

Multipolar Order and Superconductivity in Pr(TM)₂(Al,Zn)₂₀ Kondo Materials

SungBin Lee KAIST Jan 2018

Collaborators

Frederic Freyer Jan Attig Simon Trebst

Univ. of Cologne

Arun Paramekanti Univ. of Toronto Yong-Baek Kim

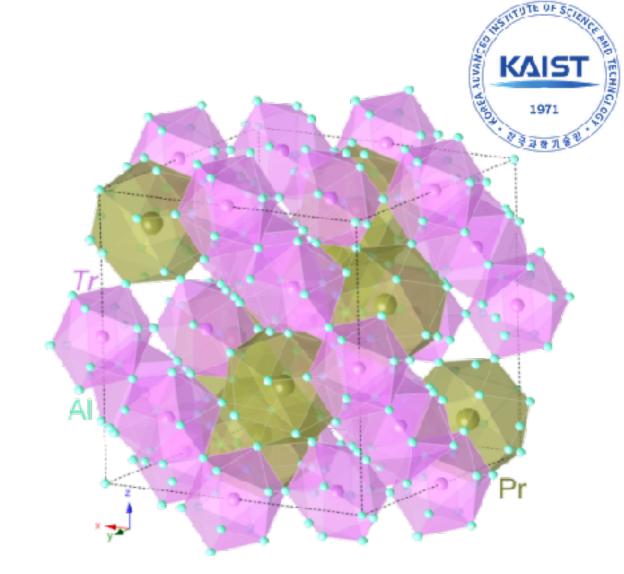
GiBaik Sim Archana Mishra Gil Young Cho

KAIST & KIAS

What is interesting?

Pr(TM)₂(Al,Zn)₂₀

Pr based cage compounds Kondo materials



multipolar order : double transitions anisotropy in fields

superconductivity : multipolar fluctuation d-wave pairing Motivation Strongly Correlated Electronic Systems

- Strongly correlated materials
- Quantum materials

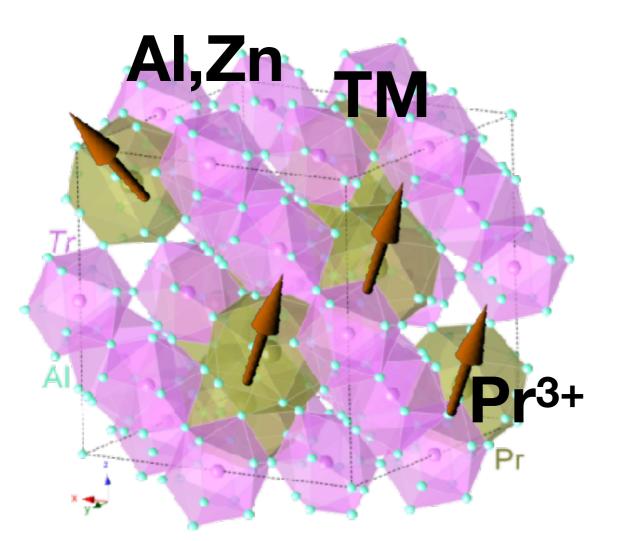
Looking for new exotic phases …

- unconventional metal,
- Mott insulators,
- heavy fermions,
- superconductivity,
- magnetic order, spin liquids \cdots
- Iocalized moments, Kondo coupling, spin orbit coupling, electronic structure, electron-electron interactions ...

KVIZ

Motivation Strongly Correlated Electronic Systems

$Pr(TM)_2(AI,Zn)_{20}$



All interesting phenomena coexist!

