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Motivation

1) Quantum Field Theory

• Provide the path integral definition of all operators in the theory,
including order and disorder operators:

I ’t Hooft local operators in D = 3
I vortex loop operators in D = 3
I ’t Hooft loop operators in D = 4
I surface operators in D = 4
I . . .

• Computation of correlators of renormalized operators

• Understand whether these operators serve as order parameters of
novel phases in gauge theory, e.g.

Higgs phase: < T (C) >∝ exp (−τA(C))

Confining phase: < T (C) >∝ exp (−mP (C))



2) Duality

• These operators allow us to probe aspects of weak↔strong dualities,
which are ubiquitous in M-theory and some quantum field theories

• Allows for the exploration of new sectors in holographic
correspondences

I “small” operators ←→ bulk D-branes

I “large” operators ←→ topologically rich, asymptotically AdS metrics

• Defining the correlation function of these operators in N = 4 super
Yang-Mills allows us to explore the S-duality conjecture for these
observables

• Understanding magnetic operators as an intermediate step in deriving
the magnetic, dual formulation of N = 4 super Yang-Mills



Duality in Lattice Models

D=3 Ising Model D=3 Z2 Lattice Gauge Theory

ZA(K) =
∑
σ

exp
(
K
∑
<ij>

σiσj

)
ZB(LK) =

∑
Ul

exp
(
LK
∑
p

Up

)

• The two theories are mapped into each other under the following Z2

duality transformation

sinh(2K) sinh(2LK) = 1

• The two theories are related by a weak/strong coupling duality

• There is a change of variables in the partition sum

σi ←→ Ul
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Mapping of Observables

D=3 Ising Model D=3 Z2 Lattice Gauge Theory

local: σi ??

Ti : ’t Hooft Operator

non-local: ??

O(C): Disorder Operator

W (C) =
∏
l⊂C

Ul

• The ’t Hooft operator inserts a monopole at a point. Defined by:

< Ti >B=
Z̃B(LK)
ZB(LK)

where

Ũp =
{
−Up for p ∩ Γ
Up for p ∩/ Γ
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• Dual operators constructed by changing variables in the path integral

electric ←→ magnetic

• Duality leads to the study of monopole operators

• These considerations motivate the study of disorder operators
supported on various submanifolds in spacetime

• Correlators of observables are mapped into each other by the duality
transformation:

<
∏
i

σi
∏
Ca

O(Ca) >A,K=<
∏
i

Ti
∏
Ca

W (Ca) >B,LK

• This theory realizes the picture of confinement as the dual Meissner
effect

< Ti >6= 0 < W (C) >∝ exp (−τA(C))



’t Hooft Loop Singularity

• Singularity produced by the insertion of a straight line ’t Hooft operator

F =
B

2
Vol(S2) ; φ =

B

2r
Kapustin

• Singularity produced by the insertion of a circular ’t Hooft operator

F =
B

2
Vol(S2) ; φ =

B

2r̃
Comments:
I B ≡

∑
iBiH

i ⊂ t characterizes the textcolorscarlet1strength of the

singularity
I Bi ' highest weight vector of a representation LR of LG ⇒ T (LR) GNO

I T (LR) topologically non-trivial when LR is charged under Z(LG)
I r̃ is distance to the circle:

r̃2 =
(r2 + x2 − a2)2 + 4a2x2

4a2
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’t Hooft Loop in AdS2 × S2

• Map R4 → AdS2 × S2 by a Weyl transformation to make the
symmetries of the ’t Hooft loop T (LR) manifest

• The choice of AdS2 depends on the choice of geometry for the loop

straight line =⇒ AdS2: upper half-plane
circular loop =⇒ AdS2: Poincaré disk

• Field configuration produced by the insertion of a ’t Hooft loop T (LR) in
AdS2 × S2 when θ 6= 0

F =
B

2
Vol(S2) + ig2θ

B

16π2
Vol(AdS2) ; φ = B

g2

4π
|τ |

Comments:

