Department of Physics and Astronomy

Driven-dissipative superfluids:

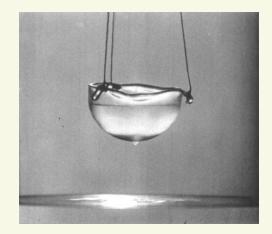
from a compact Kardar-Parisi-Zhang dynamics to a rigid state

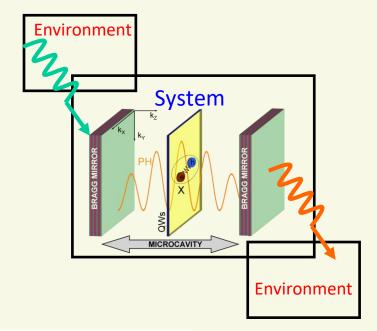
Marzena Szymańska

KITP, Aug 2018

Photonic Platforms: driven-dissipative quantum fluids

2D Light-matter quantum fluids with drive and decay





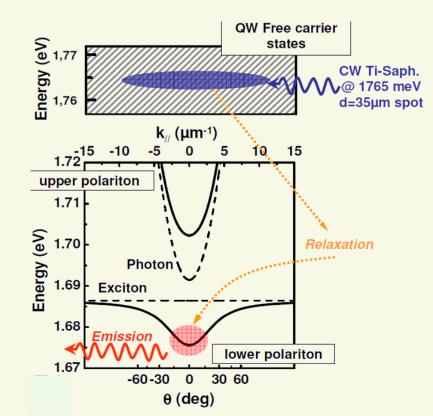
Polaritons Photon BEC Circuit QED systems Atoms in cavities

....

Different Drives

Incoherent

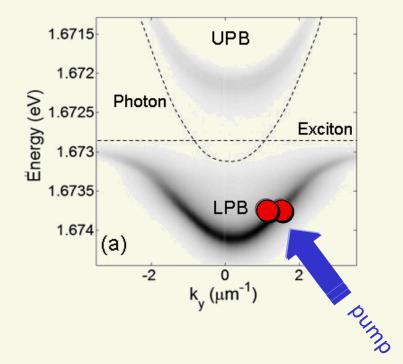
- ✓ Preserves U(1) symmetry
- ✓ Gapless Goldstone mode
- Violates particle number conservation (f-sum rule may not hold)



Different Drives

Coherent

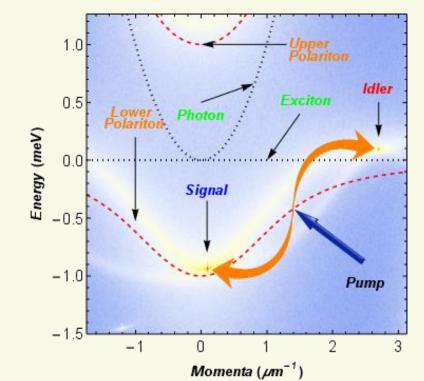
- Breaks U(1) symmetry
- No gapless Goldstone mode
- Violates particle number conservation (f-sum rule may not hold)
- ✓ Violates Galilean invariance



Different Drives

Parametric

- ✓ Preserves U(1) symmetry
- ✓ Gapless Goldstone mode
- Violates particle number conservation (f-sum rule may not hold)
- Spatial inhomogeneity additional knob



Incoherently Driven Bosons in 2D

Generic model for incoherently driven-dissipative bosons

$$\begin{split} \ddot{u}d\psi(\mathbf{r},t) &= \left[-\frac{\nabla^2}{2m} + g|\psi(\mathbf{r},t)|^2 + i(\gamma - \kappa - \Gamma|\psi(\mathbf{r},t)|^2)\right]\psi(\mathbf{r},t)dt + dW\\ &\frac{\gamma}{1 + |\psi(\mathbf{r},t)|^2/n_S} \quad \text{more non-linear drive}\\ \\ \text{Wiener noise} \quad \left\langle dW^*(\mathbf{r}',t)dW(\mathbf{r},t)\right\rangle &= \frac{\gamma + \kappa + \Gamma|\psi(\mathbf{r},t)|^2}{dV}\delta_{\mathbf{r},\mathbf{r}'}dt\\ &\frac{\frac{\gamma}{1 + |\psi(\mathbf{r},t)|^2/n_S} + \kappa}{dV} \end{split}$$

Another model used in the context of semiconductor microcavities

$$\begin{split} id\psi(\mathbf{r},t) &= \left[-\frac{\nabla^2}{2m} + g |\psi(\mathbf{r},t)|^2 + g_R n_R(\mathbf{r},t) + i(R\left[n_R(\mathbf{r},t)\right] - \kappa) \right] \psi(\mathbf{r},t) dt + dW \\ n_R(\mathbf{r},t)t &= P(\mathbf{r}) - \gamma_R n_R(\mathbf{r},t) - R[n_R(\mathbf{r},t)] |\psi(\mathbf{r},t)|^2 \\ \langle dW^*(\mathbf{r}',t) dW(\mathbf{r},t) \rangle &= \frac{R\left[n_R(\mathbf{r},t)\right] + \kappa}{dV} \delta_{\mathbf{r},\mathbf{r}'} dt \end{split}$$
Free phase: gapless phase mode, all other excitations gapped

Kardar–Parisi–Zhang (KPZ) Theory

[Altman et al, PRX 2015]

Treating phase fluctuations exactly

$$\partial_t \theta = D_x \partial_x^2 \theta + D_y \partial_y^2 \theta + \frac{\lambda_x}{2} (\partial_x \theta)^2 + \frac{\lambda_y}{2} (\partial_y \theta)^2 + \bar{\zeta}(\mathbf{x}, t)$$

$$\int_{100}^{100} \frac{System size L_1}{System size L_2} \int_{100}^{L_1} \frac{1}{K^T \text{ crossover}} \int_{100}^{K^T \text{ crossover}} \frac{1}{System size L_2} \int_{100}^{K$$

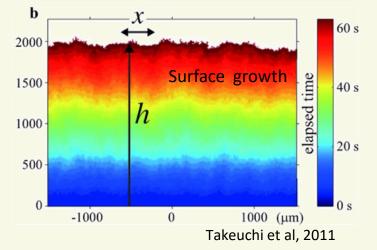
Stretched exponential (faster then algebraic) decay of coherence but superfluidity survives

KPZ – why interesting?

