Hyperbolic and Flat-Band Lattices in Circuit QED

Alicia Kollár

Houck Lab

Department of Electrical Engineering, Princeton University

KITP, Sept 12th 2018

Outline

• Quantum simulation with circuit QED lattices

- Microwave resonators
- Superconducting qubits
- Interacting photons
- Hyperbolic lattices
 - Connections to GR, AdS, Comp Sci, Math
 - Projection to flat space
 - Deformable resonators
- Flat-band lattices
 - Line graphs
 - Maximal Gaps

Microwave Coplanar Waveguide Resonators

- 2D analog of coaxial cable
- Cavity defined by cutting center pin
- Voltage antinode at "mirror"

Harmonic oscillator

$$\hat{H} = \frac{1}{2C}\hat{n}^2 + \frac{1}{2L}\hat{\varphi}^2$$

Transmon Qubit

Anharmonic oscillator

$$\hat{H} = 4E_C \,\hat{n}^2 - E_J \cos\hat{\varphi}$$

Koch et al. PRA 76, 042319 (2007)

Non-Linearities and Photon-Photon Interactions

Qubit-Cavity

(Jaynes-Cummings Model)

$$H_{JC} = \omega_c a^{\dagger} a + \frac{1}{2} \omega_q \sigma_z + g_0 (a^{\dagger} \sigma^- + a \sigma^+)$$

$|\pm_n\rangle = \frac{1}{\sqrt{2}}(|g,n\rangle \pm |e,n-1\rangle),$

• Oxide not perfectly uniform

Kinetic Inductor

- Inductance from electron momentum
- Dependent on carrier density

$$H_{KI} = \left(\omega_c + \chi_{eff} a^{\dagger} a\right) a^{\dagger} a$$

CPW Lattices

Houck *et al*. Nat Phys **8**, (2012) Underwood *et al*. PRA **86**, 023837 (2012)

Deformable Resonators

• "Bendable"

The Graph is Everything

Regular Lattice

Regular Tight-Binding Graph

Alternate Tight-Binding Graph

Layout and Effective Lattices

Resonator Lattice

• An edge on each resonator

${\bf Layout} \ X$

Effective Photonic Lattice

• A vertex on each resonator

Outline

• Quantum simulation with circuit QED lattices

- Microwave resonators
- Superconducting qubits
- Interacting photons
- Hyperbolic lattices
 - Connections to GR, AdS, Comp Sci, Math
 - Projection to flat space
 - Deformable resonators
- Flat-band lattices
 - Line graphs
 - Maximal Gaps

Projecting to Flat 2D

Distance is not preserved.

Distance is not preserved.

Planar and Non-Planar Lattices

Band Structure Calculations

Heptagon-Kagome Device

Line-Graph Lattices

Band Structure Correspondence

Band Structure Correspondence

Layout Tight-Binding Hamiltonian

Bounded self-adjoint operator on X

 H_X

Incidence Operator

• From X to L(X)

$$M: \ell^2(X) \to \ell^2(L(X))$$

 $M(v, e) = \begin{cases} 1, & \text{if } e \text{ and } v \text{ are incident,} \\ 0 & \text{otherwise.} \end{cases}$

Effective Hamiltonian

Bounded self-adjoint operator on L(X)

$$\bar{H}_s(X) = H_{L(X)}$$

 $M^{t}M = D_{X} + H_{X}$ $MM^{t} = 2I + \bar{H}_{s}(X)$

$$D_X + H_X \simeq 2I + \bar{H}_s(X)$$
$$E_{\bar{H}_s} = \begin{cases} d - 2 + E_{H_X} \\ -2 \end{cases}$$

Density of States and Flat-Band States

Bipartite and Non-Bipartite Graphs

• All neighbors opposite sign

 Not all neighbors can be opposite sign

Heptagon-Pentagon-Kagome Lattice

- Modified graphene with interstitials
- Heptagonal and pentagonal plaquettes
- Non-bipartite
- Tripled 12-site unit cell

Real-Space Topology and Band Touches

Kagome lattice

- Triangular Bravais lattice
- 3 site unit cell

Band Structure

Flat-band States

Incontractible Loop States

Bergman et al. PRB 78, 125104 (2008)

Real-Space Topology and Band Gaps

S-Wave and P-Wave On-Site Wave Functions

Half-Wave Band Structure Correspondence

Layout Tight-Binding Hamiltonian

Bounded self-adjoint operator on X

 H_X

Incidence Operator

• From X to L(X)

$$N: \ell^2(X) \to \ell^2(L(X))$$

$$N(v, e) = \begin{cases} 1, & \text{if } e^+ = v, \\ -1 & \text{if } e^- = v, \\ 0 & \text{otherwise.} \end{cases}$$

$$N^{t}N = D_{X} - H_{X}$$
$$NN^{t} = 2I + \bar{H}_{a}(X)$$

- Bounded self-adjoint operator on L(X)
- Mixed positive and negative hopping

 $H_a(X) \neq H_{L(X)}$

$$D_X - H_X \simeq 2I + H_a(X)$$
$$E_{\bar{H}_a} = \begin{cases} d - 2 - E_{H_X} \\ -2 \end{cases} \bullet$$

- Identical on bipartite graphs
 - Inverted otherwise

Full-Wave v Half-Wave Flat Band States

• Full-wave has localized states on only even cycles of the layout.

• Half-wave has localized states on any cycle of the layout.

Full-Wave Half-Wave Correspondence

Subdivision Graphs: Flat Bands at 0

Conclusion and Outlook

• Circuit QED lattices

- Artificial photonic materials
- Interacting photons
- Hyperbolic lattices
 - Unusual band structures
 - On-chip fabrication
- Flat-band lattices
 - 0, -2
 - Optimal gaps

Outlook

- Interacting photons in curved space
- Many-body physics in flat bands

Hyperbolic and Flat-Band Lattices in Circuit QED

Alicia Kollár

Houck Lab

Department of Electrical Engineering, Princeton University

Prof. Andrew Houck *Electrical Engineering, Princeton*

Mattias Fitzpatrick

Electrical Engineering, Princeton

Prof. Peter Sarnak Mathematics, Princeton

KITP, Sept 12th 2018