• For θ 6= 0 =⇒ Witten effect

• ’t Hooft loop in AdS2 × S2 creates a regular field configuration
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• Field configuration produced by the insertion of a ’t Hooft loop T (LR) in
AdS2 × S2 when θ 6= 0

F =
B

2
Vol(S2) + ig2θ

B

16π2
Vol(AdS2) ; φ = B

g2

4π
|τ |

Comments:

• For θ 6= 0 =⇒ Witten effect

• ’t Hooft loop in AdS2 × S2 creates a regular field configuration



Computing the ’t Hooft Loop
J.G, Okuda & Trancanelli

• Consider the N = 4 super Yang-Mills path integral in the presence of a
’t Hooft operator T (LR)

• ’t Hooft operator specified by a path integral over all fields with a
prescribed singularity

A = A0 + Â

φ = φ0 + φ̂

Semiclassical Approximation

• The leading order result in the ~ expansion for the ’t Hooft loop is:

< T (LR) >' exp
(
−S(0)
N=4

)
• Evaluate the on-shell action of N = 4 super Yang-Mills on AdS2 × S2:

S
(0)
N=4 =

1
g2

∫
Tr(F ∧∗F )− i θ

8π2

∫
Tr(F ∧F ) = Tr(B2)

g2|τ |2

16π
Vol(AdS2)



• The ’t Hooft operator T (LR) must be renormalized

• Renormalize the operator by adding boundary terms to the N = 4 super
Yang-Mills action

SN=4 −→ SN=4 + Sct

• The boundary terms play the role of counterterms and are part of the
path integral definition of the ’t Hooft loop operator

• The counterterms associated to the ’t Hooft loop operator are:

Sct =
1
g2

∫
Σ

Tr (F |Σ ∧ ∗3F |Σ − f ∧ ∗3f)



•The leading semiclassical result for the ’t Hooft operator is:

< T (LR) >' exp
(

Tr(B2)
8

g2|τ |2
)

where

B ⊂ t is the highest weight vector of representation LR of LG
Tr( , ) is the invariant metric on the Lie algebra g

Quantum ’t Hooft loop

• Path integrate over all fields with the prescribed singularity

A = A0 + Â

φ = φ0 + φ̂



• Integrate over quantum fluctuations Â, φ̂, . . .

• Gauge fix path integral using background field gauge

DM
0 ÂM = 0 =⇒ Dµ

0 Âµ + [φI0, φ̂I ] = 0

• Add gauge fixing terms and the associated Faddeev-Popov ghosts

Lgf =
1
g2

Tr
((

DM
0 ÂM

)2
− c̄DM

0 DMc

)
• From the gauge fixed path integral can extract Feynman rules and

compute the ’t Hooft loop correlators in an ~ expansion

’t Hooft Operator at One Loop

• Integrating the fields out at one loop produces a ratio of determinants∏
det′F · det′G∏

det′B
= 1



• In order to make the definition of the ’t Hooft operator T (LR) gauge
invariant, we must also integrate over the coadjoint orbit of B

O(B) = {gBg−1 , g ⊂ G}

=⇒

< T (LR) >' exp
(

Tr(B2)
8

g2|τ |2
)
·
∫

[dµO(B)]

• The metric on the coadjoint orbit is given by

ds2
O(B) =

g2|τ |2

4

∑
α>0, α(B)6=0

α(B)2 · 2 Tr(Eα, E−α)|dξα|2

where

g = exp

(
i
∑
i

ξiH
i + i

∑
α

ξαE
α

)
∑

α>0, α(B)6=0

2 Tr(Eα, E−α)|dξα|2 = ds2
G/H
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• Therefore, the t’ Hooft operator expectation value is given

< T (LR) >' exp
(

Tr(B2)
8

g2|τ |2
)
·
(
g2|τ |2

8π

)dim(G/H)/2

· Vol(G/H) ·
∏

α>0, α(B) 6=0

α(B)2

Comments:

