Hyperbolic and Flat-Band Lattices in Circuit QED

Alicia Kollár

Houck Lab

Department of Electrical Engineering, Princeton University

Outline

- Quantum simulation with circuit QED lattices
- Microwave resonators
- Superconducting qubits
- Interacting photons
- Hyperbolic lattices
- Connections to GR, AdS, Comp Sci, Math
- Projection to flat space
- Deformable resonators
- Flat-band lattices
- Line graphs
- Maximal Gaps

Microwave Coplanar Waveguide Resonators

- 2D analog of coaxial cable
- Cavity defined by cutting center pin
- Voltage antinode at "mirror"

Harmonic oscillator

$$
\hat{H}=\frac{1}{2 C} \hat{n}^{2}+\frac{1}{2 L} \hat{\varphi}^{2}
$$

Transmon Qubit

Non-Linearities and Photon-Photon Interactions

Qubit-Cavity

(Jaynes-Cummings Model)

$$
\begin{gathered}
H_{J C}=\omega_{c} a^{\dagger} a+\frac{1}{2} \omega_{q} \sigma_{z}+g_{0}\left(a^{\dagger} \sigma^{-}+a \sigma^{+}\right) \\
\left| \pm_{n}\right\rangle=\frac{1}{\sqrt{2}}(|g, n\rangle \pm|e, n-1\rangle)
\end{gathered}
$$

$$
\begin{aligned}
& |g, 3\rangle,|e, 2\rangle \xlongequal{|g, 2\rangle,|e, 1\rangle} \frac{\omega}{|g, 1\rangle,|e, 0\rangle} \underset{\text { uncoupled }}{\omega} \\
& \text { uncoupled }
\end{aligned}
$$

Al Film

- Oxide not perfectly uniform

Kinetic Inductor

- Inductance from electron momentum
- Dependent on carrier density

$$
H_{K I}=\left(\omega_{c}+\chi_{e f f} a^{\dagger} a\right) a^{\dagger} a
$$

CPW Lattices

Deformable Resonators

- Frequency depends only on length
- Coupling depends on ends

-"Bendable"

The Graph is Everything

Regular Lattice

Regular Tight-Binding Graph

Alternate Tight-Binding Graph

Layout and Effective Lattices

Resonator Lattice

- An edge on each resonator

Layout X

Effective Photonic Lattice

- A vertex on each resonator

Line Graph $L(X)$

Outline

- Quantum simulation with circuit QED lattices
- Microwave resonators
- Superconducting qubits
- Interacting photons
- Hyperbolic lattices
- Connections to GR, AdS, Comp Sci, Math
- Projection to flat space
- Deformable resonators
- Flat-band lattices
- Line graphs
- Maximal Gaps

Projecting to Flat 2D

Distance is not preserved.

Distance is not preserved.

Planar and Non-Planar Lattices

Distance is not preserved.
t is preserved.

Graph is preserved.

Band Structure Calculations

Hyperbolic geometry is non-commutative

- No Bravais lattice
- No Bloch theory
- Graph theory
- Brute force TB numerics

Heptagon-Kagome Device

- 2 shells
- Operating frequency: 16 GHz
- 4 input-output ports

Line-Graph Lattices

Graphene

Band Structure Correspondence

Band Structure Correspondence

Layout Tight-Binding Hamiltonian

- Bounded self-adjoint operator on X

$$
H_{X}
$$

Effective Hamiltonian

- Bounded self-adjoint operator on $L(X)$

$$
\bar{H}_{s}(X)=H_{L(X)}
$$

Incidence Operator

- From X to $L(X)$

$$
M: \ell^{2}(X) \rightarrow \ell^{2}(L(X))
$$

$$
M(v, e)= \begin{cases}1, & \text { if } e \text { and } v \text { are incident } \\ 0 & \text { otherwise }\end{cases}
$$

$$
M^{t} M=D_{X}+H_{X}
$$

$$
M M^{t}=2 I+\bar{H}_{s}(X)
$$

$$
\begin{aligned}
D_{X}+H_{X} & \simeq 2 I+\bar{H}_{s}(X) \\
E_{\bar{H}_{s}} & =\left\{\begin{array}{l}
d-2+E_{H_{X}} \\
-2
\end{array}\right.
\end{aligned}
$$

