't Hooft Loops and S-Duality

Jaume Gomis

KITP, Dualities in Physics and Mathematics

with T. Okuda and D. Trancanelli

Motivation

1) Quantum Field Theory

- Provide the path integral definition of all operators in the theory, including order and disorder operators:
- 't Hooft local operators in $D=3$
- vortex loop operators in $D=3$
- 't Hooft loop operators in $D=4$
- surface operators in $D=4$
- ...
- Computation of correlators of renormalized operators
- Understand whether these operators serve as order parameters of novel phases in gauge theory, e.g.

Higgs phase: $\quad<T(C)>\propto \exp (-\tau A(C))$

Confining phase: $\quad<T(C)>\propto \exp (-m P(C))$

- These operators allow us to probe aspects of weak \leftrightarrow strong dualities, which are ubiquitous in M-theory and some quantum field theories
- Allows for the exploration of new sectors in holographic correspondences
- "small" operators \longleftrightarrow bulk D-branes
- "large" operators \longleftrightarrow topologically rich, asymptotically AdS metrics
- Defining the correlation function of these operators in $\mathcal{N}=4$ super Yang-Mills allows us to explore the S-duality conjecture for these observables
- Understanding magnetic operators as an intermediate step in deriving the magnetic, dual formulation of $\mathcal{N}=4$ super Yang-Mills

Duality in Lattice Models

$\mathrm{D}=3$ Ising Model

$$
Z_{A}(K)=\sum_{\sigma} \exp \left(K \sum_{<i j>} \sigma_{i} \sigma_{j}\right)
$$

$\mathrm{D}=3 Z_{2}$ Lattice Gauge Theory

$Z_{B}\left({ }^{L} K\right)=\sum_{U_{l}} \exp \left({ }^{L} K \sum_{p} U_{p}\right)$

Duality in Lattice Models

$\mathrm{D}=3$ Ising Model

$\mathrm{D}=3 Z_{2}$ Lattice Gauge Theory

$$
Z_{A}(K)=\sum_{\sigma} \exp \left(K \sum_{<i j>} \sigma_{i} \sigma_{j}\right) \quad Z_{B}\left({ }^{L} K\right)=\sum_{U_{l}} \exp \left({ }^{L} K \sum_{p} U_{p}\right)
$$

- The two theories are mapped into each other under the following Z_{2} duality transformation

$$
\sinh (2 K) \sinh \left(2^{L} K\right)=1
$$

Duality in Lattice Models

$\mathrm{D}=3$ Ising Model

$\mathrm{D}=3 Z_{2}$ Lattice Gauge Theory

$$
Z_{A}(K)=\sum_{\sigma} \exp \left(K \sum_{<i j>} \sigma_{i} \sigma_{j}\right) \quad Z_{B}\left({ }^{L} K\right)=\sum_{U_{l}} \exp \left({ }^{L} K \sum_{p} U_{p}\right)
$$

- The two theories are mapped into each other under the following Z_{2} duality transformation

$$
\sinh (2 K) \sinh \left(2^{L} K\right)=1
$$

- The two theories are related by a weak/strong coupling duality

Duality in Lattice Models

$\mathrm{D}=3$ Ising Model

$\mathrm{D}=3 Z_{2}$ Lattice Gauge Theory

$$
Z_{A}(K)=\sum_{\sigma} \exp \left(K \sum_{<i j>} \sigma_{i} \sigma_{j}\right) \quad Z_{B}\left({ }^{L} K\right)=\sum_{U_{l}} \exp \left({ }^{L} K \sum_{p} U_{p}\right)
$$

- The two theories are mapped into each other under the following Z_{2} duality transformation

$$
\sinh (2 K) \sinh \left(2^{L} K\right)=1
$$

- The two theories are related by a weak/strong coupling duality
- There is a change of variables in the partition sum

$$
\sigma_{i} \longleftrightarrow U_{l}
$$

Mapping of Observables

$\mathrm{D}=3$ Ising Model

local:
σ_{i}
non-local: ??
??