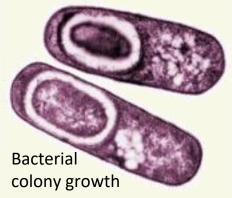
Solving KPZ equation Martin Hairer, Warwick

2014 Fields Medal

Universality class for a wide range of non-equilibrium phenomena in 1D



J Maunuksela et al, PRL,1997

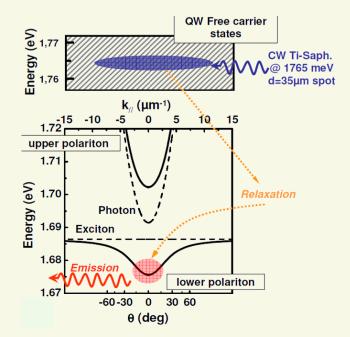


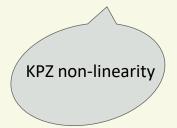
J Wakita et al, 1997

To date no experimental realisation of KPZ in 2D

KPZ Order with Polaritons

 $\partial_t \theta = D_x \partial_x^2 \theta + D_y \partial_y^2 \theta + \frac{\lambda_x}{2} (\partial_x \theta)^2 + \frac{\lambda_y}{2} (\partial_y \theta)^2 + \bar{\zeta}(\mathbf{x}, t)$

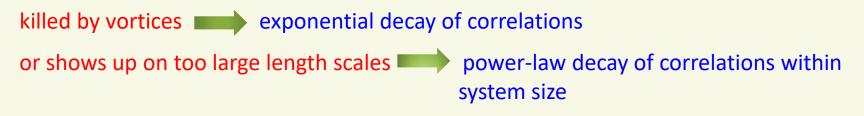




Incoherently pumped microcavity:

 $\rm L_1$ unrealistically large away from BKT

KPZ order



Compact KPZ Equation and Vortices

Interactions between V and AV in KPZ equation

$$(R) = \frac{1}{\epsilon} \log\left(\frac{R}{D_c}\right) - \frac{a}{3\epsilon^3} \log^3\left(\frac{R}{D_c}\right)$$

$$\left(\frac{n}{D_c}\right)$$
 [Sieberer et al, 2018]

Attractive as in XY model

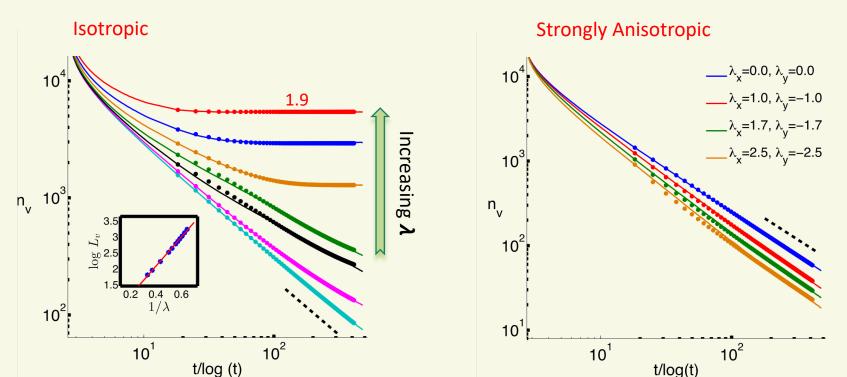
Repulsive or attractive depending on anisotropy

For isotropic system interactions repulsive at $L_v = D_c \exp\left(2\sqrt{\epsilon}D/\lambda\right)$

For strongly anisotropic interactions always attractive and enhanced with respect to non-driven system

Phase ordering kinetics after quench

V



Compact KPZ Equation and Vortices

Interactions between V and AV in KPZ equation

$$(R) = \frac{1}{\epsilon} \log\left(\frac{R}{D_c}\right) - \frac{a}{3\epsilon^3} \log^3$$

$$\left(\frac{R}{D_c}\right)$$
 [Sieberer et al, 2018]

Attractive as in XY model

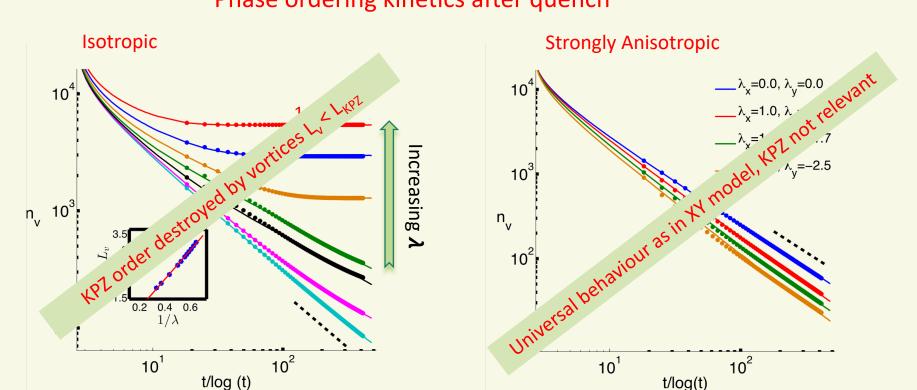
Repulsive or attractive depending on anisotropy