Localized moments, spin orbit coupling + CEF

Pr³⁺

KAIST

Quadrupole-Octupolar ordering

Electronic Structure spin orbit coupling Fermi pockets at k=0

(TM)+ AI,Zn

e-e interactions Kondo coupling

Kondo Materials, Heavy fermion

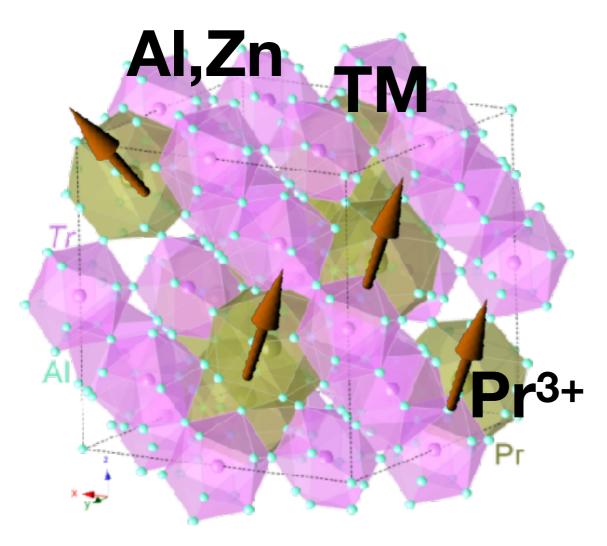
Non-Fermi liquid

Pr³⁺ + (TM)+ Al,Zn

superconductivity

Motivation Strongly Correlated Electronic Systems

 $Pr(TM)_2(AI,Zn)_{20}$ All interesting phenomena coexist!



Pr3+ Quadrupole-Octupolar ordering

+ (TM)+ AI,Zn

superconductivity

KAIST

Kondo Materials, Heavy fermion

Q) How can we understand them?

Outline Pr(TM)₂(Al,Zn)₂₀

Introduction

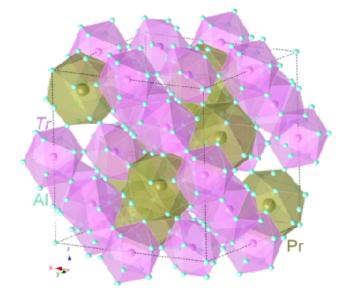
Experiments on Pr(TM)₂(AI,Zn)₂₀

Pr³⁺ localized moments

- Modeling of pseudospin-1/2
- Magnetic field effect

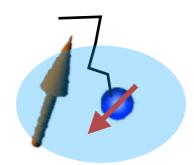
Superconductivity

- Molecular orbital picture and Luttinger semimetal
- Kondo coupling : Quadrupolar moment

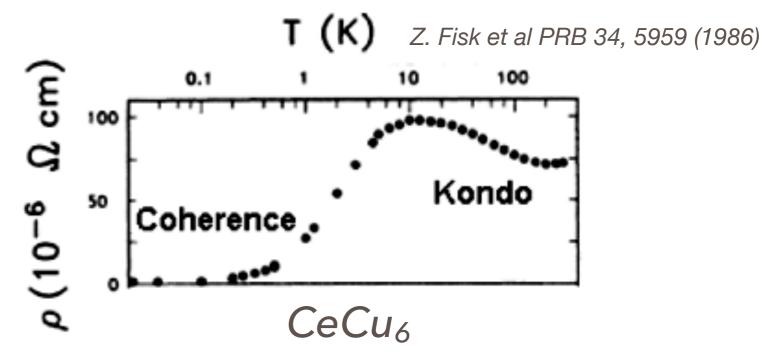


Introduction — Kondo effect

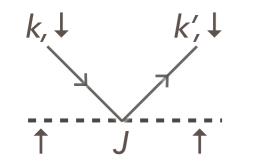
J. Kondo (1964)