$\mathrm{D}=3 Z_{2}$ Lattice Gauge Theory

$$
W(C)=\prod_{l \subset C} U_{l}
$$

Mapping of Observables

$\mathrm{D}=3$ Ising Model

local:
σ_{i}
$\mathrm{D}=3 Z_{2}$ Lattice Gauge Theory
T_{i} : 't Hooft Operator
non-local: $\quad \mathcal{O}(C)$: Disorder Operator

$$
W(C)=\prod_{l \subset C} U_{l}
$$

Mapping of Observables

$\mathrm{D}=3$ Ising Model local: σ_{i} non-local: $\quad \mathcal{O}(C)$: Disorder Operator
$\mathrm{D}=3 Z_{2}$ Lattice Gauge Theory
T_{i} : 't Hooft Operator

$$
W(C)=\prod_{l \subset C} U_{l}
$$

- The 't Hooft operator inserts a monopole at a point. Defined by:

$$
<T_{i}>_{B}=\frac{\widetilde{Z}_{B}\left({ }^{L} K\right)}{Z_{B}\left({ }^{L} K\right)}
$$

where

$$
\widetilde{U_{p}}=\left\{\begin{array}{c}
-U_{p} \text { for } p \cap \Gamma \\
U_{p} \text { for } p \not \subset \Gamma
\end{array}\right.
$$

Mapping of Observables

$\mathrm{D}=3$ Ising Model local: σ_{i} non-local: $\quad \mathcal{O}(C)$: Disorder Operator
$\mathrm{D}=3 Z_{2}$ Lattice Gauge Theory
T_{i} : 't Hooft Operator

$$
W(C)=\prod_{l \subset C} U_{l}
$$

- The 't Hooft operator inserts a monopole at a point. Defined by:

$$
<T_{i}>_{B}=\frac{\widetilde{Z}_{B}\left({ }^{L} K\right)}{Z_{B}\left({ }^{L} K\right)}
$$

where

$$
\widetilde{U_{p}}=\left\{\begin{array}{c}
-U_{p} \text { for } p \cap \Gamma \\
U_{p} \text { for } p \not \subset \Gamma
\end{array}\right.
$$

- Dual operators constructed by changing variables in the path integral

$$
\text { electric } \longleftrightarrow \text { magnetic }
$$

- Duality leads to the study of monopole operators
- These considerations motivate the study of disorder operators supported on various submanifolds in spacetime
- Correlators of observables are mapped into each other by the duality transformation:

$$
<\prod_{i} \sigma_{i} \prod_{C_{a}} \mathcal{O}\left(C_{a}\right)>_{A, K}=<\prod_{i} T_{i} \prod_{C_{a}} W\left(C_{a}\right)>_{B, L_{K}}
$$

- This theory realizes the picture of confinement as the dual Meissner effect

$$
<T_{i}>\neq 0 \quad<W(C)>\propto \exp (-\tau A(C))
$$

't Hooft Loop Singularity

- Singularity produced by the insertion of a straight line 't Hooft operator

$$
F=\frac{B}{2} \operatorname{Vol}\left(S^{2}\right) ; \quad \phi=\frac{B}{2 r}
$$

't Hooft Loop Singularity

- Singularity produced by the insertion of a straight line 't Hooft operator

$$
F=\frac{B}{2} \operatorname{Vol}\left(S^{2}\right) ; \quad \phi=\frac{B}{2 r}
$$

Kapustin

- Singularity produced by the insertion of a circular 't Hooft operator

$$
F=\frac{B}{2} \operatorname{Vol}\left(S^{2}\right) ; \quad \phi=\frac{B}{2 \tilde{r}}
$$

't Hooft Loop Singularity

- Singularity produced by the insertion of a straight line 't Hooft operator

$$
F=\frac{B}{2} \operatorname{Vol}\left(S^{2}\right) ; \quad \phi=\frac{B}{2 r}
$$

Kapustin

- Singularity produced by the insertion of a circular 't Hooft operator

$$
F=\frac{B}{2} \operatorname{Vol}\left(S^{2}\right) ; \quad \phi=\frac{B}{2 \tilde{r}}
$$

Comments:

- $B \equiv \sum_{i} B_{i} H^{i} \subset \mathfrak{t}$ characterizes the textcolorscarlet1strength of the singularity
- $B_{i} \simeq$ highest weight vector of a representation ${ }^{L} R$ of ${ }^{L} G \Rightarrow T\left({ }^{L} R\right)$ GNO
- $T\left({ }^{L} R\right)$ topologically non-trivial when ${ }^{L} R$ is charged under $Z\left({ }^{L} G\right)$
- \tilde{r} is distance to the circle:

$$
\tilde{r}^{2}=\frac{\left(r^{2}+x^{2}-a^{2}\right)^{2}+4 a^{2} x^{2}}{4 a^{2}}
$$