For isotropic system interactions repulsive at $L_v = D_c \exp\left(2\sqrt{\epsilon}D/\lambda\right)$

For strongly anisotropic interactions always attractive and enhanced with respect to non-driven system

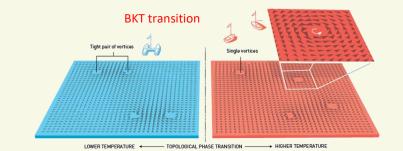
Phase ordering kinetics after quench

V



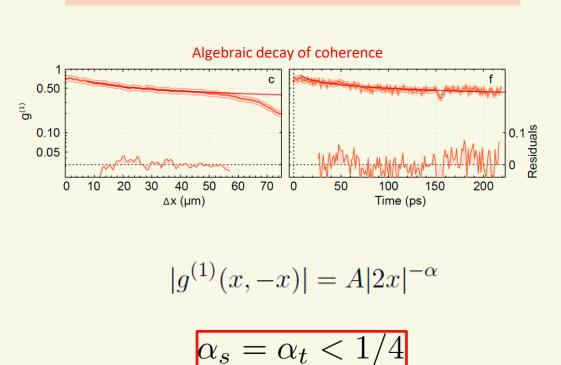
Topological Phase Transition

$$id\psi(\mathbf{r},t) = \left[-\frac{\nabla^2}{2m} + g|\psi(\mathbf{r},t)|_{-}^2 + i(\gamma - \kappa - \Gamma|\psi(\mathbf{r},t)|_{-}^2)\right]\psi(\mathbf{r},t)dt + dW$$

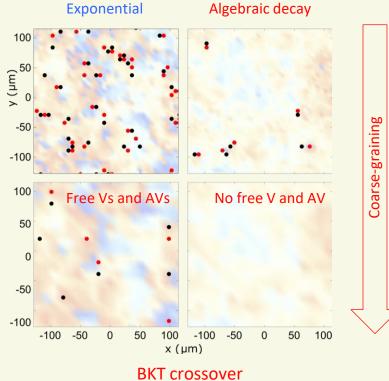


ALER NOBEL

2016 Nobel Prize



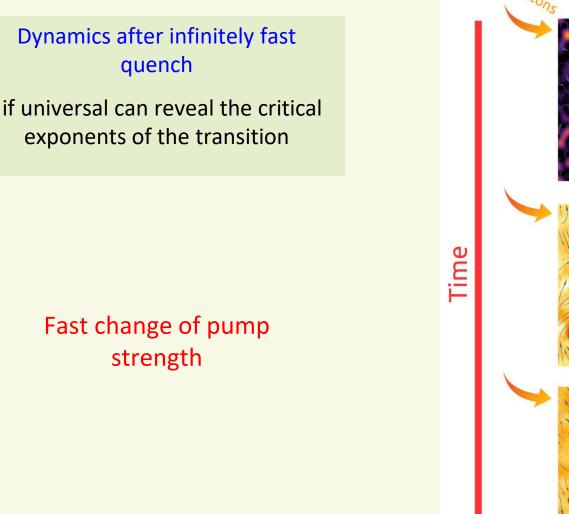
Equilibrium BKT in polariton fluid

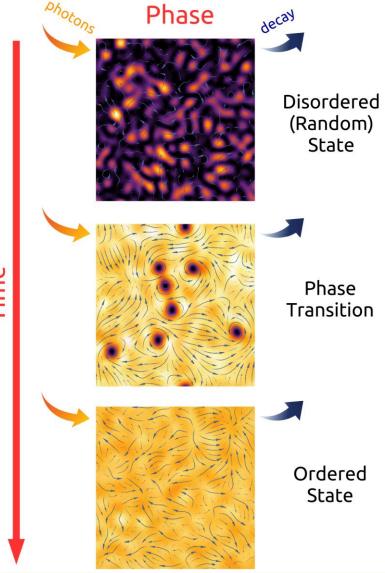


[D. Caputo, Nature Materials (2017)]

Quench Dynamics

[P. Comaron et al, PRL 2018]

