A strong field dynamo in the solar tachocline

Robert Cameron
Max-Planck-Institut für Sonnensystemforschung
D-37191 Katlenburg-Lindau, Germany

David Galloway
School of Mathematics and Statistics
University of Sydney, NSW 2006, Australia

Strong field dynamos

Dynamos with \mathbf{U} and \mathbf{B} comparable (in Alfvenic scaled units) over a large fraction of the flow domain.

Example: Archontis dynamo has $\mathbf{U} /+\mathbf{B}$ everywhere, or $\mathbf{U} / \mathbf{- B}$ everywhere, with error of order the diffusivities
$\mathbf{F}=v(\sin \mathrm{z}, \sin \mathrm{x}, \sin \mathrm{y}) ;$ take $v=\eta$
$\rightarrow \mathbf{U} / \mathbf{B}=0.5(\sin \mathrm{z}, \sin \mathrm{x}, \sin \mathrm{y})+$ few $\%$ terms

A scaling argument

Suppose we have any steady solution \mathbf{B}_{0} to the induction equation when solved with a velocity field $\mathbf{U}_{\mathbf{0}}$ and a magnetic diffusivity η_{0}. We can now generate an equilibrium solution to the whole dynamo problem (including the momentum equation) for $\eta=\varepsilon \eta_{0}$. This is $\mathbf{U}_{\mathbf{1}}=\varepsilon \mathbf{U}_{\mathbf{0}}+\lambda \mathbf{B}_{0}, \mathbf{B}_{\mathbf{1}}=\mathbf{B}_{\mathbf{0}}$, $\mathbf{F}=$ whatever is necessary to satisfy the momentum equation. This dynamo has the property that \mathbf{U} tends to $\lambda \mathbf{B}$ as the diffusivity tends to zero. If the flow is incompressible, λ can be spatially varying but must be constant on each field line. Note the stability of the resulting object is uncertain. Friedlander and Vishik have shown that the ideal MHD case is neutrally stable.

Dynamos to order

Take any known pet kinematic dynamo and concentrate on the case where it is steady, at marginal magnetic Reynolds number. Common non-numerical dynamos include Herzenberg, Gibson, Ponomarenko,...
Scale up according to the recipe, and let $\varepsilon \rightarrow 0$ so that the diffusivities are small and \mathbf{U} and \mathbf{B} are nearly aligned

Gibson 3-sphere dynamo works and is qualitatively similar to the Archontis dynamo (Cameron and Galloway 2006b)
Ponomarenko has so far not proved useful.

Strong-field Gailitis dynamo

Gailitis's 1970 kinematic dynamo consists of two axisymmetric rings rotating in opposite directions in their meridional plane. Cowling's theorem tells us no axisymmetric dynamo is possible, but a nonaxisymmetric field where the field from one ring acts as a seed field for the other can be shown to work.

Let c be the distance out from the Z -axis to the centre of the cross-section of each ring, a be the radius of the cross-section, and Z_{0} be the separation as shown. Then Gailitis's theory gives the critical magnetic Reynolds number for kinematic dynamo action as $\left(\mathrm{c}^{2} /\left(\mathrm{a}^{2} \mathrm{~F}\left(\mathrm{z}_{0} / \mathrm{c}\right)\right)\right.$, where F is an integral.
Here we are assuming an $\mathrm{e}^{\mathrm{i} \varphi}$ dependence for the magnetic field, where φ is the angle around the z -axis. We take the so-called quadrupolar configuration, where the field is predominantly from L to R at the back of the rings and from R to L at the front (say).

This can be generalised to a long line of such pairs; the critical magnetic Reynolds number is now $\left(\mathrm{c}^{2} /\left(\mathrm{a}^{2} \mathrm{H}\right)\right)$, where $\mathrm{H}=\mathrm{F}\left(\mathrm{z}_{0} / \mathrm{c}\right)+\Sigma\left(\mathrm{F}\left(\left(\mathrm{nz}_{1}+\mathrm{z}_{0}\right) / \mathrm{c}\right)-\left(\mathrm{F}\left(\left(\mathrm{nz}_{1}-\mathrm{z}_{0}\right) / \mathrm{c}\right)\right)\right.$, and the sum runs from $\mathrm{n}=1$ from to ∞. The field components can be calculated by evaluating the integrals numerically.

