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Main task

To study 
how anisotropic diffusive coefficients 

(viscosity and thermal diffusivity)
can influence various models of rotating magnetoconvection

in horizontal planar fluid layer.
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Stability analysis

We choose basic state, 
which suitably represents Earth’s core conditions,

to study the stability of the system and the conditions
for onset of various hydromagnetic instabilities.
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Diffusive instabilities

We focused our attention on special case of instabilities
which are affected by diffusive processes.  

For study of the dynamo in the Earth’s core 
following physics is important 

(1) dynamics of the system (Navier Stokes equation)
(2) Faraday electromagnetic induction (induction equation)

(3) Thermodynamics (equation of heat induction)

All of these equations contain terms 
which represent diffusion.
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We must realize ourselves 

that naive understanding of the role of diffusive processes  
- only in weak damping of arising instabilities -

is not sufficient.   

Active role of diffusive processes
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Basic equilibrium

Diffusive processes are very often neglected.

Dynamics of the Earth’s core is given by three basic forces:
Magnetic, Archimedean and Coriolis (M, A and C) forces. 

However,

diffusive processes may weaken basic forces in the sense:

viscosity weakens only Coriolis force,
magnetic diffusivity weakens only magnetic force,

and thermal diffusivity weakens only Archimedean force.

Weak diffusive processes lead to
δ δ δ→ → →M M - M,      C C - C,      A A - A.

6



Turbulent diffusive coefficients

If we suppose turbulent state in the core
then transport phenomena are connected 

with turbulent processes.

Unlike molecular diffusion (it is property of material), 
turbulent diffusion is highly dependent on characteristic flows.

These flows are influenced by dominant forces M, A, and C

and

the shapes of turbulent eddies are affected by these forces. 
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By Braginsky and Meytlis (1990)

the eddies have a form of pancakes  elongated 
in the direction of magnetic field (azimuthal direction )

and in the direction of angular velocity  Ω.

In geophysical fluid flows  
the eddies are also influenced by density stratification 

determined by direction of gravity g.

Shape of turbulent eddies
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The eddies, influenced by Coriolis and magnetic forces,  
are deformed into the shapes

in which the effect of these forces is minimal. 

Deformation of the eddies

Elongating of the eddy in certain direction means
that the velocity has the dominant component in this direction.

This means, 
that the Coriolis force                and  magnetic force 

magnitude               are very small and the forces 
can be neglected in this direction.

(~ )Ω×v
(~ )×v B
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Since the study by Braginsky and Meytlis (1990)
there have been some approaches to investigate the role and 
consequences of introduced anisotropic diffusive coefficients 

into Dynamo and Magnetoconvection processes,

e.g. by St. Pierre (1996), Matsushima et al (1999), 
Donald and Roberts (2004), Phillips and Ivers (2000, 2005), …

Anisotropic diffusive coefficients studies
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Strategy of investigation

Our strategy is to modify old models
or to set up new models of rotating magnetoconvection

in the sense of introducing anisotropic diffusive coefficients. 

The results are the conditions for the onset of instabilities
which are determined by new parameters -

parameters of anisotropy of diffusive coefficients.
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Our former results related to anisotropic studies

There are many common results for various basic magnetic fields
Our studies of hydromagnetic instabilities arising in unstably stratified

horizontal planar layer rotating around vertical axis give some 
similar results related to the influence of anisotropic diffusive 
coefficients (in SA anisotropy case) for various basic magnetic fields, 
i. e. (a)  Azimuthal magnetic field linearly growing with distance from 

rotation axis
(b)  Vertical homogeneous magnetic field
(c)  Horizontal homogeneous magnetic field.
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SA anisotropy related to the greater diffusivities  in vertical direction 
than in horizontal directions (  type anisotropy) facilitates convection 
and shortens sizes of rolls in horizontal direc

a
tions. 

type anisotropy with the smaller diffusivity  in vertical direction 
than in horizontal directions inhibites convection and elongates sizes 
of rolls in horizontal direct

o 

ions. 



Anisotropy

In the case of turbulent transport phenomena 
the shape of transporters – eddies 

distinguish transport efficiency in various directions. 

For that reason it is convenient to change the isotropic
transport phenomena, usual in molecular case, 

into anisotropic ones.

It means:
for transport coefficients we have the transition

scalar quantities  tensor quantities
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Various types of anisotropy  

In our models of this contribution we introduced 
two types of anisotropy  

zz

zz

    (1)   ,    SA - anisotropy, 

ˆ                                       determined by verti     
                                     
   

cal direction of 

 (2) ,      - anis  BM

xx yy

yy xx

ν ν ν

ν ν ν

> =

↓↑

= >

g z

otropy, 

ˆ                                       determined by vertical axis of rotation 
ˆ(or horizontal when BM  SA)  

Ω ↑↑

Ω ↑↑ ≡

z 
                                       x  
                               ˆand horizontal direction of magnetic field 
                                         

↑↑       B y

SA - stratification anisotropy (analogy to the lower atmosphere) 

 - anisotropy  corresponds  toBM  Bragi

zz ( ~ ).ssϕϕν ν ν>>

nsky and Meytlis (1990) 
       model  of the Earth's core turbulence 14



Model of rotating magnetoconvection
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Basic equations and dimensionless parameters
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Method of solution

Linear stability analysis is used.   
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Method of solution
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BM anisotropy cases are dramatically different from isotropic case. (SC modes
and not P modes are preferred at E = 0. BM anisotropy has no sense for Λ = 0.) 
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The anisotropy related to the greater diffusivities  in 
vertical direction than in horizontal directions facilitates 
convection and shortens sizes of rolls in horizontal 
directions like in the cases of vertical rotation axis 
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of vertical rotation axis.

32



Conclusions
Comparisons between isotropic and various anisotropic cases 
of  diffusive coefficients for horizontal magnetic field
and for vertical and horizontal axis of rotation

- Both SA anisotropy (of atmospheric type) and BM anisotropy 
facilitate the convection and shorten the horizontal width of 
convective rolls in either vertical or horizontal rotation axis case

- SA anisotropy facilitates convection more effectively than
BM anisotropy, but mainly due to the inclination of rolls,
because SA rolls are rather perpendicular
to the magnetic field lines than BM rolls

- Arising instabilities, SC, SO, OC and OO modes, are preferred
in various ranges of parameters, e.g. E, Λ or q, Λ. Boundaries
between their preference ranges are strongly dependent on types
of anisotropy of diffusive coefficients as well as on the rotation
axis orientation. 33


