GORDON AND BETTY

MOORE

FOUNDATION

Operator dynamics in chaotic long-range
interaction systems

Xiao Chen
KITP

Collaborator: Tianci Zhou
arXiv: 1808.09812

Thanks for the discussions with Andreas Ludwig, Sarang Gopalakrishnan,
Rajibul Islam, Austen Lamacraft, Juan Garrahan, Marcos Rigol, Shinsei
Ryu, Cenke Xu, Alexey Gorshkov, Shenglong Xu and Brian Swingle



Operator dynamics

For a quantum wave function, it can be expanded into a linear combination of basis
in the Hilbert space,
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For a quantum operator, it can be treated as a wave function living in an operator
Hilbert space.

Under unitary time evolution, it can be expanded as
Ot) =) a;(t)B; S ey ()2 =1
j j

B.:}is a set of operator basis satisfying TrBIB,; = 05
J (R J

The evolution of «;(t) determines the operator dynamics.



Chaotic operator dynamics

In a chaotic system, under unitary time evolution, a simple
operator becomes increasingly complicated.

The quantum information encoded in this operator is
delocalized and this phenomenon is called scrambling.

It is impossible to keep track of «;(t)

The universal features
The development of random matrix physics  XCand Ludwig, 2017

The emergent hydrodynamics

Nahum, Vijay and Haah, 2017, Keyserlingk, Rakovszky, Pollmann and Sondhi, 2017
Khemani, Vishwanath and Huse, 2017, Rakovszky, Pollmann and Keyserlingk, 2017
Roberts, Stanford and Streicher, 2018, Xu and Swingle, 2018, XC and Zhou, 2018



The operator length distribution

The length of the Pauli string basis operator 5% @
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Useful in systems with local interaction



Operator dynamics in spin-1/2 chain with local interaction

 For spin-1/2 chain, a natural basis operator is the Pauli string
operator

e Under unitary time evolution, a local operator O(z,t = 0) will become
increasingly non-local and is a complicated superposition of the
basis operators

e |tis reasonable to assume the coefficients a;(t) are uniformly
distributed among the Pauli string operators with the same length

e The zeroth order solution f(l,t) = 6(l — vst) neglects the possible
dispersion as it moves with group velocity vg
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The hydrodynamics of operator front

The Haar random circuit provides a simple
solution of the distribution function f(l,t)

Nahum, Vijay and Haah, 2017
Keyserlingk, Rakovszky, Pollmann, Sondhi, 2017 [ [

Talk by Vijay in the conference: Dynamics in quantum circuit

(1) The mean length grows linearly with the time
(2) Diffusive wavefront (biased random walk)
(3) OTOC is measuring the area of the wavefront
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A moving Gaussian packet



Fast scrambler

e Sachdev-Ye-Kitaev (SYK) model

N
J: ik - 31,72
Hsvi, = D, “jmXoXiXkx Jigr =00 T = N

i7j7k7l:1

(1) SYK model can be analytically solved in the large N limit

,
(2) Extensive T=0 residual entropy
(3) Maximally chaotic & saturate the chaos bound at low temperature

Sachdev and Ye, 1993, Kitaev, 2015, Maldacena, Shenker and Stanford 2016
Sekino and Susskind, 2008, Maldacena, Shenker and Stanford 2016

e [wo-local qubit model
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1<i<j<N ab=1

Scrambling time scales as log N




The height of the operator O
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The height distribution is a weighted sum f(h,t) = Z o (1)) O
height(B;)=h

. . height =6 | @

The short time evolution 4 to A+1: O
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B(t) ~ B(0) 4+ i H,B(0)]t / ®
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(1) The number of terms which changes the height (does O

not commute with B) from 4 to h+1 is 6h(N-h)

(2) The transition time from 4 to 4+1 is inversely proportional
to the number of terms and scales as 1/4 when A<<N

Ni=2) _ (N-1)
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(3) The time to grow to the height % is the sum of the transition times in each step that
Increases the height by 1

LN A(N - 1) » h(t) = Nex
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The mean height satisfies the logistic differential equation and is linearly proportional to OTOC

dh h(1 — ﬁ) As§ume .that the operator has a typical XC. Zhou. 2018
d(t/At) N height with no fluctuation




The height distribution

The Brownian circuit approach
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The height distribution f(4, ¢) is determined by the master equation:

(Af)k,k = %k[— (n— k’) + q%(n— 2k + 1)}

df(t) : ST
= A £ (t) Alis tr diagonal 4 k(- 1)
matrix (Af)r—16 = — 7z
(A st s = %k(n R %].