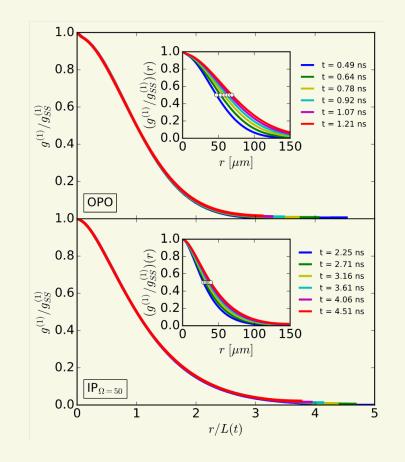




Dynamical Critical Exponents

$t \ [ps]$ 282.1 647.3 4167.59118.2 Number of vortices / antivortices 001 01 00 001 01 00 0.01 4508 ps-45086 ps 0 Characteristic Length L [μm] 22543 ps_ $\mathsf{IP}_{\Omega=50}$ $L(\eta = 0.5)$ $\langle n_v \rangle$ $z = 2.07 \pm 0.01$ $z = 2.23 \pm 0.01$ 10⁰ $z = 2.04 \pm 0.01$ 50 500 1000 $\overline{(t/t_0)}/log(t/t_0)$ 100 $t \ [ps]$ 647.3 9118.2 4167.5 Number of vortices / antivortices / 10¹ 10¹ 10³ 4508 ps 001 Characteristic Length L [µm] 9017 ps $z = \frac{1.02}{\pm 0.05}$ $IP_{\Omega = \infty}$ $L(\eta\,{=}\,0.\,5)$ $\langle n_v \rangle$ $z=1.95{\pm}0.02$ $z = 1.95 \pm 0.01$ 100 500 1000 $(t/t_0)/log(t/t_0)$ 35.8 282.1 647.3 $t \ [ps]$ Number of vortices / antivortices 1 10. 10³ Characteristic Length *L* [µm] 504 ps ps 1236 10² $z = \frac{1.05}{\pm 0.01}$ OPO $L(\eta = 0.5)$ $\langle n_v \rangle$ $z = 2.07 \pm 0.01$ $z = 2.08 \pm 0.01$ 10 50 100 5 $(t/t_0)/log(t/t_0)$

[P. Comaron et al, PRL 2018]



Critical exponent z=2

as in equilibrium XY model i.e. equilibrium BKT

System with Reservoir

Increasing drive

$$id\psi(\mathbf{r},t) = \left[-\frac{\nabla^2}{2m} + g|\psi(\mathbf{r},t)|^2 + g_R n_R(\mathbf{r},t) + i(R\left[n_R(\mathbf{r},t)\right] - \kappa)\right]\psi(\mathbf{r},t)dt + dW$$

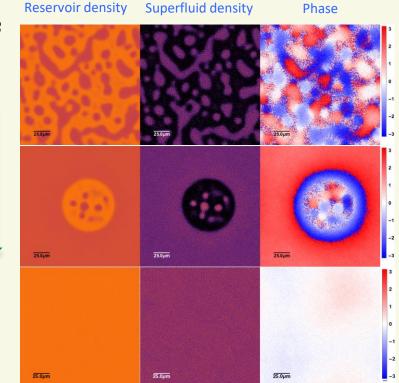
$$n_{\mathrm{R}}(\mathbf{r},t)t = P(\mathbf{r}) - \gamma_{R}n_{R}(\mathbf{r},t) - R[n_{R}(\mathbf{r},t)]|\psi(\mathbf{r},t)|^{2}$$

Weak drive – disordered phase, g1(r) exponential

Medium drive – inhomogeneous superfluid, vortices pushed to low density regions, g1(r) exponential

Strong drive – homogeneous superfluid, g1(r) algebraic

1st order phase transition, phase separation, sudden jump in number of vortices and correlations – different to BKT



System with Reservoir

Increasing drive

$$id\psi(\mathbf{r},t) = \left[-\frac{\nabla^2}{2m} + g|\psi(\mathbf{r},t)|^2 + g_R n_R(\mathbf{r},t) + i(R\left[n_R(\mathbf{r},t)\right] - \kappa)\right]\psi(\mathbf{r},t)dt + dW$$

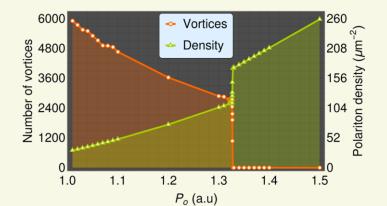
 $n_{\mathrm{R}}(\mathbf{r},t)t = P(\mathbf{r}) - \gamma_{R}n_{R}(\mathbf{r},t) - R[n_{R}(\mathbf{r},t)]|\psi(\mathbf{r},t)|^{2}$

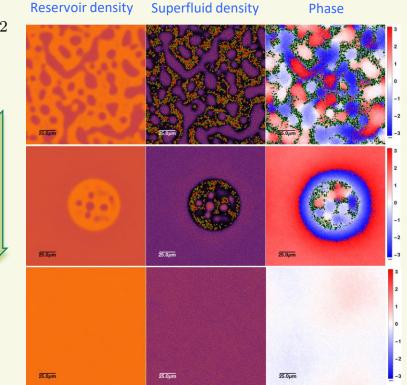
Weak drive – disordered phase, g1(r) exponential

Medium drive – inhomogeneous superfluid, vortices pushed to low density regions, g1(r) exponential

Strong drive – homogeneous superfluid, g1(r) algebraic

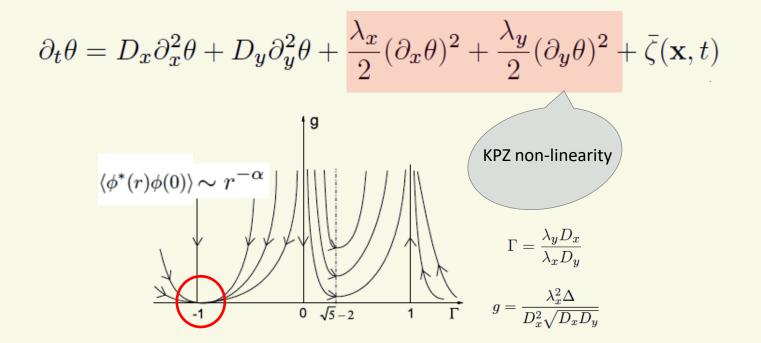
1st order phase transition, phase separation, sudden jump in number of vortices and correlations – different to BKT