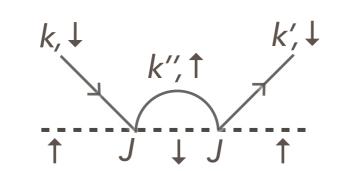


Localized magnetic moment + itinerant electrons



$$H_{K} = J S_{i} \cdot c^{\dagger}_{i \, a} \sigma_{a\beta} c_{i\beta}$$

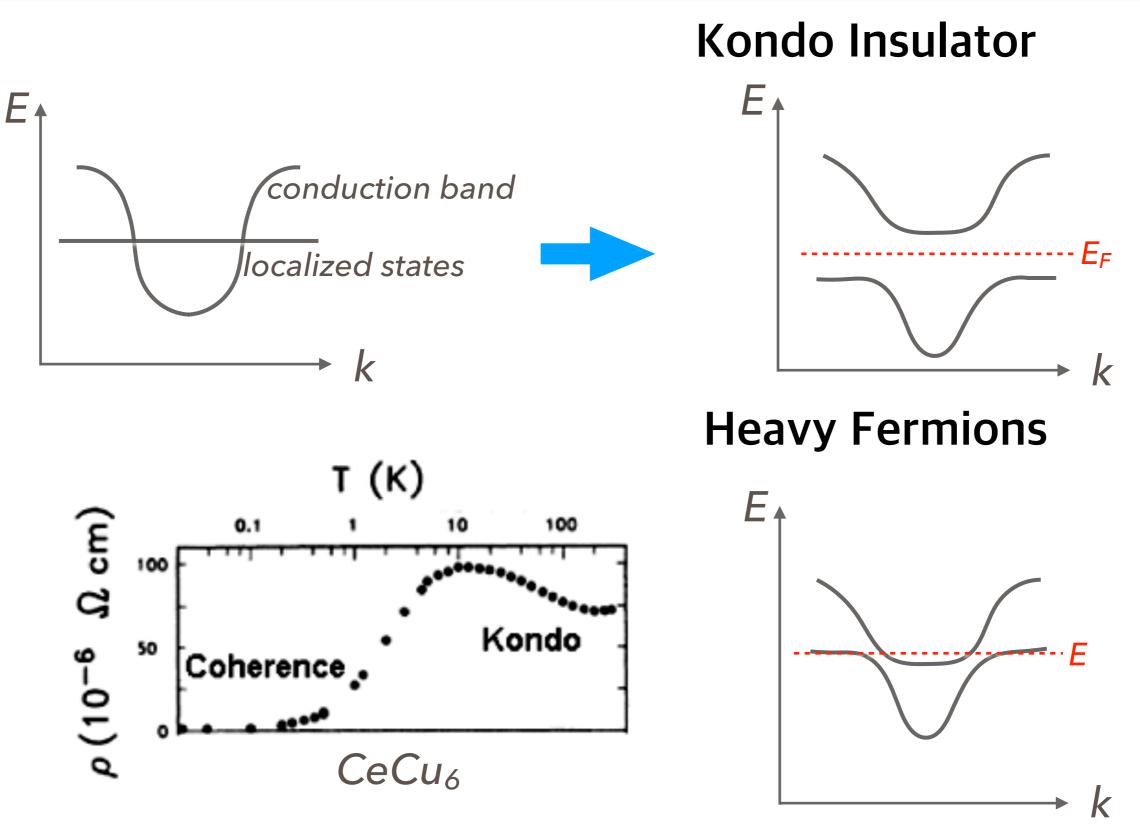




Logarithmic correction in resistivity due to spin flip scattering

 $J^{2}\rho \int dE_{k''} (1 - f_{Ek''}) / (E_{k} - E_{k''}) \sim J^{2}\rho \log (E_{F}/T)$

Introduction — Heavy Fermions



KAIST 1971

Introduction — Doniach Phase Diagram KAIST **Doniach phase diagram** S. Doniach, Physica B 91, 231 (1977) $T_{\kappa} \sim \exp\left(-\frac{1}{J D(E_{F})}\right)$ T_N Non Fermi Liquid? Superconductivity? **Quadrupolar order? Fermi Liquid** J AFM Kondo **Q)** Search for new Doniach phase diagram with multipolar order?

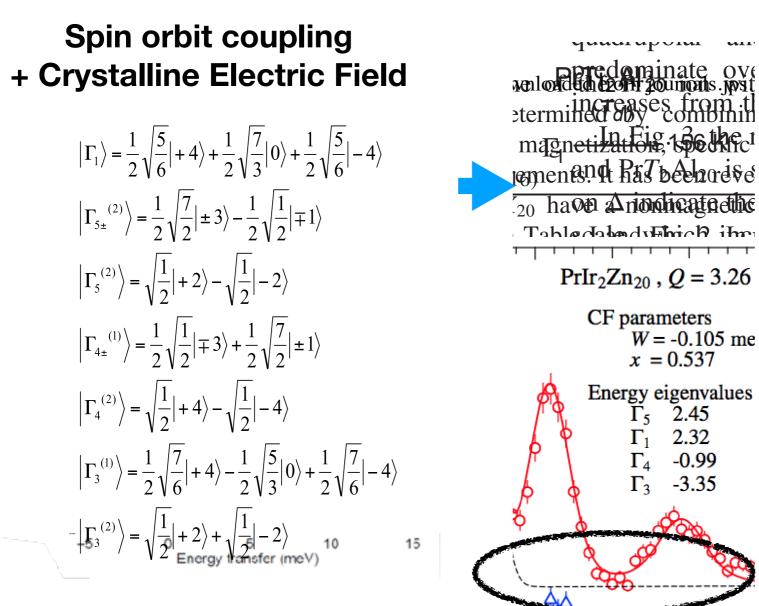
Multipolar order with Γ_3 doublets in Pr(TM)₂(Al,Zn)₂₀

