't Hooft Loops and S-Duality

Jaume Gomis

KITP, Dualities in Physics and Mathematics

with T. Okuda and D. Trancanelli

Motivation

- 1) Quantum Field Theory
 - Provide the path integral definition of all operators in the theory, including order and disorder operators:
 - 't Hooft local operators in D=3
 - vortex loop operators in D=3
 - 't Hooft loop operators in D = 4
 - surface operators in D = 4
 - ▶ ...
 - Computation of correlators of renormalized operators
 - Understand whether these operators serve as order parameters of novel phases in gauge theory, e.g.

Higgs phase: $< T(C) > \propto \exp(-\tau A(C))$

Confining phase: $\langle T(C) \rangle \propto \exp\left(-mP(C)\right)$

2) Duality

- These operators allow us to probe aspects of weak↔strong dualities, which are ubiquitous in M-theory and some quantum field theories
- Allows for the exploration of new sectors in holographic correspondences
 - "small" operators \longleftrightarrow bulk D-branes
 - ► "large" operators ↔ topologically rich, asymptotically AdS metrics
- Defining the correlation function of these operators in $\mathcal{N}=4$ super Yang-Mills allows us to explore the S-duality conjecture for these observables
- Understanding magnetic operators as an intermediate step in deriving the magnetic, dual formulation of $\mathcal{N}=4$ super Yang-Mills

D=3 Ising Model

D=3 Z_2 Lattice Gauge Theory

$$Z_A(K) = \sum_{\sigma} \exp\left(K \sum_{\langle ij \rangle} \sigma_i \sigma_j\right)$$

$$Z_B({}^L\!K) = \sum_{U_l} \exp\left({}^L\!K \sum_p U_p\right)$$

D=3 Ising Model

 $D=3 Z_2$ Lattice Gauge Theory

$$Z_A(K) = \sum_{\sigma} \exp\left(K \sum_{\langle ij \rangle} \sigma_i \sigma_j\right) \qquad Z_B({}^L\!K) = \sum_{U_l} \exp\left({}^L\!K \sum_p U_p\right)$$

• The two theories are mapped into each other under the following \mathbb{Z}_2 duality transformation

$$\sinh(2K)\sinh(2^L K) = 1$$

$D=3 \text{ Ising Model} \qquad D=3 Z_2 \text{ Lattice Gauge Theory}$ $Z_A(K) = \sum_{\sigma} \exp\left(K \sum_{\langle ij \rangle} \sigma_i \sigma_j\right) \qquad Z_B({}^L\!K) = \sum_{U_l} \exp\left({}^L\!K \sum_p U_p\right)$

• The two theories are mapped into each other under the following Z₂ duality transformation

$$\sinh(2K)\sinh(2^L K) = 1$$

• The two theories are related by a weak/strong coupling duality

$D=3 \text{ Ising Model} \qquad D=3 \ Z_2 \text{ Lattice Gauge Theory}$ $Z_A(K) = \sum_{\sigma} \exp\left(K \sum_{\langle ij \rangle} \sigma_i \sigma_j\right) \qquad Z_B({}^L\!K) = \sum_{U_l} \exp\left({}^L\!K \sum_p U_p\right)$

• The two theories are mapped into each other under the following Z₂ duality transformation

$$\sinh(2K)\sinh(2^L K) = 1$$

- The two theories are related by a weak/strong coupling duality
- There is a change of variables in the partition sum

$$\sigma_i \longleftrightarrow U_l$$

Mapping of Observables

 σ_i

D=3 Z_2 Lattice Gauge Theory

 T_i : 't Hooft Operator

local:

non-local: $\mathcal{O}(C)$: Disorder Operator

 $W(C) = \prod_{l \subset C} U_l$

Mapping of Observables

$$< T_i >_B = \frac{\widetilde{Z}_B({}^L\!K)}{Z_B({}^L\!K)}$$

where

$$\widetilde{U_p} = \left\{ \begin{array}{c} -U_p \mbox{ for } p \cap \Gamma \\ U_p \mbox{ for } p \not \cap \Gamma \end{array} \right.$$

Mapping of Observables

$$< T_i >_B = \frac{\widetilde{Z}_B({}^L\!K)}{Z_B({}^L\!K)}$$

where

$$\widetilde{U_p} = \left\{ \begin{array}{c} -U_p \mbox{ for } p \cap \Gamma \\ U_p \mbox{ for } p \not \cap \Gamma \end{array} \right.$$

