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Introduction

A pervasive difficulty in dynamo simulations is that of dealing
with the small scales beneath the attainable numerical resolution.
Simulators have resorted to a number of ways of treating these sub-
grid scales e.g., by enhancing the diffusivities with increasing wave
number or by introducing hyperdiffusion, both of which suppress the
small scale motions. Another method that has attracted attention
is the replacement of the governing equations by a so-called *“regu-

larized” set that involves additional smoothed variables. Typical of
these is the Navier-Stokes—a method, which involves not only the

velocity v but also v. These velocities are related by

v = (1-a?V?)v
where « is a constant length of the order of the attainable numerical
resolution. The equations have attractive properties. For example
Kelvin’s theorem holds for the circulation of v round a circuit carried
with velocity v.

Numerical experiments with the Navier Stokes—a equations have
been somewhat encouraging and have even led to speculations that
the method provides a realistic way of dealing with turbulent flows.
Several people, notably Darryl Holm, have tried to put the equations
on a firm mathematical foundation. We describe difficulties we have
encountered in his analysis.



Hybrid Eulerian—-Lagrangian Description
HEL

Consider a wave riding on a mean flow, and envisage

a magnetic field aligned with the flow and “frozen” to it.
The wave moves the line and it may be good to label points

on the line rather than use the original coordinates. The
Lagrangian description is a mapping:

x — x"(x, 1)

Unfortunately the mean flow generally moves x¢ further
and further away from its initial position x. Since we are
mainly interested in the location of the field line and not
the actual position of the material particles on it, we may
advantageously use another mapping:

x — x7(x,t)

such that x” lies on the field line, not at x’ but at some
other point conveniently close to x. This is called the

HEL Description
We call x the HEL Coordinate
and x% the HEL Position



Kinematics

The material derivative is defined by
D

D
where v(x,t) is the velocity at x and time ¢. From a La-
grangian point of view

P — 8;, -1 v(x,t)-V,

D
v(x,t) = F}t{ =0+vVx=v.

We define a HEL operator * by

vh(x,t) = ¥(x"(x,1),1),
i.e., ¥ is a function of the HEL coordinate x evaluated at
the HEL position x*(x,t).

From v¥ we define a ‘reference’ velocity u(x,t) and a
reference material derivative by

D L
vE(x,t) = =~

Dt
where D

Di = d; + u(x,t)-V.




Examples of LL operations

Gradient: L P> N
8:12.;' Bmi- 3:L'j

ie., Vol = (VxL)(Vy)L.

Time derivative:

' L
811:-"”'1“ - 8!¢(KL5 t) + atmf awingr t) )
T;

ie., Ol = (8,)F + xL(Vy)L.

Material derivative:

L
D& = 0,4F + (uV)pr
= (8)F + 9, x" (V)L + u-(VxE)(Vy)
— NL L, L Dﬁ; .
= (O0)" + v=+«(V)* = ('Dt .
The result Dyt B (Dw)L
Dt  \ Dt

means that, if ¢ is “frozen” to the flow v¥ (D¢ /Dt = 0),
then Dv* /Dt = 0, which means that ¥*(x, t) (= ¥(x*(x, 1))
is “frozen” to the reference flow u(x,1).



Momentum -+ pseudo-momentum = pV

Whereas

Dt

the gradient and contraction with v% yields
D L L L
Di (Vx*) — Vv* | .v¥ = —(Vu)-V,

in which we have introduced
V = (Vx)wt.

In the language of tensor calculus

Ozt
V- _ i L . .
i = 5 v 1S a covariant wvector,
I
ox; . .
U; = : (*u Bt:r%‘) is a contravariant vector.
aIL J

ds

It is important to appreciate that both u and V refer to
properties of the flow at the HEL position x* and not at

the HEL coordinate x. (x% = x%(x,t))



Euler’s equation for a fluid of constant density p

Euler’s equation may be written as

_Dv _g(P)_ W=

Since a gradient has a natural covariant transformation

property
vyt = (Vx5)(Vy)*,

the presence of the pressure gradient V(p/p) strongly sug-
gest that we should consider

E = (Vxh)-g~.
It is convenient to write £ as
Where g =A+VH,
_Dv P g2
.A—,Dtﬂ-(Vv)v, H_p 5Iv|°.

Then E = A + VII£, where
A = (UxM.AY . VI = (Ox9(VIDE .



The value of A is

— (Vxt)- _(g:)L + (VvE)vt

(VxL) DVZ vty

- =+ (Vu) Vo (by &)

=9,V + {u, V},

where {u,V} = u-VV + (Vu)-V

Thus the covariant transformation of

. E=0,v+{v,v}+VII

o E =06,V +{u,V}+ VIIY.
£E=0 — E=0.




Circulation

Note that
(dx-v) = (dx¥)vt = (dx-VxF)vl = dx-V .

It is easily established that

D .
T (vedx) = A«dx = —dII,

D L
Ty (Vedx) = Avdx = —dII*.

Kelvin’s circulation theorem

-d-j{ vidxt = —j{ dil* =0
dt Jo. oL

d L
Eiﬂde——é:dH —O,

C — C* by x — x.

becomes

where



Averages

Re-express the mapping as x — x*(x,1) = x +£(x,1), so
that DxL DE
L -
L] t : : =i ]
RN g,
We assume that, for averages,

W=, and £=0.