2.45

2.32

-0.99 -3.35

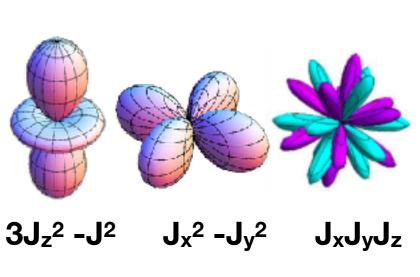
4f² non Kramers Γ₃ doublets **Pr**³⁺



pseudospin-1/2 with **F**₃ doublets describes

Pr³⁺

KAIS.



Quadrupole Octupole

TJ Sato et al PRB 86, 184419 (2012)

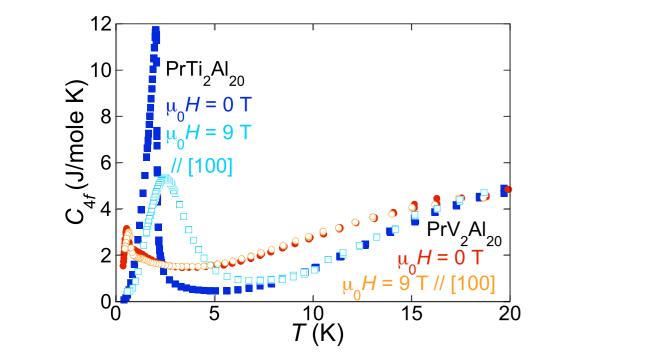
Multipolar order with Γ₃ doublets in Pr(TM)₂(Al,Zn)₂₀ Pr³⁺ 4f² non Kramers Γ₃ doublets

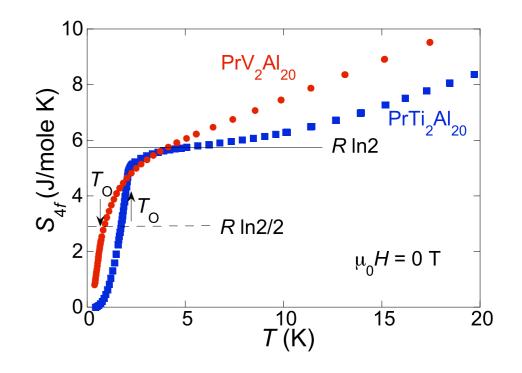
	$T_s(K)$	$T_{N/Q}(K)$	$T_c(K)$	SC type	structure $(T < T_s)$	$\rho(\mu\Omega cm)$ (at RT)	pressure
Al	-	-	1.2	I	fcc	2.82	$T_c \downarrow$
Zn	-	-	0.85	Ι	hexagonal	5.9	$T_c \uparrow$
PrTi ₂ Al ₂₀	-	2	0.2	II	Fd3m	?	$T_c \uparrow$
PrV ₂ Al ₂₀	-	0.9	-	-	Fd3m	?	?
LaV ₂ Al ₂₀	-	-	-	-	Fd3m	?	?
$\mathrm{Al}_{0.3}\mathrm{V}_{2}\mathrm{Al}_{20}$	-	-	1.49	?	Fd3m	80	?
$\mathrm{Ga}_{0.2}\mathrm{V}_{2}\mathrm{Al}_{20}$	-	-	1.66	?	Fd3m	100	?
YV ₂ Al ₂₀	-	-	0.69	?	Fd3m	60	?
PrRh ₂ Zn ₂₀	140	0.06	0.06	?	?	80	?
PrIr ₂ Zn ₂₀	-	0.2	0.05	?	Fd3m	90	$T_Q\uparrow$
LaIr ₂ Zn ₂₀	200	-	0.6	?	?	100	$T_s \uparrow, T_c \downarrow$
PrRu ₂ Zn ₂₀	138	none	-	-	?	90	$T_s \downarrow$
LaRu ₂ Zn ₂₀	150	-	0.2	?	?	100	$T_s \downarrow, T_c \downarrow$