Dual operators constructed by changing variables in the path integral

electric \longleftrightarrow magnetic

- Duality leads to the study of monopole operators
- These considerations motivate the study of disorder operators supported on various submanifolds in spacetime
- Correlators of observables are mapped into each other by the duality transformation:

$$<\prod_{i}\sigma_{i}\prod_{C_{a}}\mathcal{O}(C_{a})>_{A,K}=<\prod_{i}T_{i}\prod_{C_{a}}W(C_{a})>_{B,{}^{L}\!K}$$

• This theory realizes the picture of confinement as the dual Meissner effect

$$\langle T_i \rangle \neq 0 \qquad \langle W(C) \rangle \propto \exp\left(-\tau A(C)\right)$$

't Hooft Loop Singularity

• Singularity produced by the insertion of a straight line 't Hooft operator

$$F = \frac{B}{2} \mathrm{Vol}(S^2)\,; \quad \phi = \frac{B}{2r} \qquad \qquad \mathrm{Kapustin}$$

't Hooft Loop Singularity

• Singularity produced by the insertion of a straight line 't Hooft operator

$$F = \frac{B}{2} \mathrm{Vol}(S^2)\,; \quad \phi = \frac{B}{2r} \qquad \qquad \mathrm{Kapustin}$$

• Singularity produced by the insertion of a circular 't Hooft operator

$$F = \frac{B}{2} \operatorname{Vol}(S^2); \quad \phi = \frac{B}{2\tilde{r}}$$

't Hooft Loop Singularity

• Singularity produced by the insertion of a straight line 't Hooft operator

$$F=\frac{B}{2}{\rm Vol}(S^2)\,;\quad \phi=\frac{B}{2r} \qquad \qquad {\rm Kapustin}$$

• Singularity produced by the insertion of a circular 't Hooft operator

$$F = \frac{B}{2} \operatorname{Vol}(S^2); \quad \phi = \frac{B}{2\tilde{r}}$$

Comments:

▶ $B \equiv \sum_i B_i H^i \subset \mathfrak{t}$ characterizes the textcolorscarlet1strength of the singularity

- ▶ $B_i \simeq$ highest weight vector of a representation ${}^{L\!R}$ of ${}^{L\!G} \Rightarrow T({}^{L\!R})$ GNO
- ▶ $T({}^{L\!R})$ topologically non-trivial when ${}^{L\!R}$ is charged under $Z({}^{L\!G})$
- \blacktriangleright \tilde{r} is distance to the circle:

$$\tilde{r}^2 = \frac{(r^2 + x^2 - a^2)^2 + 4a^2x^2}{4a^2}$$

't Hooft Loop in $AdS_2 imes S^2$

- Map $R^4 \to AdS_2 \times S^2$ by a Weyl transformation to make the symmetries of the 't Hooft loop $T({}^L\!R)$ manifest
- The choice of AdS_2 depends on the choice of geometry for the loop

straight line \implies AdS_2 : upper half-plane circular loop \implies AdS_2 : Poincaré disk

• Field configuration produced by the insertion of a 't Hooft loop $T({}^L\!R)$ in $AdS_2 \times S^2$ when $\theta \neq 0$

$$F = \frac{B}{2} \mathrm{Vol}(S^2) + ig^2 \theta \frac{B}{16\pi^2} \mathrm{Vol}(AdS_2) \, ; \quad \phi = B \frac{g^2}{4\pi} |\tau|$$

't Hooft Loop in $AdS_2 \times S^2$

- Map $R^4 \to AdS_2 \times S^2$ by a Weyl transformation to make the symmetries of the 't Hooft loop $T({}^L\!R)$ manifest
- The choice of AdS_2 depends on the choice of geometry for the loop

straight line \implies AdS_2 : upper half-plane circular loop \implies AdS_2 : Poincaré disk

• Field configuration produced by the insertion of a 't Hooft loop $T({}^{L\!R})$ in $AdS_2 \times S^2$ when $\theta \neq 0$

$$F = \frac{B}{2} \operatorname{Vol}(S^2) + ig^2 \theta \frac{B}{16\pi^2} \operatorname{Vol}(AdS_2); \quad \phi = B \frac{g^2}{4\pi} |\tau|$$

Comments:

- For $\theta \neq 0 \Longrightarrow$ Witten effect
- 't Hooft loop in $AdS_2 \times S^2$ creates a regular field configuration