't Hooft Loop in $A d S_{2} \times S^{2}$

- Map $R^{4} \rightarrow A d S_{2} \times S^{2}$ by a Weyl transformation to make the symmetries of the 't Hooft loop $T\left({ }^{L} R\right)$ manifest
- The choice of $A d S_{2}$ depends on the choice of geometry for the loop

$$
\begin{aligned}
\text { straight line } & \Longrightarrow
\end{aligned} \begin{aligned}
& A d S_{2} \text { : upper half-plane } \\
& \text { circular loop }
\end{aligned} \Longrightarrow \quad A d S_{2} \text { : Poincaré disk }
$$

- Field configuration produced by the insertion of a 't Hooft loop $T\left({ }^{L} R\right)$ in $A d S_{2} \times S^{2}$ when $\theta \neq 0$

$$
F=\frac{B}{2} \operatorname{Vol}\left(S^{2}\right)+i g^{2} \theta \frac{B}{16 \pi^{2}} \operatorname{Vol}\left(A d S_{2}\right) ; \quad \phi=B \frac{g^{2}}{4 \pi}|\tau|
$$

't Hooft Loop in $A d S_{2} \times S^{2}$

- Map $R^{4} \rightarrow A d S_{2} \times S^{2}$ by a Weyl transformation to make the symmetries of the 't Hooft loop $T\left({ }^{L} R\right)$ manifest
- The choice of $A d S_{2}$ depends on the choice of geometry for the loop

$$
\begin{aligned}
\text { straight line } & \Longrightarrow
\end{aligned} \begin{aligned}
& A d S_{2} \text { : upper half-plane } \\
& \text { circular loop }
\end{aligned} \Longrightarrow \quad A d S_{2} \text { : Poincaré disk }
$$

- Field configuration produced by the insertion of a 't Hooft loop $T\left({ }^{L} R\right)$ in $A d S_{2} \times S^{2}$ when $\theta \neq 0$

$$
F=\frac{B}{2} \operatorname{Vol}\left(S^{2}\right)+i g^{2} \theta \frac{B}{16 \pi^{2}} \operatorname{Vol}\left(A d S_{2}\right) ; \quad \phi=B \frac{g^{2}}{4 \pi}|\tau|
$$

Comments:

- For $\theta \neq 0 \Longrightarrow$ Witten effect
- 't Hooft loop in $A d S_{2} \times S^{2}$ creates a regular field configuration

Computing the 't Hooft Loop

- Consider the $\mathcal{N}=4$ super Yang-Mills path integral in the presence of a 't Hooft operator $T\left({ }^{L} R\right)$
- 't Hooft operator specified by a path integral over all fields with a prescribed singularity

$$
\begin{aligned}
A & =A_{0}+\hat{A} \\
\phi & =\phi_{0}+\hat{\phi}
\end{aligned}
$$

Semiclassical Approximation

- The leading order result in the \hbar expansion for the 't Hooft loop is:

$$
<T\left({ }^{L} R\right)>\simeq \exp \left(-S_{\mathcal{N}=4}^{(0)}\right)
$$

- Evaluate the on-shell action of $\mathcal{N}=4$ super Yang-Mills on $A d S_{2} \times S^{2}$:
$S_{\mathcal{N}=4}^{(0)}=\frac{1}{g^{2}} \int \operatorname{Tr}(F \wedge * F)-i \frac{\theta}{8 \pi^{2}} \int \operatorname{Tr}(F \wedge F)=\operatorname{Tr}\left(B^{2}\right) \frac{g^{2}|\tau|^{2}}{16 \pi} \operatorname{Vol}\left(A d S_{2}\right)$
- The 't Hooft operator $T\left({ }^{L} R\right)$ must be renormalized
- Renormalize the operator by adding boundary terms to the $\mathcal{N}=4$ super Yang-Mills action

$$
S_{\mathcal{N}=4} \longrightarrow S_{\mathcal{N}=4}+S_{c t}
$$

- The boundary terms play the role of counterterms and are part of the path integral definition of the 't Hooft loop operator

- The counterterms associated to the 't Hooft loop operator are:

$$
S_{c t}=\frac{1}{g^{2}} \int_{\Sigma} \operatorname{Tr}\left(\left.\left.F\right|_{\Sigma} \wedge *_{3} F\right|_{\Sigma}-f \wedge *_{3} f\right)
$$