Quadrupolar order at T_Q

Multipolar order with Γ_3 doublets in Pr(Ti, V)₂Al₂₀

A. Sakai and S. Nakatsuji, J. Phys. Soc. Jpn . 80 (2011) 063701





KAIS

- * Phase transitions at T = 2.0K (Ti), T=0.9K, 0.6K (V)
- No Zeeman gap even at H=9T

Nonmagnetic ground state

- * Crystalline Electric Field gap $\Delta \sim 60$ K (Ti), 40K (V)
- # Entropy S ~ R In 2

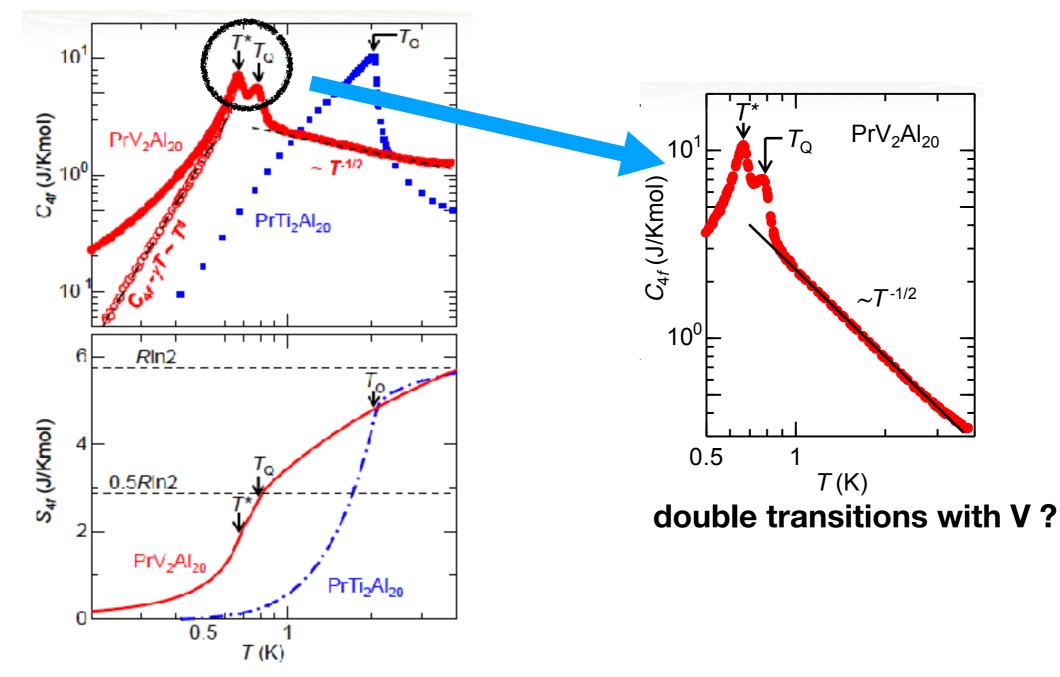
ground doublet Γ₃

KVI2.

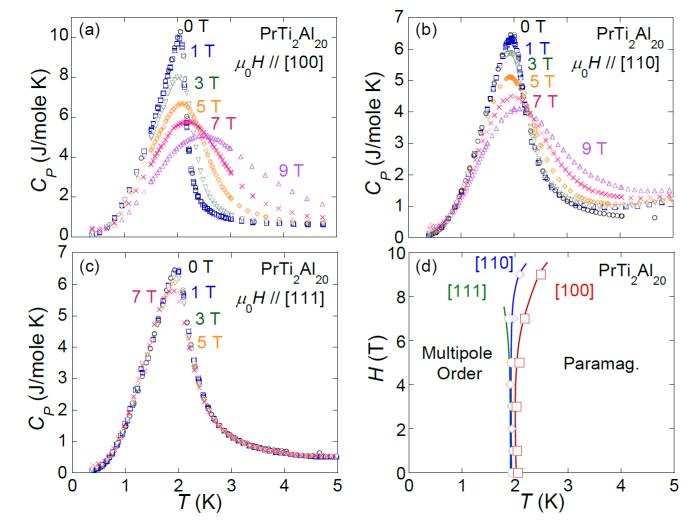
197

Multipolar order with Γ_3 doublets in Pr(Ti, V)₂Al₂₀

Single transition (Ti) vs double transition (V)