Computing the 't Hooft Loop

- Consider the ${\cal N}=4$ super Yang-Mills path integral in the presence of a 't Hooft operator $T({}^L\!R)$
- 't Hooft operator specified by a path integral over all fields with a prescribed singularity

$$A = A_0 + \hat{A}$$
$$\phi = \phi_0 + \hat{\phi}$$

Semiclassical Approximation

• The leading order result in the \hbar expansion for the 't Hooft loop is:

$$\langle T({}^{L}R) \rangle \simeq \exp\left(-S_{\mathcal{N}=4}^{(0)}\right)$$

• Evaluate the on-shell action of $\mathcal{N} = 4$ super Yang-Mills on $AdS_2 \times S^2$:

$$S_{\mathcal{N}=4}^{(0)} = \frac{1}{g^2} \int \text{Tr}(F \wedge *F) - i\frac{\theta}{8\pi^2} \int \text{Tr}(F \wedge F) = \text{Tr}(B^2) \frac{g^2 |\tau|^2}{16\pi} \text{Vol}(AdS_2)$$

- The 't Hooft operator $T({}^{L\!R})$ must be renormalized
- Renormalize the operator by adding boundary terms to the $\mathcal{N}=4$ super Yang-Mills action

$$S_{\mathcal{N}=4} \longrightarrow S_{\mathcal{N}=4} + S_{ct}$$

• The boundary terms play the role of counterterms and are part of the path integral definition of the 't Hooft loop operator

• The counterterms associated to the 't Hooft loop operator are:

$$S_{ct} = \frac{1}{g^2} \int_{\Sigma} \operatorname{Tr} \left(F|_{\Sigma} \wedge *_3 F|_{\Sigma} - f \wedge *_3 f \right)$$

•The leading semiclassical result for the 't Hooft operator is:

$$< T({}^L\!R) > \simeq \exp\left(rac{\mathrm{Tr}(B^2)}{8}g^2|\tau|^2
ight)$$

where

 $B \subset \mathfrak{t}$ is the highest weight vector of representation ${}^{L}R$ of ${}^{L}G$ $\operatorname{Tr}(,)$ is the invariant metric on the Lie algebra \mathfrak{g}

Quantum 't Hooft loop

• Path integrate over all fields with the prescribed singularity

$$A = A_0 + \hat{A}$$
$$\phi = \phi_0 + \hat{\phi}$$

- Integrate over quantum fluctuations $\hat{A}, \hat{\phi}, \dots$
- Gauge fix path integral using background field gauge

$$D_0^M \hat{A}_M = 0 \quad \Longrightarrow \quad D_0^\mu \hat{A}_\mu + [\phi_0^I, \hat{\phi}_I] = 0$$

Add gauge fixing terms and the associated Faddeev-Popov ghosts

$$\mathcal{L}_{gf} = \frac{1}{g^2} \operatorname{Tr}\left(\left(D_0^M \hat{A}_M \right)^2 - \bar{c} D_0^M D_M c \right)^2 \right)$$

• From the gauge fixed path integral can extract Feynman rules and compute the 't Hooft loop correlators in an \hbar expansion

't Hooft Operator at One Loop

Integrating the fields out at one loop produces a ratio of determinants

$$\frac{\prod \det'_F \cdot \det'_G}{\prod \det'_B} = 1$$

• In order to make the definition of the 't Hooft operator $T({}^{L}\!R)$ gauge invariant, we must also integrate over the coadjoint orbit of B

$$\mathcal{O}(B) = \{ \mathsf{g} B \mathsf{g}^{-1} \,, \mathsf{g} \subset G \}$$

$$< T({}^{L}R) > \simeq \exp\left(\frac{\operatorname{Tr}(B^{2})}{8}g^{2}|\tau|^{2}\right) \cdot \int [d\mu_{\mathcal{O}(B)}]$$

• In order to make the definition of the 't Hooft operator $T({}^{L}\!R)$ gauge invariant, we must also integrate over the coadjoint orbit of B

$$\mathcal{O}(B) = \{ \mathsf{g} B \mathsf{g}^{-1} \,, \mathsf{g} \subset G \}$$

$$< T({}^{L}R) > \simeq \exp\left(\frac{\operatorname{Tr}(B^{2})}{8}g^{2}|\tau|^{2}\right) \cdot \int [d\mu_{\mathcal{O}(B)}]$$

• The metric on the coadjoint orbit is given by

$$ds_{\mathcal{O}(B)}^{2} = \frac{g^{2}|\tau|^{2}}{4} \sum_{\alpha > 0, \, \alpha(B) \neq 0} \alpha(B)^{2} \cdot 2\operatorname{Tr}(E^{\alpha}, E^{-\alpha}) |d\xi_{\alpha}|^{2}$$