Possible BKT transition within superfluid paddles between weak and medium drives

Anisotropic KPZ

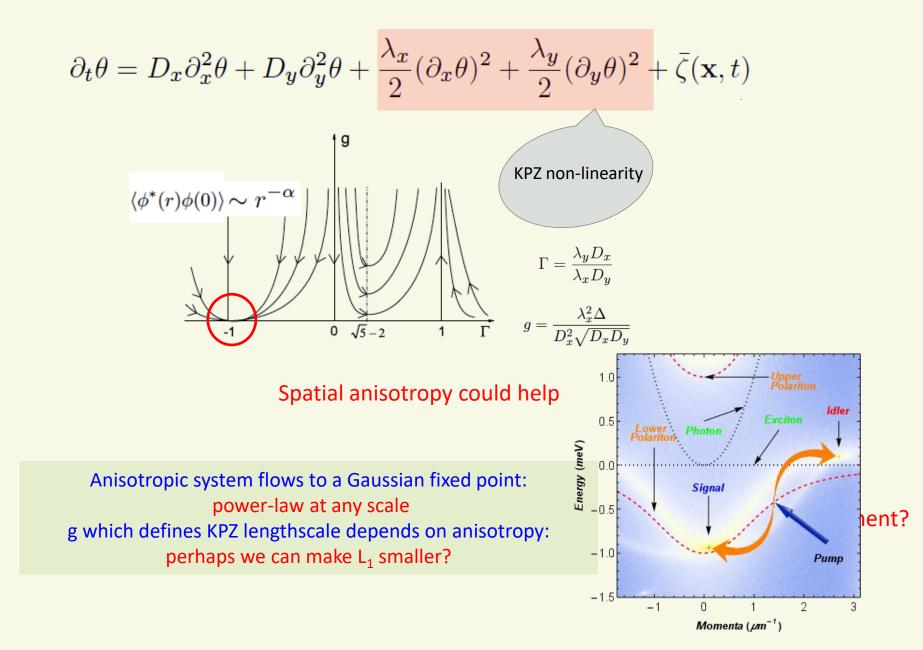


Spatial anisotropy could help

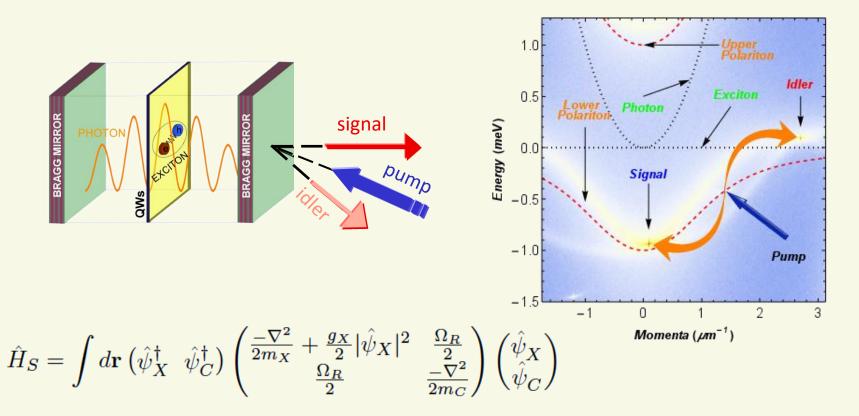
Anisotropic system flows to a Gaussian fixed point: power-law at any scale g which defines KPZ lengthscale depends on anisotropy: perhaps we can make L₁ smaller?

How to realise in experiment?

Anisotropic KPZ



Playing with Spatial Anisotropy: OPO



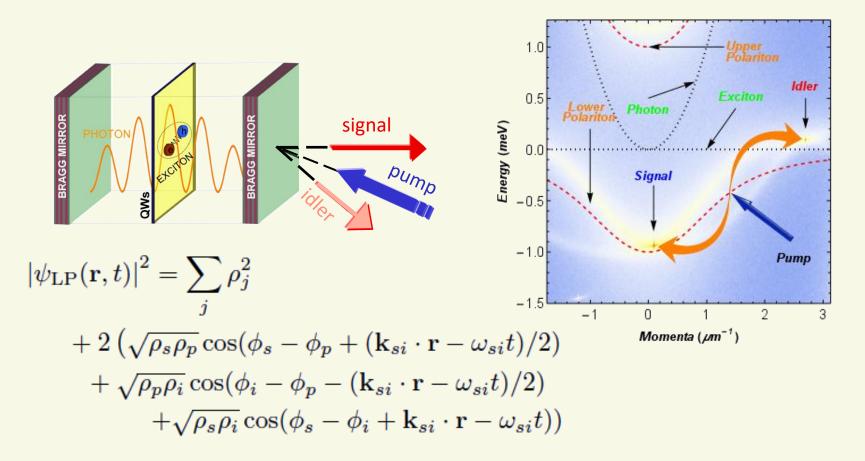
$$\begin{split} \hat{H}_{SB} &= \int d\mathbf{r} \left[F(\mathbf{r},t) \hat{\psi}_{C}^{\dagger}(\mathbf{r},t) + \mathrm{H.c.} \right] \\ &+ \sum_{\mathbf{k}} \sum_{l=X,C} \left\{ \zeta_{\mathbf{k}}^{l} \left[\hat{\psi}_{l,\mathbf{k}}^{\dagger}(t) \hat{B}_{l,\mathbf{k}} + \mathrm{H.c.} \right] + \omega_{l,\mathbf{k}} \hat{B}_{l,\mathbf{k}}^{\dagger} \hat{B}_{l,\mathbf{k}} \right\} \end{split}$$

- ♦ Non-thermal occupation
- Signal phase is completely free and idler phase locked to signal via pump

$$2\varphi_p = \varphi_s + \varphi_i$$

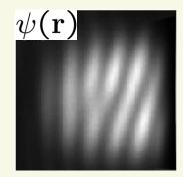
Spontaneous U(1) symmetry breaking gapless and diffusive Goldstone mode

