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My playground                     



Most distant galaxies

t~600 Myrs



z=7 quasar
2 billion solarmasses
at t~700 million years 

VLT FORS + Gemini NIRS

The origin of the SMBH ?
The origin of the heavy elements ?



Stellar relics in the MW

A forbidden star

Low-mass (<1Msun), 
extremely metal-poor (not only iron poor)
Z < 4.5 x 10-5 Zsun Caffau et al. 2012



Theory



The Standard Cosmology

CMB + LSS + SNe tell us about the initial state of the universe, 
its expansion history, and the energy content now and then 

precisely.

An ab initio approach is possible
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In the beginning, 
there was a sea of light elements 

and dark matter...



NY+ 2003; Bromm, NY, McKee, Hernquist, 2009; Kamada+, in prep.

Fluctuation amplitude

CDM
Thermal WDM

Non-thermal WDM
CHAMP



ΛCDM model 



Resolving planetary
scale structures

in a cosmological 
volume!

   A complete picture
   of how a protostar
   is formed from tiny 
   density fluctuations.

From a minihalo to a protostar
Minihalo

Molecular cloud

New-born protostar

NY, Omukai, Hernquist 2008

25 solar-radii

5pc

300pc  

106 Msun



Physics at a glance 
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The PhysicsThermal Evolution

MJ ~ 1000Msun



From a protostar 
                to main-sequence

gas accretion



It was such a beautiful story...
1. The large mass (~1000Msun) at 
the onset of collapse.

2. High temperature (~1000K) gas 
surrounding the protostar             
= Very large accretion rate

3. Lack of opacity source                   
= no efficient way of stopping 
accretion

 
 Massive     

PopIII  
Stars



Observations tell...

Plot made by N. Tominaga

Metal-poor halo stars

~200 Msun progenitor

No evidence for PISN
contribution in the early
Galactic chemical evolution.



Theorists said...
Long time ago Massive (no PopIII in MW)   Small (Silk）

~2000 Very massive (>100Msun) (Abel, Bromm)

2003-2006 Very very massive (~100-600) (Omukai)

2006-2007 PopIII.2: ordinary massive (~ 40 Msun)

2008  Very massive, ~140 Msun (McKee-Tan)

2009  Very very very massive (Ohkubo), Binary (Turk)  

2011  Ordinary massive (Hosokawa), Low-mass (Clark) 

Jeans mass, accretion time

Proto-stellar calculation, 1D

HD cooling (Yoshida, Johnson)

Disk evaporation

Core evolution with accretion, BH formation

“Cosmo” IC + disk evaporation

Disk evaporationDisk evaporation

Accretion disk fragmentation
Sink particles

Rotation ?



Post-collapse simulations

Clark et al. 2011; Greif et al. 2011

Disk evolution using sink particles
Follows only 100-1000 years
~ 1% of the entire evolution.

1pc



How and when
does a primordial star

stop growing?

The key question



Protostellar evolution
          to main-sequence

HII region break-out

Radiation-hydro. calculation
by T. Hosokawa (JPL).

Ionizing photon transfer 
by ray-tracing, continuum (H-)
by Flux Limited Diffusion.
    H. Yorke’s code 
        + non-eq. chemistry.
     Initial condition taken from
      our cosmological run.



Accretion vs photo-evaporation

protostar growth rate

Photo-dissociation
Cloud evaporation

Final mass

Hosokawa, Omukai, NY, Yorke 2011, Science



Long standing puzzle resolved

Iwamoto et al. 2005

Abundance pattern from a 25 Msun Hypernova model

[Fe/H] < -5

Observed elemental abundances

Core-collapse SN model 
20-40 Msun progenitor



PopIII to PopII 
Is there a “critical metallicity” for 
cloud fragmentation ?

If so, what’s the physics behind it ?

Bromm et al.
atomic cooling 

by C, O
@low-density

Omukai, Schneider
cooling by dust
@high density

vs.

Recall talks by M.Trenti, O. Gnedin, J. Wise



“Dusticity” 10-6 -1Zsun

Omukai+2005; Omukai, Hosokawa, NY, 2010

dust

H2 on dust

CII, OI

Chemo-hydro. calcuation



Formation of Caffau’s star

Chiaki, NY, Kitayama, 2012; see also Dopke et al. 2011, Klessen et al. 2012

Early SN remnant with 10-5 Zsun
Fragmentation of a cooling shell

Cooling by dust

Triggered star-formation by the first supernova

テキスト

HD cooling

SN remnant



Hunting for 
high-z

supernovae



E-ELT

The future
TMT

SKA

The Webb

ELT



Individual star...impossible! 

z=12.5

Bromm, NY, ARAA 2011

Only 
clusters of PopIII
can be detected 
by recom. lines.



Hope for SKA
Relic HII regions bright in 21cm
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Tokutani+09

Grief+09

SKA

frequency [MHz]



Core-collapse
supernovae 
at very high-z



Highest-z supernova

Type IIn at z=2.4

Cooke et al. 2009, Nature 



Super-luminous SN
Powered by shock-
interaction with  
dense CSM.

Death of a very  
massive star              
(> 40-50 Msun)

Bright in rest-UV

They are visible even at very high-z.



Miller et al. 2009

2008es: Bright in UV



SN 2006gy
Lightcurve sim. by STELLA

w = 5 w = 0

Best model:
E = 1052 erg, ejecta mass = 20 Msun

Moriya, Blinnikov, et al., in prep.



Model SED and LC

Distinguished from low-z SN

example Monte Carlo light curve
+ photometric errors

evolution

SN 
occurance rate



Subaru-HSC 2012-
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color selection

Tanaka, Moriya, NY, Nomoto, 2012

3.5 deg2



 IMF by NIR survey

Salpeter

100 deg2

1-4 μm



All-sky near-infrared 

M. Tanaka, Moriya, NY in prep

survey



Personal goal                     



Summary
• Primordial stars are massive, but mostly 
not extremely massive

• First supernova as a plausible mechanism 
for low-mass, low-metallicity star 
formation.

• Population III Gamma-ray bursts at z~10 
detectable by future X-ray missions

• Early TypeIIn detectable to z~10