-The leading semiclassical result for the 't Hooft operator is:

$$
<T\left({ }^{L} R\right)>\simeq \exp \left(\frac{\operatorname{Tr}\left(B^{2}\right)}{8} g^{2}|\tau|^{2}\right)
$$

where
$B \subset \mathfrak{t}$ is the highest weight vector of representation ${ }^{L} R$ of ${ }^{L} G$ $\operatorname{Tr}($,$) is the invariant metric on the Lie algebra \mathfrak{g}$

Quantum 't Hooft loop

- Path integrate over all fields with the prescribed singularity

$$
\begin{aligned}
A & =A_{0}+\hat{A} \\
\phi & =\phi_{0}+\hat{\phi}
\end{aligned}
$$

- Integrate over quantum fluctuations $\hat{A}, \hat{\phi}, \ldots$
- Gauge fix path integral using background field gauge

$$
D_{0}^{M} \hat{A}_{M}=0 \quad \Longrightarrow \quad D_{0}^{\mu} \hat{A}_{\mu}+\left[\phi_{0}^{I}, \hat{\phi}_{I}\right]=0
$$

- Add gauge fixing terms and the associated Faddeev-Popov ghosts

$$
\mathcal{L}_{g f}=\frac{1}{g^{2}} \operatorname{Tr}\left(\left(D_{0}^{M} \hat{A}_{M}\right)^{2}-\bar{c} D_{0}^{M} D_{M} c\right)
$$

- From the gauge fixed path integral can extract Feynman rules and compute the 't Hooft loop correlators in an \hbar expansion

't Hooft Operator at One Loop

- Integrating the fields out at one loop produces a ratio of determinants

$$
\frac{\prod \operatorname{det}^{\prime} F \cdot \operatorname{det}^{\prime}}{\prod \operatorname{det}^{\prime}}{ }_{B}=1
$$

- In order to make the definition of the 't Hooft operator $T\left({ }^{L} R\right)$ gauge invariant, we must also integrate over the coadjoint orbit of B

$$
\mathcal{O}(B)=\left\{\mathrm{g} B \mathrm{~g}^{-1}, \mathrm{~g} \subset G\right\}
$$

$$
<T\left({ }^{L} R\right)>\simeq \exp \left(\frac{\operatorname{Tr}\left(B^{2}\right)}{8} g^{2}|\tau|^{2}\right) \cdot \int\left[d \mu_{\mathcal{O}(B)}\right]
$$

- In order to make the definition of the 't Hooft operator $T\left({ }^{L} R\right)$ gauge invariant, we must also integrate over the coadjoint orbit of B

$$
\mathcal{O}(B)=\left\{\mathrm{g} B \mathrm{~g}^{-1}, \mathrm{~g} \subset G\right\}
$$

$$
<T\left({ }^{L} R\right)>\simeq \exp \left(\frac{\operatorname{Tr}\left(B^{2}\right)}{8} g^{2}|\tau|^{2}\right) \cdot \int\left[d \mu_{\mathcal{O}(B)}\right]
$$

- The metric on the coadjoint orbit is given by

$$
d s_{\mathcal{O}(B)}^{2}=\frac{g^{2}|\tau|^{2}}{4} \sum_{\alpha>0, \alpha(B) \neq 0} \alpha(B)^{2} \cdot 2 \operatorname{Tr}\left(E^{\alpha}, E^{-\alpha}\right)\left|d \xi_{\alpha}\right|^{2}
$$

- In order to make the definition of the 't Hooft operator $T\left({ }^{L} R\right)$ gauge invariant, we must also integrate over the coadjoint orbit of B

$$
\mathcal{O}(B)=\left\{\mathrm{g} B \mathrm{~g}^{-1}, \mathrm{~g} \subset G\right\}
$$

$$
<T\left({ }^{L} R\right)>\simeq \exp \left(\frac{\operatorname{Tr}\left(B^{2}\right)}{8} g^{2}|\tau|^{2}\right) \cdot \int\left[d \mu_{\mathcal{O}(B)}\right]
$$