Multipolar order with Γ_3 doublets in $PrTi_2Al_{20}$ in fields



PrTi₂Al₂₀

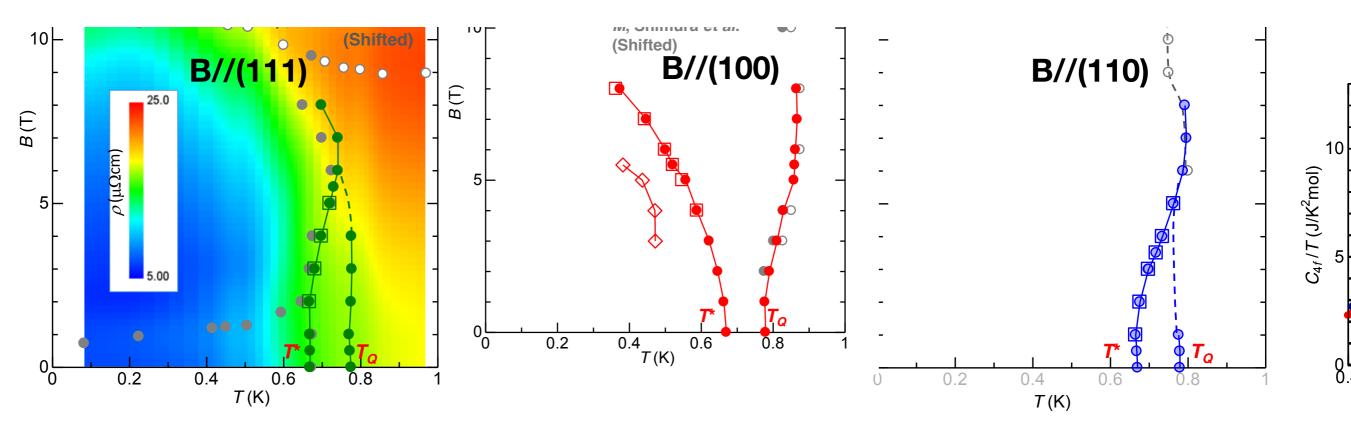
Ferro-quadrupolar order does not couple to B//(111)

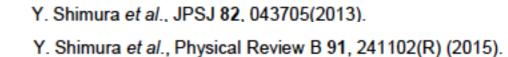
****** specific heat barely changes with field

- is enhanced Tc for B//(100) or (110) expected for ferro
- % insensitive up to 6T large crystal field splitting Δ (huff ~ B²/ Δ)

Multipolar order in fields

Multipolar order with Γ_3 doublets in PrV_2AI_{20} in fields





 $PrV_2A|_{20}$ Antiferro-quadrupolar order - insensitive with small fields

& double transition - 0.9K (high-T transition) and 0.65K (low-T transition)

Q) How can we understand these phenomena?