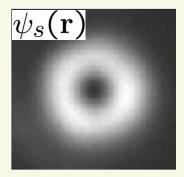
Playing with Spatial Anisotropy: OPO



♦ Time crystal

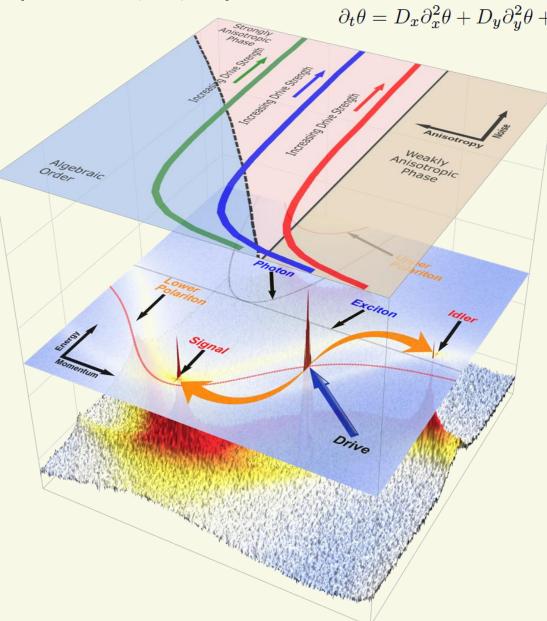
- Vortices: dislocations in density wave and time crystal
- After filtering in momentum: usual vortices





Tunning Across Universalities with OPO

[A. Zamora et al., PRX, 2017]

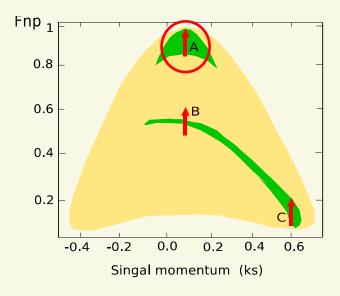


$$\theta = D_x \partial_x^2 \theta + D_y \partial_y^2 \theta + \frac{\lambda_x}{2} (\partial_x \theta)^2 + \frac{\lambda_y}{2} (\partial_y \theta)^2 + \bar{\zeta}(\mathbf{x}, t)$$

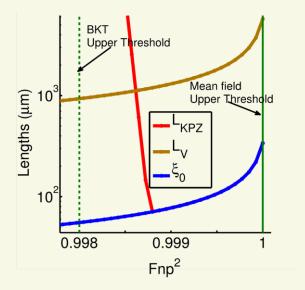
Negative detuning

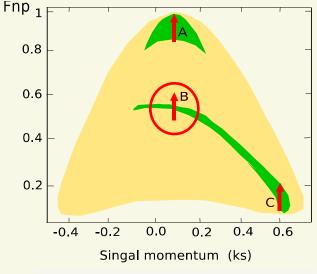
By increasing drive we move from non-equilibrium to equilibrium fixed point

Two different universality classes as the drive is increased



Searching for the KPZ Phase





Middle of the OPO regime

[A. Zamora et al., PRX, 2017]

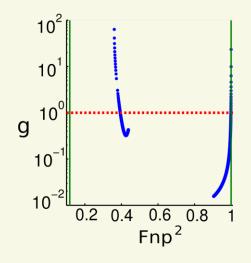
Away from threshold:

 L_{KPZ} astronomical

Very close to threshold

 L_{KPZ} reasonable and L_{KPZ} < L_V only extremely close to threshold i.e. below BKT transition

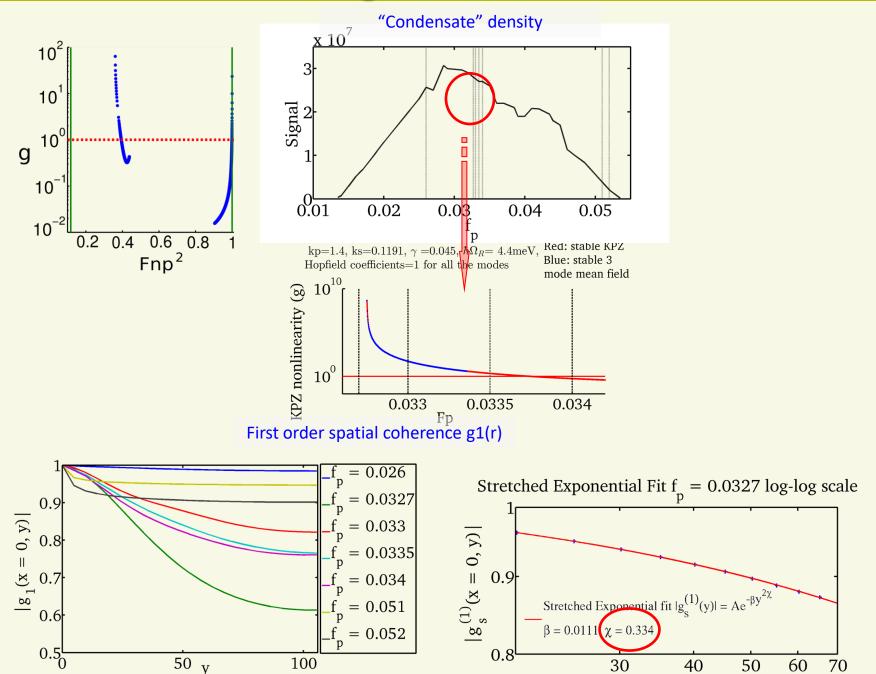
Note: analytics not valid in this regime