In the continuum limit,
O f(h,t) = _%ah[h(hsat —h)f] » §8t<h> = %(hsat - <h>)<h>§— ~ ((h%) = (W)%)

logistic differential equation

In the large N limit, %% — s ¢ o0 -1s-  Similar equation was found in
SYK model in some limit

Zhou and XC, 2018 Roberts, Stanford and Streicher, 2018



Early time behavior Comparison with logistic function
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The distribution function looks like a
collapsing sandpile whose surface is
exponential decreasing in space.

Zhou and XC, 2018



Two pictures of operator dynamics

L ocal interaction

o0 0 0 °

The length distribution (end point distribution) is a
moving Gaussian packet with a constant velocity.
OTOC is measuring the area of the wavefront/
the mean height at each site.

All-to-all interaction

(1) The height distribution is determined by a
master equation and can be explained by the
collapsing sandpile picture.

(2) OTOC is measuring the mean height of the
operator.




Operator dynamics in long range interaction systems

* The emergent light cone behavior

e The OTOC (mean height) dynamics



Brownian circuit with power law interaction

I - Three parameters:
N, L and (X
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The complete unitary time evolution is generated in the continuum limit of 6_ZHS Ate_ZHS—lAt S

The statistical average of the operator Lashkari, Stanford, Hastings, Osborne and Patrick Hayden, 2011

spreading is analytical tractable Xu and Swingle, 2018, Zhou and XC, 2018
The operator height distribution f(h,t)= > |au(®)f where h is a L-component vector
height(B,,)=h

The joint distribution f(h) is governed by this master equation:
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Operator dynamics —> Classical stochastic problem —> Classical simulation




The update rule in the N=1 case and the connection with kinetic Ising model

before | after | rate(q = 2) | rate(q = o0)
T A \/ D 0
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One spin facilitated Fredrickson-Andersen model

Talk by Garrahan in the program: Kinetically Constrained Models

Initial condition ‘ @ @ @ @ @
Final steady state ‘ ‘ ‘ ‘ ‘ ‘
(¢ = o0)

e Local interaction

D;; # 0 only when i = j & 1 OO OB O ORNO

(1) The end point is performing biased random walk
(2) The wavefront interpolates between the left h=1 and the

right h=0 domains O O @ O /O © ©

(3) The physics is the same as Haar random circuit

e All-to-all interaction

1

* Non-local power law interaction D;; ~ =g
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(1) The growth of the h=1 domain (2) The non-local flipping process



a=2.5
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(1) The growth of the h=1 domain (2) The non-local flipping process



The formation of effective light cone
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Light cone and butterfly velocity
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U B is a constant and is bounded

Local interaction by Lieb-Robinson velocity

v — CIj/tLC

Power law interaction VB can be (1) a constant, (2) grows
algebraically or (3) grows exponentially in time

— ! -

1 log o powerlaw 4 linear

Hastings and Koma, 2006, Foss-Feig, Gong, Clark and Gorshkov, 2015

Talk by Gorshkov in the program: Information Propagation and Entanglement Generation with Long-Range Interactions



Emergent linear light cone and locality
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Non-Gaussian tail
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The end point distribution cannot be directly
connected to mean height when & is small
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h(x,t) ~ | — Power law in both directions

a =25

L = 2000, vg ~ t%6°7




Large N limit with local interaction

(D~

Similar to SYK chain

Operator dynamics in two directions: |
Gu, Qi and Stanford, 2016

(1) the local onsite Hilbert space
(2) the spatial direction

Logistic differential equation | + [Spatial diffusion # Fisher-KPP equation

oh 0%h h
i D@ + Ah(1 — N) XC and Zhou, 2018

10"

(1) Stable traveling wave solution & no dispersion
(2) Crossover to the diffusive wavefront picture at finite N.
This is done by Xu and Swingle, where they also used

Brownian circuit technique Xu and Swingle, 2018
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Large N limit with power-law interaction

The power law kernel D(z,y) = - —1y|a
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Three observations:

(1) The log light cone scales as t1,c ~ alogx

(2) The butterfly velocity in the linear light cone regime is independent of «x

(3) The transition from linear to log light cone occurs at the intersection x ~ o log x



Data collapse
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Summary and Outlook

Brownian circuit approach
Operator dynamics > Classical stochastic problem

1 log 2 power law 4 linear

i i >

A e £\ x — vpt o % vst
Power law interaction systems Clnt) e v (5) e )
N = o0
1 log ~ 3 linear — log
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C(z,t) ~ e e C(x —vpt) = C(x,t) ~ e
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Possible future directions:

(1) Theregime 2 < o < 3

(2) 1/N correction

(3) Entanglement dynamics after quench

(4) Applying this Brownian circuit technique to other interacting systems
(5) Operator dynamics at finite temperature