Modeling of pseudospin-1/2 – τ

Multipolar order with Γ_3 doublets in Pr^{3+}

Pr³⁺ ions form a diamond lattice

Kondo coupling with itinerant electrons -> multiple spin interactions

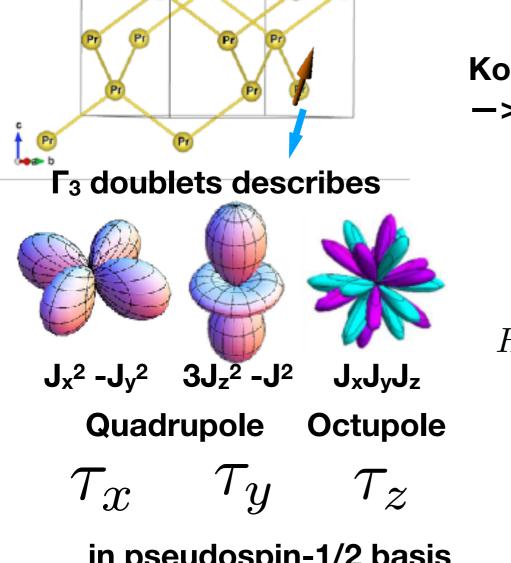
Quadrupolar moments - TR even

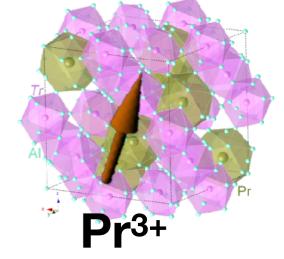
$$H = \frac{1}{2} \sum_{i,j} J_{ij} \left(\vec{\tau}_i^{\perp} \cdot \vec{\tau}_j^{\perp} + \lambda \tau_i^z \tau_j^z \right) - K \sum_{\langle \langle ij \rangle \langle km \rangle \rangle} \vec{\tau}_i^{\perp} \cdot \vec{\tau}_j^{\perp} \tau_k^z \tau_m^z$$

Octupolar moments -TR odd

in pseudospin-1/2 basis

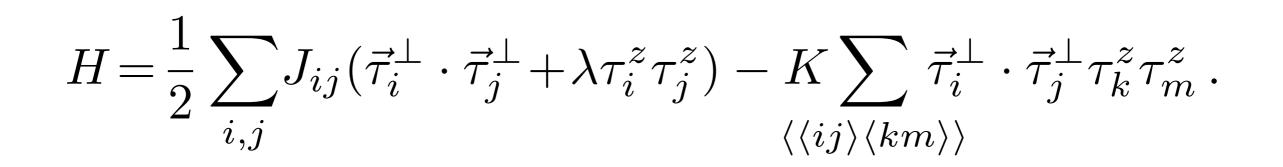
Multipolar order and finite T transitions





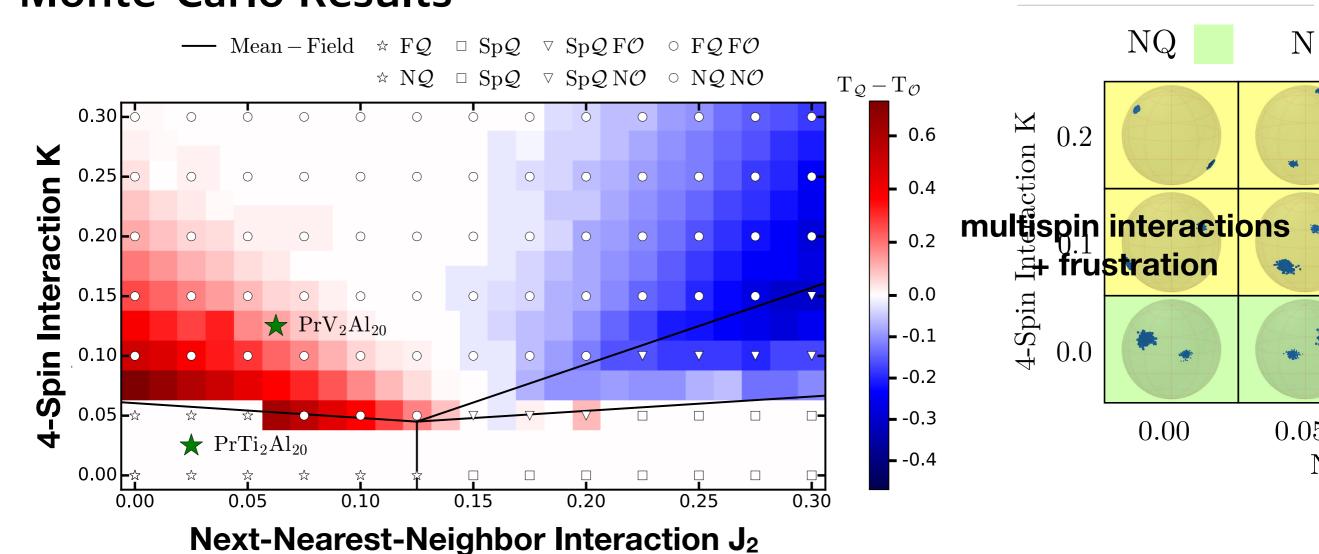
KVIZ

Multipolar order with Γ_3 doublets in Pr³⁺ Modeling of pseudospin-1/2 – τ



Q) Possible phases and finite T transitions ?