Now identify the $+\infty$ and $-\infty$ ends of the row, supposing the number of ring pairs is in fact large but finite

Flgure 1. The geometries of the three dynames considered in this paper: (a) a single pair of Gsilitis rings; (b) a small segment of a line of such pairs and some of the magnetic field lines; and (c) sn indicative plot of the peometry when the line is bent to form acircle it is the third of these which, when embedded in s circulating tachorline, can reproduce the oberved properties of the solar cyck.

Scale this up into a strong-field aligned dynamo as specified earlier

The set of rings can then be parked at the tachocline (a strong shear layer at the base of the Sun's convection zone)

Superimposing a meridional flow (which is thought for other reasons to be a feature of the tachocline) and letting it have a circulation time of 22 years, the $\mathrm{e}^{\mathrm{i} \varphi}$ structure is carried around to give fields of different polarities to be picked up by the convection zone and carried quickly to the surface every 11 years-a new theory for the solar cycle! Inferred velocity of around $1 \mathrm{~m} / \mathrm{s}$ is reasonable.

Figure 2. The engine room of the sollor dymamo se schematio illustration of the largescale features of the propoed dynama roshanism. The Sun is here divided into a rediative interior (bes low the red curve), a techooline (which lies bedween the red and orange curver), and a convetion wone (which lis between the tachooline and the sollor surface which is shown in yellow. For ilw luatrative purpose the thicknews of the tachocline has been vastly examerated. The wsomed meridionsel volosity field is shown using the blue curver sud the llarge scale component of the magnetis field is shown in green. Note that the field has roppoeite directions at the top and bottom of the tachoeline. Thie field is arlvected by the meridional cirulation and thus presents oppositely directed poloidsel told at the bese of the convection pone owet the courat of a 2h-yent magnetic cycle

- Surface reacts almost instantaneously to BC presented by tachocline to lower boundary of convection zone (timescale is around 1 month)
- Field strength is limited by the balance with differential rotation--estimates give predicted field strengths of around 1T in tachocline. This agrees well with estimates based on how field evolves up to surface via magnetic buoyancy, if the buoyant flux evacuates soon after setting off.
- Explains Hale polarity laws, equatorwards progression of butterfly diagram, and most or all other aspects of the solar cycle
- No attempt so far to couple hemispheres via interactions near the equator: slight asymmetries could explain could explain Gnedyshev-Ohl rule on odd/even cycles
- In this model fields in the photosphere/corona/solar wind are lost as waste products from what is happening deep down

Uncertainties (many!):

- Depends on interactions with differential rotation within the tachocline: latter is not at all understood
- Needs $\mathrm{u}=\mathrm{B}$ in top/bottom of tachocline, $\mathrm{u}=-\mathrm{B}$ in bottom/top (because differential rotation apparently does not change sign with solar cycle)
- $\mathbf{U}=\lambda \mathbf{B}$ dynamos so far only produced in periodic geometries (or infinite for Gailitis); effects of boundary conditions must modify things at least locally
- Convection zone aspects: picture as proclaimed so far (rising twists to give tilts, magnetic buoyancy, etc. etc)to be largely taken over lock stock and barrel---perhaps peaceful coexistence is possible!

Conclusion

The specific model presented here is presented as a thoughtexperiment and cannot literally be what is occurring on the Sun.

But...the idea that the tachocline somehow generates a permanent magnetic structure which moves round to present an alternating magnetic boundary condition to the base of the convection zone seems an interesting alternative to other models suggested till now. It avoids the Herculean problem of rebuilding the flux system every 11 years, and helps explain the amazing regularity of the Hale polarity laws.