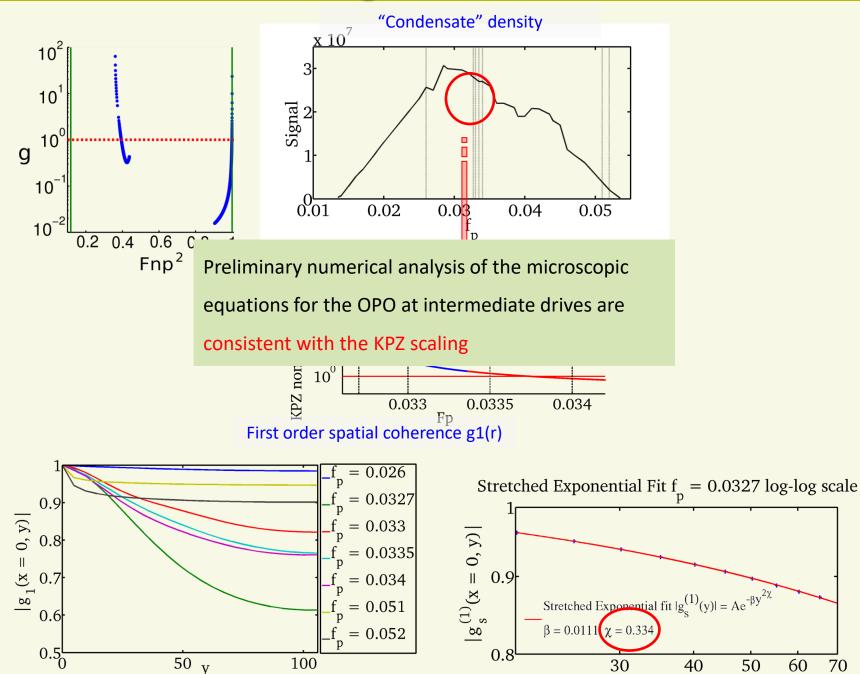
Large g, even > 1

KPZ at all length-scales?

Searching for the KPZ Phase



Searching for the KPZ Phase

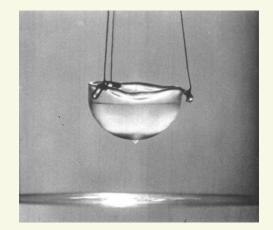


Flow Properties of Quantum Fluids

What is a superfluid?

Defined by flow properties:

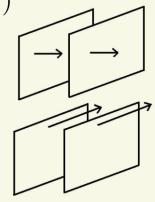
- No viscosity
- No transverse response
- Quantised vortices
- Metastable persistent flow



Current-current response function: $\delta j_i({m q}) = \chi_{ij}({m q}) \delta f_j({m q})$

Long wavelength limit:

- Transverse direction first: longitudinal response
- Longitudinal direction first: transverse response

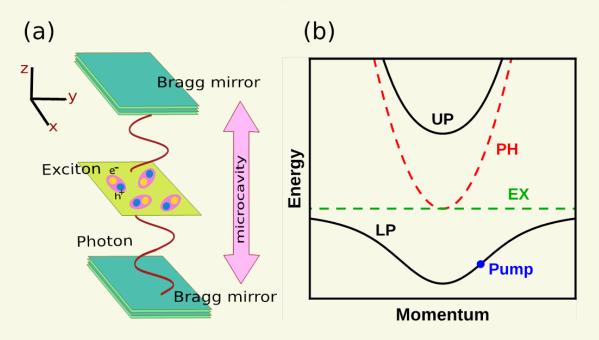


Superfluid component responds to longitudinal but not transverse perturbations

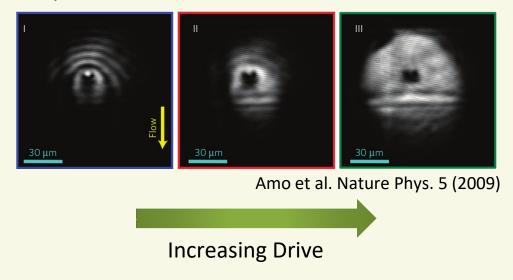
Superfluid density:

$$\rho_S = m \lim_{\boldsymbol{q} \to \boldsymbol{0}} \left(\chi_L(\boldsymbol{q}) - \chi_T(\boldsymbol{q}) \right)$$

Coherently Driven Polaritons



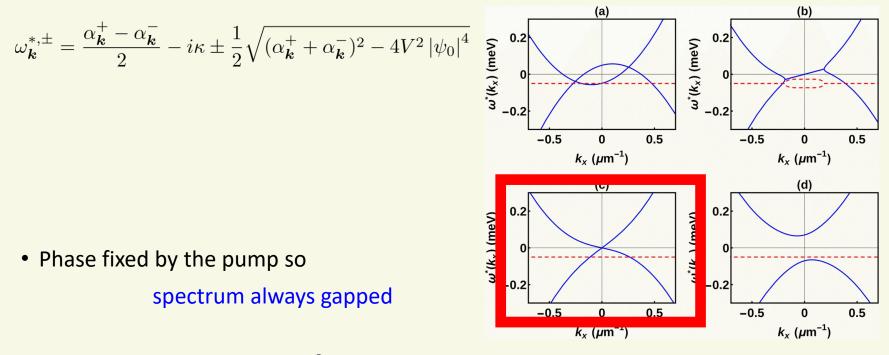
Nearly dissipationless flow observed



Coherently Driven Polaritons

[R. Juggins et al., Nature Comm. to appear, 2018]