- The metric on the coadjoint orbit is given by

$$
d s_{\mathcal{O}(B)}^{2}=\frac{g^{2}|\tau|^{2}}{4} \sum_{\alpha>0, \alpha(B) \neq 0} \alpha(B)^{2} \cdot 2 \operatorname{Tr}\left(E^{\alpha}, E^{-\alpha}\right)\left|d \xi_{\alpha}\right|^{2}
$$

where

$$
\begin{gathered}
\mathrm{g}=\exp \left(i \sum_{i} \xi_{i} H^{i}+i \sum_{\alpha} \xi_{\alpha} E^{\alpha}\right) \\
\sum_{\alpha>0, \alpha(B) \neq 0} 2 \operatorname{Tr}\left(E^{\alpha}, E^{-\alpha}\right)\left|d \xi_{\alpha}\right|^{2}=d s_{G / H}^{2}
\end{gathered}
$$

- Therefore, the t' Hooft operator expectation value is given

$$
<T\left({ }^{L} R\right)>\simeq \exp \left(\frac{\operatorname{Tr}\left(B^{2}\right)}{8} g^{2}|\tau|^{2}\right) \cdot\left(\frac{g^{2}|\tau|^{2}}{8 \pi}\right)^{\operatorname{dim}(G / H) / 2} \cdot \operatorname{Vol}(G / H) \cdot \prod_{\alpha>0, \alpha(B) \neq 0} \alpha(B)^{2}
$$

- Therefore, the t' Hooft operator expectation value is given

$$
<T\left({ }^{L} R\right)>\simeq \exp \left(\frac{\operatorname{Tr}\left(B^{2}\right)}{8} g^{2}|\tau|^{2}\right) \cdot\left(\frac{g^{2}|\tau|^{2}}{8 \pi}\right) \stackrel{\operatorname{dim}(G / H) / 2}{\operatorname{Vol}(G / H) \cdot \prod_{\alpha>0, \alpha(B) \neq 0} \alpha(B)^{2}}
$$

Comments:

- Valid for arbitrary 't Hooft operator and arbitrary gauge group G
- Non-trivial dependence on the super Yang-Mills coupling constant g from integration over the coadjoint orbit
- Dependence on the stability group $H \subset G$ preserving the singular field configuration characterized by the highest weight vector B of ${ }^{L} R$
- Once we have the determined measure, can compute the 't Hooft operator to any order in perturbation theory using Feynman diagrams

S-Duality in $\mathcal{N}=4$ super Yang-Mills

- Theory has a conjectured symmetry group $\Gamma \subset S L(2, R)$
- Γ acts on the operators and coupling constant of the theory

$$
\tau=\frac{\theta}{2 \pi}+\frac{4 \pi i}{g^{2}}
$$

- Γ generated by:
- Classical symmetry T: $\tau \rightarrow \tau+1$
- Quantum symmetry $\mathrm{S}:$

$$
\begin{aligned}
\tau & \rightarrow-1 / n_{\mathfrak{g}} \tau \quad n_{\mathfrak{g}}=1,2,3 \\
G & \rightarrow{ }^{L} G
\end{aligned}
$$

- S-duality exchanges electric and magnetic charges

$$
Z(G) \leftrightarrow \pi_{1}\left({ }^{L} G\right)
$$

S-Duality in $\mathcal{N}=4$ super Yang-Mills

- Conjectures about the action of S-duality on a large class of supersymmetric operators exist
- There are two families of loop operators: Wilson and 't Hooft Operators

$$
\begin{aligned}
& G: W(R), T\left({ }^{L} R\right) \\
& { }^{L} G: W\left({ }^{L} R\right), T(R)
\end{aligned}
$$

- Under S-duality:

$$
W(R) \longleftrightarrow T(R) \quad T\left({ }^{L} R\right) \longleftrightarrow W\left({ }^{L} R\right)
$$

- S-duality predicts that correlators transform into each other

$$
<T\left({ }^{L} R\right) \prod_{i} \mathcal{O}_{i}>_{G, \tau}=<W\left({ }^{L} R\right) \prod_{i}{ }^{L} \mathcal{O}_{i}>_{L_{G}, L_{\tau}}
$$

Wilson Operators in $\mathcal{N}=4$ with gauge group ${ }^{L} G$

- Consider the supersymmetric circular Wilson loop operator

$$
W\left({ }^{L} R\right)=\operatorname{Tr}_{L_{R}} P \exp (\oint i A+\phi)
$$

- The expectation value of this Wilson loop captured by a matrix integral

$$
<W\left({ }^{L} R\right)>_{L_{\tau}}=\frac{1}{\mathcal{Z}} \int_{L_{\mathfrak{g}}}[d M] e^{-\frac{2}{L_{g^{2}}}\langle M, M\rangle} \operatorname{Tr}_{L_{R}} e^{M} \underset{\text { Drukker \& Gross }}{\text { Pestun }}
$$