• In order to make the definition of the 't Hooft operator $T({}^{L}\!R)$ gauge invariant, we must also integrate over the coadjoint orbit of B

$$\mathcal{O}(B) = \{ \mathsf{g} B \mathsf{g}^{-1} \,, \mathsf{g} \subset G \}$$

$$< T({}^{L}R) > \simeq \exp\left(\frac{\operatorname{Tr}(B^{2})}{8}g^{2}|\tau|^{2}\right) \cdot \int [d\mu_{\mathcal{O}(B)}]$$

• The metric on the coadjoint orbit is given by

$$ds_{\mathcal{O}(B)}^{2} = \frac{g^{2}|\tau|^{2}}{4} \sum_{\alpha > 0, \, \alpha(B) \neq 0} \alpha(B)^{2} \cdot 2\operatorname{Tr}(E^{\alpha}, E^{-\alpha}) |d\xi_{\alpha}|^{2}$$

where

 α

$$g = \exp\left(i\sum_{i}\xi_{i}H^{i} + i\sum_{\alpha}\xi_{\alpha}E^{\alpha}\right)$$
$$\sum_{>0, \alpha(B)\neq 0} 2\operatorname{Tr}(E^{\alpha}, E^{-\alpha})|d\xi_{\alpha}|^{2} = ds_{G/H}^{2}$$

• Therefore, the t' Hooft operator expectation value is given

$$< T({}^{L}\!R) > \simeq \exp\left(\frac{\operatorname{Tr}(B^{2})}{8}g^{2}|\tau|^{2}\right) \cdot \left(\frac{g^{2}|\tau|^{2}}{8\pi}\right)^{\operatorname{\mathsf{dim}}(G/H)/2} \cdot \operatorname{Vol}(G/H) \cdot \prod_{\alpha > 0, \ \alpha(B) \neq 0} \alpha(B)^{2}$$

• Therefore, the t' Hooft operator expectation value is given

$$< T({}^{L}\!R) > \simeq \exp\left(\frac{\operatorname{Tr}(B^{2})}{8}g^{2}|\tau|^{2}\right) \cdot \left(\frac{g^{2}|\tau|^{2}}{8\pi}\right)^{\operatorname{\mathsf{dim}}(G/H)/2} \cdot \operatorname{\mathsf{Vol}}(G/H) \cdot \prod_{\alpha>0, \, \alpha(B)\neq 0} \alpha(B)^{2}$$

Comments:

- Valid for arbitrary 't Hooft operator and arbitrary gauge group G
- Non-trivial dependence on the super Yang-Mills coupling constant *g* from integration over the coadjoint orbit
- Dependence on the stability group $H \subset G$ preserving the singular field configuration characterized by the highest weight vector B of ${}^{L}R$
- Once we have the determined measure, can compute the 't Hooft operator to any order in perturbation theory using Feynman diagrams

S-Duality in $\mathcal{N} = 4$ super Yang-Mills

- Theory has a conjectured symmetry group $\Gamma \subset SL(2,R)$
- $\bullet\ \Gamma$ acts on the operators and coupling constant of the theory

$$\tau = \frac{\theta}{2\pi} + \frac{4\pi i}{g^2}$$

• Γ generated by:

- Classical symmetry T: $\tau \rightarrow \tau + 1$
- Quantum symmetry S:

$$\begin{array}{cccc} \tau & \to & -1/n_{\mathfrak{g}}\tau & & n_{\mathfrak{g}}=1,2,3 \\ G & \to & {}^{L}\!G \end{array}$$

S-duality exchanges electric and magnetic charges

$$Z(G) \leftrightarrow \pi_1({}^L\!G)$$

S-Duality in $\mathcal{N} = 4$ super Yang-Mills

- Conjectures about the action of S-duality on a large class of supersymmetric operators exist
- There are two families of loop operators: Wilson and 't Hooft Operators

 $G: W(R), T({}^{L}R)$ ${}^{L}G: W({}^{L}R), T(R)$

• Under S-duality:

$$W(R) \longleftrightarrow T(R) \qquad T({}^{L}\!R) \longleftrightarrow W({}^{L}\!R)$$

S-duality predicts that correlators transform into each other

$$\left(< T({}^{L}R) \prod_{i} \mathcal{O}_{i} >_{G,\tau} = < W({}^{L}R) \prod_{i} {}^{L}\mathcal{O}_{i} >_{L_{G,L_{\tau}}} \right)$$