$$\hat{H} = \sum_{\boldsymbol{k}} \epsilon_{\boldsymbol{k}} \hat{a}^{\dagger}_{\boldsymbol{k}} \hat{a}_{\boldsymbol{k}} + \frac{F_{p}}{\sqrt{2}} (\hat{a}^{\dagger}_{\boldsymbol{0}} + \hat{a}_{\boldsymbol{0}}) + \frac{V}{2} \sum_{\boldsymbol{k}, \boldsymbol{k}', \boldsymbol{q}} \hat{a}^{\dagger}_{\boldsymbol{k}-\boldsymbol{q}} \hat{a}^{\dagger}_{\boldsymbol{k}'+\boldsymbol{q}} \hat{a}_{\boldsymbol{k}} \hat{a}_{\boldsymbol{k}'} + \sum_{\boldsymbol{p}} \omega_{\boldsymbol{p}}^{A} \hat{A}^{\dagger}_{\boldsymbol{p}} \hat{A}_{\boldsymbol{p}} + \sum_{\boldsymbol{k}, \boldsymbol{p}} \zeta_{\boldsymbol{k}, \boldsymbol{p}} (\hat{a}^{\dagger}_{\boldsymbol{k}} \hat{A}_{\boldsymbol{p}} + \hat{A}^{\dagger}_{\boldsymbol{p}} \hat{a}_{\boldsymbol{k}})$$



- Blue detuning $\Delta = V \left| \psi_0 \right|^2 \to$ Landau criterion fulfilled in real part (c)

Coherently Driven Polaritons

[R. Juggins et al., Nature Comm. to appear, 2018]

Superfluid density from Keldysh: $\rho_S = m \lim_{q \to 0} (\chi_L(q) - \chi_T(q)) = 0$

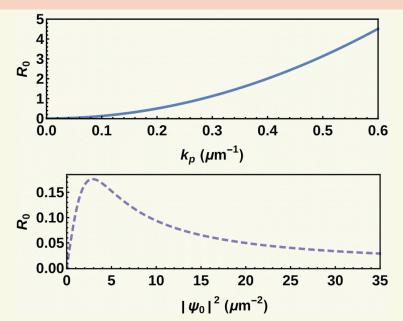
Coherently pumped polaritons are not superfluid

but ...

New quantum state

- Most of the system does not respond to neither longitudinal nor transverse forces no superfluid but no normal fluid either
- Rigid state fixed by the external pump
- Some normal response dependent on pump vector $\, oldsymbol{k}_p \,$

Rigid state fits well with inability to form vortices and solitons

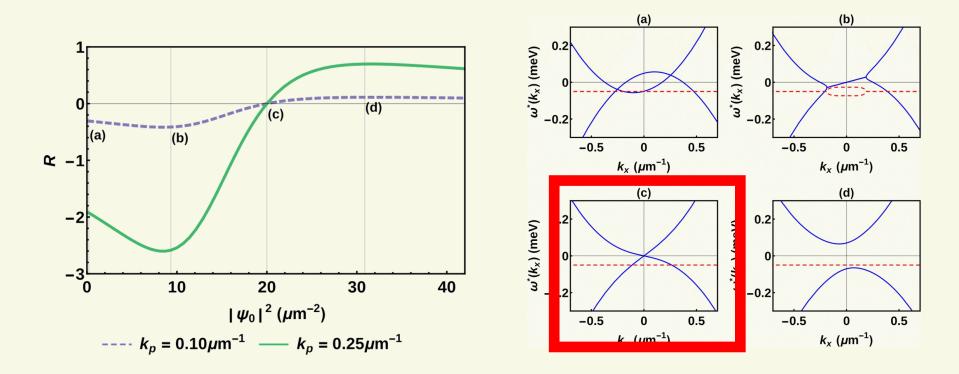


Reconciling with the Experiment

[R. Juggins et al., Nature Comm. to appear, 2018]

Detuning and the response function

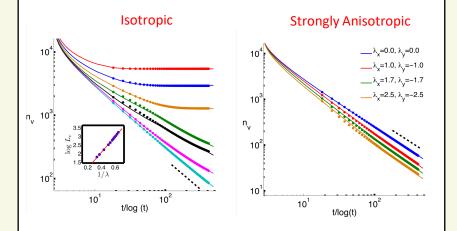
- Vary pump strength for a given detuning
- Normal response goes to zero when the real spectrum fulfils the Landau criterion

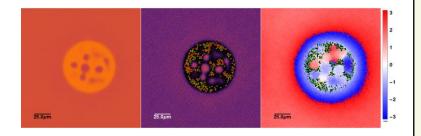


Experiment records the non-fluid rather then superfluid state

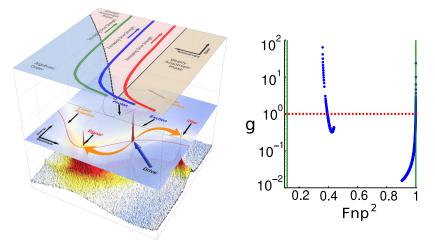
Conclusions

Driven-dissipative superfluids: rich variety of phases depending on the kind of the drive: BKT, vortex dominated phase, 1st order transition, phase separation, etc...

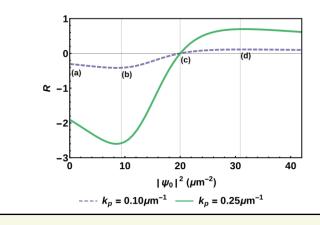




♦ Anisotropy and dissipation – as in OPO – different phases, KPZ order at all lengthscales?



♦ Coherent drive – new quantum state with novel flow properties



Acknowledgements

Group:

- A. Zamora
- G. Dagvadorj
 - **R. Juggins**

A. Ferrier

In collaboration with:

D. Ballarini D. Sanvitto L. Dominici, D. Caputo, M. De Giorgi, G. Gigli, K. West, L. N. Pfeifer

Funding:

P. Comaron

- - M. Matuszewski

EPSRC

Engineering and Physical Sciences Research Council

S. Diehl

L. Sieberer