Density of States and Flat-Band States

O゙メ1

Bipartite and Non-Bipartite Graphs

Bipartite

- All neighbors opposite sign

Non-Bipartite

- Not all neighbors can be opposite sign

Heptagon-Pentagon-Kagome Lattice

Real-Space Topology and Band Touches

Kagome lattice

- Triangular Bravais lattice
- 3 site unit cell

Band Structure

Flat-band States

Incontractible Loop States

Real-Space Topology and Band Gaps

S-Wave and P-Wave On-Site Wave Functions

$$
\mathcal{H}=\sum_{\substack{\text { coupling } \\ \text { capacitors }}} \omega C_{c} \Phi^{+} \Phi^{-}
$$

Full-wave

Half-wave

Half-Wave Band Structure Correspondence

Layout Tight-Binding Hamiltonian

- Bounded self-adjoint operator on X

$$
H_{X}
$$

Effective Hamiltonian

- Bounded self-adjoint operator on $L(X)$
- Mixed positive and negative hopping

$$
\begin{array}{ll}
\bar{H}_{a}(X) \neq H_{L(X)} & N^{t} N=D_{X}-H_{X} \\
& N N^{t}=2 I+\bar{H}_{a}(X)
\end{array}
$$

Incidence Operator

- From X to $L(X)$

$$
N: \ell^{2}(X) \rightarrow \ell^{2}(L(X))
$$

$$
N(v, e)= \begin{cases}1, & \text { if } e^{+}=v \\ -1 & \text { if } e^{-}=v \\ 0 & \text { otherwise }\end{cases}
$$

$$
D_{X}-H_{X} \simeq 2 I+\bar{H}_{a}(X)
$$

$$
E_{\bar{H}_{a}}= \begin{cases}d-2-E_{H_{X}} & \bullet \text { Identical on bipartite graphs } \\ -2 & \bullet \text { Inverted otherwise }\end{cases}
$$

Full-Wave v Half-Wave Flat Band States

FW

- Full-wave has localized states on only even cycles of the layout.
- Half-wave has localized states on any cycle of the layout.

Full-Wave Half-Wave Correspondence

FW

Subdivision Graphs: Flat Bands at 0

๑)

O

Subdivision Graphs and Optimally Gapped Flat Bands

Subdivision Graphs and Optimally Gapped Flat Bands

Subdivision Graphs and Optimally Gapped Flat Bands

$\mathbb{S}(X)$
$E_{\mathrm{S}(X)}=\left\{\begin{array}{l} \pm \sqrt{E_{X}+3} \\ 0\end{array}\right.$

$L(\mathbb{S}(X))$
$E_{L(S(X))}=\left\{\begin{array}{l}\frac{1 \pm \sqrt{1+4\left(E_{X}+3\right)}}{2} \\ 0 \\ -2\end{array}\right.$

Subdivision Graphs and Optimally Gapped Flat Bands

Conclusion and Outlook

- Circuit QED lattices
- Artificial photonic materials
- Interacting photons
- Hyperbolic lattices
- Unusual band structures
- On-chip fabrication
- Flat-band lattices
- $0,-2$
- Optimal gaps
- Outlook
- Interacting photons in curved space
- Many-body physics in flat bands

Hyperbolic and Flat-Band Lattices in Circuit QED

Alicia Kollár
 Houck Lab
 Department of Electrical Engineering, Princeton University

Prof. Andrew Houck
Electrical Engineering, Princeton

Mattias Fitzpatrick
Electrical Engineering, Princeton

Prof. Peter Sarnak Mathematics, Princeton