• Valid for arbitrary ’t Hooft operator and arbitrary gauge group G

• Non-trivial dependence on the super Yang-Mills coupling constant g
from integration over the coadjoint orbit

• Dependence on the stability group H ⊂ G preserving the singular
field configuration characterized by the highest weight vector B of LR

• Once we have the determined measure, can compute the ’t Hooft
operator to any order in perturbation theory using Feynman diagrams
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S-Duality in N = 4 super Yang-Mills

• Theory has a conjectured symmetry group Γ ⊂ SL(2, R)

• Γ acts on the operators and coupling constant of the theory

τ =
θ

2π
+

4πi
g2

• Γ generated by:

• Classical symmetry T: τ → τ + 1

• Quantum symmetry S:

τ → −1/ngτ ng = 1, 2, 3
G → LG

• S-duality exchanges electric and magnetic charges

Z(G)↔ π1(LG)



S-Duality in N = 4 super Yang-Mills

• Conjectures about the action of S-duality on a large class of
supersymmetric operators exist

• There are two families of loop operators: Wilson and ’t Hooft Operators

G: W (R), T (LR)

LG: W (LR), T (R)

• Under S-duality:

W (R)←→ T (R) T (LR)←→W (LR)

• S-duality predicts that correlators transform into each other

< T (LR)
∏
i

Oi >G,τ=< W (LR)
∏
i

LOi >LG,Lτ



Wilson Operators in N = 4 with gauge group LG

• Consider the supersymmetric circular Wilson loop operator

W (LR) = TrLRP exp
(∮

iA+ φ

)
Maldacena
Rey & Yee

• The expectation value of this Wilson loop captured by a matrix integral

< W (LR) >Lτ=
1
Z

∫
Lg

[dM ]e
− 2

Lg2 〈M,M〉
TrLR e

M [ESZ]
Drukker & Gross

Pestun

• Localize the integral to the Cartan subalgebra Lt

Vol(LG/LT )
|LW |

∫
Lt

[dX]∆(X)2e
− 2

Lg2 〈X,X〉TrLR e
X

where

∆(X)2 =
∏

Lα>0

Lα(X)2



• Represent Wilson loop as sum over weights v in the representation LR

TrR eX =
∑
v

nve
v(X)

=⇒

Vol(LG/LT )
|LW |

∑
v

nve
Lg2

8
〈v,v〉

∫
Lt

[dX]e
− 2

Lg2 〈X,X〉
∏

Lα>0

(
Lα(X) +

Lg2

4
〈Lα, v〉

)2

• Interested in the behaviour of Wilson loop for Lg >> 1
• Dominant contribution for v for which 〈v, v〉 is maximal

=⇒ v = w highest weight vector in LR up to action of LW

Vol(LG/LT )
|WLH |Z

e
Lg2

8
〈w,w〉

∏
Lα>0,〈Lα,w〉6=0

(
Lg2

4
〈Lα,w〉

)2∫
Lt

[dX]e
− 2

Lg2 〈X,X〉
∏

Lα>0,〈Lα,w〉=0

Lα(X)2



• Integration over X yields

< W (LR) >' exp
(
〈w,w〉

8
Lg2

)
·
(
Lg2

8π

)dim(LG/LH)/2
· Vol

(
LG/LH

) ∏
Lα>0,Lα(w)6=0

〈Lα,w〉2

=⇒

< T (LR) >G,τ=< W (LR) >LG,Lτ

• Computations and agreement with S-duality can be extended to the case
of correlators with chiral primary operators

< T (LR) · O >G,τ=< W (LR) · LO >LG,Lτ



Conclusions and Outlook

• Given an explicit quantum definition of correlators of ’t Hooft
operators

• Exhibited S-duality for correlation functions in N = 4 super
Yang-Mills

’t Hooft Operators ←→ Wilson Operators

• Provide the quantum definition of other disorder operators and probe
their role in S-duality

• Ultimately find the magnetic description of N = 4 super Yang-Mills by
changing variables in the path integral
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