
Precessionally-Driven Dynamo in a Spheroid
Cheng-Chin Wu  and Paul H. Roberts 

Institute of Geophysics and Planetary Physics
University of California, Los Angeles



•

 

More than a half century ago, Bullard 
conjectured that the motions 
necessary to generate the Earth's 
magnetic field in the Earth's 
electrically-conducting fluid core might 
be driven by the luni-solar precession.

•

 

It has been unequivocally established 
in the intervening 55 years  that 
precession can in principle supply the 
geodynamo

 

with abundant power. 
•

 

The question of whether the 
geodynamo

 

can draw on this power is 
still unanswered (though it seems 
probable from the work of Tilgner

 

that 
it can do so).

Introduction



•

 

Two types of precession-driven flows may be distinguished: in spherical 
precession, the mantle transmits motion to the core by viscous coupling; in 
non-spherical precession, the oblateness

 

of the core-mantle boundary 
creates core motion through pressure differences.

•

 

Non-spherical precession is being studied in a spheroid using a computer 
code for solving the time-dependent incompressible dissipative MHD 
equations with finite differences on  overlapping grids. Here, the numerical 
methods and preliminary results are presented.

•

 

We have studied the problem in a plane layer (Wu and Roberts, GAFD, 
2008), where dynamo action is seen for strong precessional

 

forcing. 



Precessionally-Driven Fluid Model in a Spheroid

We consider the motion of a viscous fluid in a spheroidal
 container, which is rotating (rapidly) with angular velocity 

ω
 
in a frame rotating (slowly) at angular velocity Ω

 
. 

In this precessing
 

frame, r = x
 

+ y + z   ;       are unit 
vectors.
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Equations
The equations of motion are

with the boundary conditions
on surface

where Ekman

 

number E=ν/ωa2, with a=semi-major radius (=1).

In the magnetic case, the equations are:

subject to the boundary conditions,             on the surface and B

 

is connected 
to an external potential field determined by the continuity of B

 

on the surface,
and B →0 for |r|

 

→

 

. Here Em

 

is the magnetic Ekman

 

number, Em

 

=η/ωa2, 
with η

 

the magnetic diffusivity.
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Basic Flow Solution in the Non-Magnetic Case

Poincaré’s

 

basic state in the precessing

 

frame

 

is

where μ= 2Ω/ζ

 

and ζ

 

is defined by the equation for the surface of the spheroid:
x2+y2+(z/c)2=x2+y2+(1+ ζ) z2=1

As in Kerswell

 

[The instability of precessing

 

flow, GAFD, 72, 107, 1993], we
solve the flow equations in terms of the deviation of the flow solution from the
basic state:

ũ=u-ubasic
subject to the stress-free boundary conditions for ũ.
(For the Earth, Ω~4x10-8, ζ~1/200.)
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Numerical Method
The set of equations can be written in the form:

A 2nd

 

order Runge-Kutta

 

scheme is used in the time-integration. For each 
Runge-Kutta

 

stage, a fractional-step method [Kim & Moin, 1985] is used:
(1) Solve ∂u*/∂t=RHS from t=tn

 

to tn

 

+∆t

 

and obtain u*,
(2) Solve                      to obtain p,
(3) Set u(tn

 

+∆t )= u* -

 

.
The quantity RHS is evaluated using 2nd

 

order accurate central finite
differences.

Numerical stability is provided by explicit dissipation terms. 

RHSPt =∇+∂
∂u

,

0=•∇ u

*2 u•∇=∇ p
p∇



Overlapping Grids 

To cope with the condition imposed by the geometry of container,

 

a method of 
overlapping grids is used; see the software package “Overture”, developed 
by Henshaw

 

and his team at LLNL.
In the implementation for the spheroidal

 

container, three grids are used: two 
spheroidal-shell grids and a 3D rectangular grid. The shell grids overlap 
each other as depicted above. The rectangular grid fills the inner region and 
overlaps with the outer two shell grids. These grids not only solve the 
geometry problem of the container, but also avoid the grid singularities (so-

 
called pole problems), where the time-step size could be extremely limited 
due to the CFL condition.
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Poisson Solver
Following Lai, Lin, and Wang [2002], a FFT-based fast direct solver for the
Poisson equation                      in spheroidal

 

geometry is developed. In 
spheroidal

 

coordinates μυθ, we approximate the solution by truncated Fourier 
series in θ. The resulting equations for the Fourier coefficients as functions of 
μ

 

and υ

 

are then solved using the cyclic reduction method [Buneman, 1969]. 
A routine in Fishpack

 

[Adams, Swarztrauber, & Sweet, 1980] was used in our 
work.

This 4th

 

grid of spheroidal

 

coordinates is overlapped with the other 3 grids.

