties of Floquet matter on drive parameters 

 Interactions introduce poorly-understood long-time dynamics (e.g. root-t heating) 

 

 

Floquet matter: Prethermalization and PGEs 

Singh et al, arXiv:1809.05554 (2018). 
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Additional Projects 

• Tunable quantum quasicrystals 
 
• Anyon synthesis 
 
• Topological bands 
 
• Ultrafast quantum emulation 
 
• Relativistic harmonic motion 
 
• Quantum interfaces 
 
• Targets of opportunity… 

 



Conclusions 

Cold atoms are a flexible tool for the study of quantum matter 
 
 Position-space Bloch oscillations probe band structure 
 
 Floquet engineering can hybridize bands & tune transport 

 
 Strongly modulated lattices can realize and probe 
     nontrivial Floquet phases of matter.  
 
 Also: quasicrystals, anyons, topological bands, ultrafast quantum 
emulation, quantum interfaces 
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