Wilson Operators in $\mathcal{N} = 4$ with gauge group ${}^{L}\!G$

• Consider the supersymmetric circular Wilson loop operator

$$W({}^{L}\!R) = \mathrm{Tr}_{{}^{L}\!R}P \exp\left(\oint iA + \phi\right)$$
 Maldacena
Rey & Yee

• The expectation value of this Wilson loop captured by a matrix integral

$$< W({}^{L}R) >_{L_{\tau}} = \frac{1}{\mathcal{Z}} \int_{L_{\mathfrak{g}}} [dM] e^{-\frac{2}{L_{g^{2}}} \langle M, M \rangle} \operatorname{Tr}_{L_{R}} e^{M} \operatorname{Constraint}_{\operatorname{Drukker} \& \operatorname{Gross}_{\operatorname{Pestun}}}$$

• Localize the integral to the Cartan subalgebra ${}^{L}\mathfrak{t}$

$$\frac{\operatorname{\mathsf{Vol}}({}^{L}\!G/{}^{L}\!T)}{|{}^{L}\!W|} \int_{L_{\mathfrak{t}}} [dX] \,\Delta(X)^{2} e^{-\frac{2}{L_{g^{2}}}\langle X, X \rangle} \operatorname{Tr}_{L_{R}} e^{X}$$

where

$$\Delta(X)^2 = \prod_{L_{\alpha>0}} {}^L \alpha(X)^2$$

• Represent Wilson loop as sum over weights v in the representation LR

$$\operatorname{Tr}_{R} e^{X} = \sum_{v} n_{v} e^{v(X)}$$

$$\frac{\operatorname{Vol}({}^{L}\!G/{}^{L}\!T)}{|{}^{L}\!W|} \sum_{v} n_{v} e^{\frac{L_{g^{2}}}{8}\langle v,v\rangle} \int_{L_{\mathfrak{t}}} [dX] e^{-\frac{2}{L_{g^{2}}}\langle X,X\rangle} \prod_{L_{\alpha}>0} \left({}^{L}\!\alpha(X) + \frac{L_{g^{2}}}{4}\langle {}^{L}\!\alpha,v\rangle\right)^{2} dx$$

- Interested in the behaviour of Wilson loop for ${}^{L}\!g>>1$
 - Dominant contribution for v for which $\langle v, v \rangle$ is maximal $\implies v = w$ highest weight vector in ${}^{L}\!R$ up to action of ${}^{L}\!W$

$$\frac{\operatorname{Vol}({}^{L}\!G/{}^{L}\!T)}{|W_{L_{H}}|\mathcal{Z}}e^{\frac{L_{g^{2}}}{8}\langle w,w\rangle}\prod_{L_{\alpha}>0,\langle L_{\alpha},w\rangle\neq 0}\left(\frac{L_{g^{2}}}{4}\langle L_{\alpha},w\rangle\right)^{2}\!\!\int_{L_{t}}[dX]e^{-\frac{2}{L_{g^{2}}}\langle X,X\rangle}\!\!\prod_{L_{\alpha}>0,\langle L_{\alpha},w\rangle=0}\!\!\!L_{\alpha}(X)^{2}$$

• Integration over X yields

$$< W({}^{L}\!R) > \simeq \exp\left(\frac{\langle w, w \rangle}{8}{}^{L}\!g^{2}\right) \cdot \left(\frac{{}^{L}\!g^{2}}{8\pi}\right)^{\mathsf{dim}\left({}^{L}\!G/{}^{L}\!H\right)} \cdot \operatorname{Vol}\left({}^{L}\!G/{}^{L}\!H\right) \prod_{{}^{L}\!\alpha>0, {}^{L}\!\alpha(w)\neq 0} \langle {}^{L}\!\alpha, w \rangle^{2}$$

$$< T({}^{L}R) >_{G,\tau} = < W({}^{L}R) >_{L_{G,L_{\tau}}}$$

 Computations and agreement with S-duality can be extended to the case of correlators with chiral primary operators

$$< T({}^{L}R) \cdot \mathcal{O} >_{G,\tau} = < W({}^{L}R) \cdot {}^{L}\mathcal{O} >_{{}^{L}G,{}^{L}\tau}$$

Conclusions and Outlook

- Given an explicit quantum definition of correlators of 't Hooft operators
- \bullet Exhibited S-duality for correlation functions in $\mathcal{N}=4$ super Yang-Mills

't Hooft Operators \longleftrightarrow Wilson Operators

- Provide the quantum definition of other disorder operators and probe their role in S-duality
- Ultimately find the magnetic description of ${\cal N}=4$ super Yang-Mills by changing variables in the path integral