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Strong field dynamos

Dynamos with U and B comparable (in Alfvenic
scaled units) over a large fraction of the flow 
domain. 
Example: Archontis dynamo has U⁄+B everywhere, 
or U⁄-B everywhere, with error of order the 
diffusivities
F=ν(sin z, sin x, sin y); take ν=η

U⁄B =0.5(sin z, sin x, sin y) + few % terms



A scaling argument

Suppose we have any steady solution B0 to the induction 
equation when solved with a velocity field U0 and a 
magnetic diffusivity η0. We can now generate an equilibrium 
solution to the whole dynamo problem (including the 
momentum equation) for η=εη0. This is U1=εU0+λB0, B1=B0, 
F=whatever is necessary to satisfy the momentum equation. 
This dynamo has the property that U tends to λB as the 
diffusivity tends to zero. If the flow is incompressible, λ can 
be spatially varying but must be constant on each field line.
Note the stability of the resulting object is uncertain.
Friedlander and Vishik have shown that the ideal MHD case 
is neutrally stable.



Dynamos to order

Take any known pet kinematic dynamo and concentrate on 
the case where it is steady, at marginal magnetic Reynolds 
number. Common non-numerical dynamos include 
Herzenberg, Gibson, Ponomarenko,…
Scale up according to the recipe, and let ε→0 so that the 
diffusivities are small and U and B are nearly aligned

Gibson 3-sphere dynamo works and is qualitatively similar 
to the Archontis dynamo (Cameron and Galloway 2006b)
Ponomarenko has so far not proved useful.



Strong-field Gailitis dynamo

Gailitis’s 1970 kinematic dynamo consists of two 
axisymmetric rings rotating in opposite directions 
in their meridional plane. Cowling’s theorem tells 
us no axisymmetric dynamo is possible, but a non-
axisymmetric field where the field from one ring 
acts as a seed field for the other can be shown to 
work.



Let c be the distance out from the Z-axis to the centre of the cross-section 
of each ring, a be the radius of the cross-section, and Z0 be the separation 
as shown. Then Gailitis’s theory gives the critical magnetic Reynolds 
number for kinematic dynamo action as (c2/(a2F(z0/c)), where F is an 
integral.
Here we are assuming an eiφ dependence for the magnetic field, where φ
is the angle around the z-axis. We take the so-called quadrupolar
configuration, where the field is predominantly from L to R at the back of 
the rings and from R to L at the front (say).
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This can be generalised to a long line of such pairs; the 
critical magnetic Reynolds number is now (c2/(a2H)), 
where H=F(z0/c)+Σ(F((nz1+z0)/c)- (F((nz1-z0)/c)), and the 
sum runs from n=1 from to ∞. The field components can 
be calculated by evaluating the integrals numerically.
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Now identify the +∞ and -∞ ends of the 
row, supposing the number of ring pairs 
is in fact large but finite 
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Scale this up into a strong-field aligned  
dynamo as specified earlier

The set of rings can then be parked at the tachocline (a 
strong shear layer at the base of the Sun’s convection zone)

Superimposing a meridional flow (which is thought for 
other reasons to be a feature of the tachocline) and  letting 
it have a circulation time of 22 years, the eiφ structure is 
carried around to give fields of different polarities to be 
picked up by the convection zone and carried quickly to the 
surface every 11 years-a new theory for the solar cycle! 
Inferred velocity of around 1m/s is reasonable.





● Surface reacts almost instantaneously to BC presented by 
tachocline to lower boundary of convection zone (timescale is 
around 1 month)

● Field strength is limited by the balance with differential rotation---
estimates give predicted field strengths of around 1T in tachocline. 
This agrees well with estimates based on how field evolves up to
surface via magnetic buoyancy, if the buoyant flux evacuates soon 
after setting off.

● Explains Hale polarity laws, equatorwards progression of butterfly 
diagram, and most or all other aspects of the solar cycle

● No attempt so far to couple hemispheres via interactions near the 
equator: slight asymmetries could explain could explain 
Gnedyshev-Ohl rule on odd/even cycles

● In this model fields in the photosphere/corona/solar wind are lost 
as waste products from what is happening deep down



Uncertainties (many!):

● Depends on interactions with differential rotation within 
the tachocline: latter is not at all understood

● Needs u=B in top/bottom of tachocline, u=-B in 
bottom/top (because differential rotation apparently does 
not change sign with solar cycle)

● U=λB dynamos so far only produced in periodic 
geometries (or infinite for Gailitis); effects of boundary 
conditions must modify things at least locally

● Convection zone aspects: picture as proclaimed so far 
(rising twists to give tilts, magnetic buoyancy, etc. etc)to
be largely taken over lock stock and barrel---perhaps 
peaceful coexistence is possible!



Conclusion

The specific model presented here is presented as a thought-
experiment and cannot literally be what is occurring on the 
Sun.

But…the idea that the tachocline somehow generates a 
permanent magnetic structure which moves round to present 
an alternating magnetic boundary condition to the base of 
the convection zone seems an interesting alternative to other 
models suggested till now. It avoids the Herculean problem 
of rebuilding the flux system every 11 years, and helps 
explain the amazing regularity of the Hale polarity laws.
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