Then v =u+ ;£ + u-V€ and so vl =u =, ie.,

u is the average of v’.
Accordingly, the average of Euler’s equation is
E =08,V +{u V}+VIE =0,
and Kelvin’s theorem holds for V:

fd ;
S Vibe=ii.
di f[, %



Eulerian description for £ = |§| <« 1

The essential problem is that u and v define properties at
xf = x + €(x,t) but we would really like to know them
at x, i.e., we would like to use a Eulerian description. To
achieve that goal, we use Taylor series:

TFJ)L — "-f;(x + 51 l")
=+ (E ' V)’QJ T %fjgkv_kaﬁ’ Cee s
This may be inverted as
Y(x,t) =¢" — (€ V)" +0(€%).

Applying this to v¥(x,t), we obtain

vix) = (u+ PF ) - (€ Vyu+0(€)

= u+ (8,€ + [u,§]) + 0(&%),

where u,é] = (uV)E—(€-V)u.

So on splitting v into its mean and fluctuating parts,

vV=vV+V,
we have

v=u+0(), Vv =08£&+u€+0(.



Our variant of the Holm approach

We write v = v + v/ where v’ is defined by
v :atc+tv:C]' o

For the time being this decomposition is arbitrary; at this
stage Vv is not necessarily the average of v. We suppose
however that

v=u+0(), (=£+0(&),

so that the representation agrees with HEL at O(¢) but
differs at O(&2?).

Variational methods are based on

f o= (2 ~1) faxar

Variations are normally made of two types:
Sv — {5? with v’ fixed,
dv!  with v fixed.

Holm uses dv = v but holds ( fixed instead of v'. By é,
this causes v’ to vary simultaneously with dv (6v' # 0),

1.e.,
dv # 6v when ( is fixed.



Euler’s equation

By analogy with E and V, we write

Ef =€+ {(, &} VE =v+{( v},
£ =A + VII, A=0,v+{v,v},
E” = A¥ 4+ VII*",

with

where
A =A+{¢ A}, VII" =VII+{¢ VII},

which holds because 1% = I1 + ¢-VIL.
The value of AF is

AE — (atv + {C: atv}) + {V! 'V} + {C {V, V}}
= (0. VE = {04, v}) +{v,v} +{{, {v,v}}
= VE +{[v.{],v}+{v,v}+{{.{v,V}}.

By making use of a cunning identity, this can be rewritten
as AP =9, VE+{v,VE} +{( {Vv', Vv}}.

So € = 0 (Euler’s equation) implies E¥ = 0 giving
AP =0, VE +{v,VZ} + {¢,{V/,v}} + VII* =0.



Averages again

We now interpret the overbar as an average, and assume
that

(=0, implying v' =0.

Then the average of A¥ is
OVE + [, VE} + {(,{v/,v}} + VIIE=0. (o)

For material circuits C* moving with velocity v we there-
fore have

¢ § VEix=—4 TV, vildx+0.
dt OE OE

Kelvin’s theorem does not hold for circuits moving with the
mean velocity v.

Holm obtains an equation almost identical to (e) but lack-
ing the term {¢,{v’,v}}. He therefore obtains a Kelvin
theorem.




The “momentum?” pVE
The averaged total momentum is pV E:

VE =V 4+ vS 4+ vP,

where v = ({-V)v/, vP = (V{)-v'.
The pseudo- or wave momentum is p(VE —¥):
VE —v = vs 4 vP,
Taylor hypotheses

To close the equations makes a number of proposals that
he calls “Taylor hypotheses”. The principal one, on which
he mainly focuses, is

9, +v-V{=0 sothat v/ =—-(Vv.
This implies that

with solution (;{; = ?6;; where « is a scalar length ad-
vected with the mean flow v:

3,;& -+ ‘V'Vﬂ: =0
In consequence

vi=—(( V)2V = —V,;((;¢ViV) + (V)¢ VV.
Since V-¢ = 0, this becomes v® = —V+:(a?VV).



For constant «, this gives
VE =V —a?Viv + vP

This is the origin of the Holm a—term and the Navier—
Stokes—a equations. In fact our analysis has isolated an
additional part of VE, namely

VP = ~(VO)-(CV)v

or in components

E = (Vi(;)Ck Vi; .

For this there is no obvious simplification.
Holm actually derives the Navier-Stokes—a equations,

O, VE+{v,VE} + VII¥ =0,
VE — v — ?V2y
from a variational principle based on an averaged Lagrangian.

The first of these equation lacks the term {{,{v’,v}} and,
because of this omission, possesses a Kelvin’s theorem.




Conclusions

e The classical mean field version of Euler’s equation is

v+ (v.V)v+ V. (vv) = -V(p/p).

e Holm’s mean field version of Euler’s equation should be

OVE + {¥,VE} + {{,{v',v}} = —VIIE.

e Holm’s neglect of the term {{, {v’,v}} is no better or no
worse than the neglect of V+(vVv) in the classical version.

e Obviously V£ possesses no nice mean circulation prop-
erties whatever.

e The only correct way to preserve the mean circulation is
via the HEL version of Euler’s equation:

atv -+ {U,V} — —Vﬁz "
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