- Localize the integral to the Cartan subalgebra $L_{\mathfrak{t}}$

$$
\frac{\operatorname{Vol}\left({ }^{L} G /{ }^{L} T\right)}{\left|{ }^{L} W\right|} \int_{L_{\mathfrak{t}}}[d X] \Delta(X)^{2} e^{-\frac{2}{L_{g^{2}}}\langle X, X\rangle} \operatorname{Tr}_{L_{R}} e^{X}
$$

where

$$
\Delta(X)^{2}=\prod_{L_{\alpha>0}}{ }^{L_{\alpha}}(X)^{2}
$$

- Represent Wilson loop as sum over weights v in the representation ${ }^{L} R$

$$
\operatorname{Tr}_{R} e^{X}=\sum_{v} n_{v} e^{v(X)}
$$

$\frac{\operatorname{Vol}\left({ }^{L} G /{ }^{L} T\right)}{\left|{ }^{L} W\right|} \sum_{v} n_{v} e^{\frac{L_{g}{ }^{2}}{8}\langle v, v\rangle} \int_{L_{\mathfrak{t}}}[d X] e^{-\frac{2}{L_{g}{ }^{2}}\langle X, X\rangle} \prod_{L_{\alpha}>0}\left({ }^{L_{\alpha}} \alpha(X)+\frac{{ }^{L} g^{2}}{4}\left\langle{ }^{L} \alpha, v\right\rangle\right)^{2}$

- Interested in the behaviour of Wilson loop for ${ }^{L} g \gg 1$
- Dominant contribution for v for which $\langle v, v\rangle$ is maximal $\Longrightarrow v=w$ highest weight vector in ${ }^{L} R$ up to action of ${ }^{L} W$
$\frac{\operatorname{Vol}\left({ }^{L} G / L^{L} T\right)}{\left|W_{L_{H}}\right| \mathcal{Z}} e^{\frac{L_{g}{ }^{2}}{8}\langle w, w\rangle} \prod_{L_{\alpha}>0,\left\langle L_{\alpha, w\rangle \neq 0}\right.}\left(\frac{{ }^{L} g^{2}}{4}\left\langle{ }^{L} \alpha, w\right\rangle\right)^{2} \int_{L_{\mathfrak{t}}}[d X] e^{-\frac{2}{L_{g}{ }^{2}}\langle X, X\rangle} \prod_{L_{\alpha}>0,\left\langle L_{\alpha, w\rangle=0}\right.}{ }^{L_{\alpha}}(X)^{2}$
- Integration over X yields

$$
<W\left({ }^{L} R\right)>\simeq \exp \left(\frac{\langle w, w\rangle}{8} L^{2} g^{2}\right) \cdot\left(\frac{{ }^{L} g^{2}}{8 \pi}\right)^{\operatorname{dim}\left({ }^{L} G /{ }^{L} H\right) / 2} \cdot \operatorname{Vol}\left({ }^{L} G /{ }^{L} H\right) \prod_{L_{\alpha}>0, L_{\alpha}(w) \neq 0}\left\langle{ }^{L} \alpha, w\right\rangle^{2}
$$

$$
<T\left({ }^{L} R\right)>_{G, \tau}=<W\left({ }^{L} R\right)>_{L_{G}, L_{\tau}}
$$

- Computations and agreement with S-duality can be extended to the case of correlators with chiral primary operators

$$
<T\left({ }^{L} R\right) \cdot \mathcal{O}>_{G, \tau}=<W\left({ }^{L} R\right) \cdot{ }^{L} \mathcal{O}>_{{ }_{G}, L_{\tau}}
$$

Conclusions and Outlook

- Given an explicit quantum definition of correlators of 't Hooft operators
- Exhibited S-duality for correlation functions in $\mathcal{N}=4$ super Yang-Mills

$$
\text { 't Hooft Operators } \longleftrightarrow \text { Wilson Operators }
$$

- Provide the quantum definition of other disorder operators and probe their role in S-duality
- Ultimately find the magnetic description of $\mathcal{N}=4$ super Yang-Mills by changing variables in the path integral