*2 u•∇=∇ p



Computational Costs

Poisson solver: NLM log(M);  NLM: number of grid points in μυθ

 

directions
Other operations:  NLM (NLM: number of grid points in the 3-grid system)
(For calculations shown later, the Poisson solver represents about 1/3 of the
cost.) 

The method can be adapted to parallel clusters.

The method can be used for a sphere. The cost is of the same order for
a sphere as for a spheroid.



Code Validation

(1)

 

Solutions of the magnetic diffusion equation in spheres and 
spheroids.
(a)The

 

longest-lived magnetic decay mode (the gravest mode) for a 
sphere is found numerically to be within 1% of the analytical decay rate. 
(b) Numerical values of the decay rates for the gravest

 

poloidal

 

and 
toroidal

 

decay modes of a spheroid are found to be in good agreement 
with values obtained by a completely separate program which makes use 
of the properties of the spheroidal

 

wave functions
(2)

 

Kinematic

 

dynamos in spheres:
The marginal values of the magnetic Reynolds number are

 

found to be 
consistent with results for kinematic

 

dynamos models of (a) Dudley and 
James (1989), model 2; (b) Lilley (1970), as modified by Gubbins

 

(1973); 
and (c)  Kumar & Roberts (1975); see also Love & Gubbins

 

(1996), 
Sarson

 

& Gubbins

 

(1996), and Gubbins

 

et al., (2000a,b).



Numerical Results

•

 

linear instability of the Poincaré’s

 

flow
•

 

nonlinear flow motions in a spheroid
•

 

kinematic

 

dynamo of precessionally

 

forced motions
•

 

full nonlinear precessionally-driven dynamo problem.
•

 

Parameters: c, ratio of minor/major radii is 0.8;

 

and Ω

 

is ¼.

[For E=0, Kerswell

 

(1993) has obtained exact linear solutions. 
For quadratic velocities, he found  instability in a region 
c < approximately 0.85.]



Non-magnetic calculations:
 Linear growth 

Kinetic energy vs

 

t for calculations 
with several Ekman

 

numbers for the 
case with c=0.8 and Ω=0.25. (Inner 
grid: 513 points; outer shells: 
71x71x61 points each.)
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EK

 

=sum of     2

 

over each grid points; no geometric factor is inculded.
u~ at t=0 is given by the theoretical eigenvectors for the case E=0.

u~



Non-magnetic calculations:
nonlinear solution (1)

Kinetic energy vs

 

t  for the case 
with E=0.0035, c=0.8 and 
Ω=0.25. 
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Non-magnetic calculations: nonlinear solution (2)
Flow (     ) at t=411; Vector plots on the surface

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

x

y

z

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

x

y
z

u~

top bottom



Non-magnetic calculations: nonlinear solution (3)
Flow (     ) at t=411u~
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Non-magnetic calculations: nonlinear solution (4)
A second example

Kinetic energy vs

 

t  for the case with E=0.0011, 
c=0.8 and Ω=0.25. (Inner grid: 513

 

points; outer
shells: 83x83x61 points each.)
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Kinematic
 

dynamo calculations
 

(1)
For the case with

 

E=0.0035, c=0.8 and Ω=0.25. 

Small magnetic field is added at t=272.
Right panel: Kinetic energy vs

 

t
Left panel: Plots of magnetic energy vs

 

t  for 
Prandtl

 

number Pm

 

=E/Em

 

= 1, and 2.
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Full MHD calculations
 

(1)
For the case with

 

E=0.0035, Pm

 

=2, c=0.8 and Ω=0.25. 

Magnetic field is added at t~272. 
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Full MHD calculations
 

(2)
V and B at t=871.3 for the case with

 

E=0.0035, Pm

 

=2, c=0.8 and Ω=0.25. 
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Full MHD calculations
 

(3)
For the case with

 

E=0.002, Pm

 

=0.5, c=0.8 and Ω=0.25. 

Magnetic field is added at t~160. 
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Conclusions / The future

•

 

It appears that the numerical method that has been selected 
provides a practical way for studying both non-magnetic and 
magnetic precessionally-driven flows in both spheres and spheroids.  
The preliminary results indicate that precessionally

 

forced motions 
can maintain magnetic fields by dynamo action. Nevertheless, much 
remains to be done. More cases, as function of c, Ω, E and Em

 

, need 
to be studied. 

•

 

To achieve small Ekman

 

numbers, a high order accurate code such 
as the WENO code (Wu, 2007) would be used. It has the additional

 
advantage of being  numerical stable even when there are no 
explicit dissipation terms in the equations.

•

 

Also, the code should be parallelized to utilize the power of a cluster 
of computers.

•

 

There are many longer term objectives too, e.g., (1) To bring the 
system closer to the real Earth, it is desirable to generalize the 
present approach by adding a solid inner core. (2) It would be 
interesting to know whether the convective dynamos that are 
currently being studied all over the world are significantly affected 
when precessional

 

forcing is included. 
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