$H = \frac{1}{2} \sum_{i,j} J_{ij} (\vec{\tau}_i^{\perp} \cdot \vec{\tau}_j^{\perp} + \lambda \tau_i^z \tau_j^z) - K \sum_{\langle \langle ij \rangle \langle km \rangle \rangle} \vec{\tau}_i^{\perp} \cdot \vec{\tau}_j^{\perp} \tau_k^z \tau_m^z.$ Monte-Carlo Results



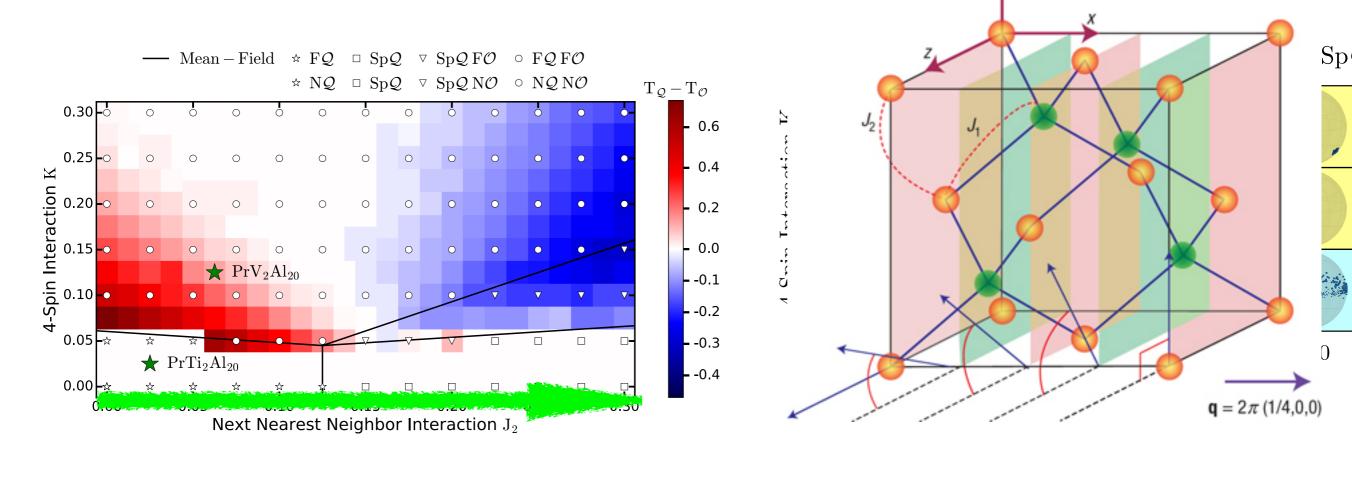
F. Freyer, J. Attig, SBL, A. Paramekanti, S. Trebst and Y.B Kim ArXiv 1709.06094 (2017)

Multipolar order and finite T transitions

Quadrupolar, Octupolar orderings

Quadrupolar, Octupolar orderings

Phase diagram based on MC



Quadrupolar order : (Anti-) Ferro

spiral order with finite-Q

KAIS

Quadrupolar, Octupolar orderings

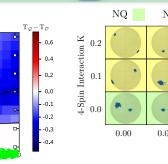
Quadrupolar order : (Anti-) Ferro

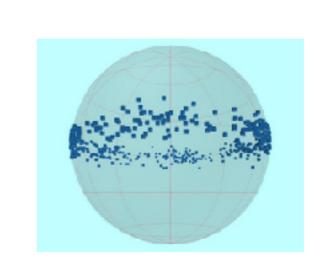
Common origin plots of $\boldsymbol{\tau}$

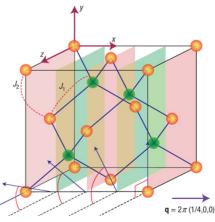
with increasing next-nearest neighbor J_2

 J_2





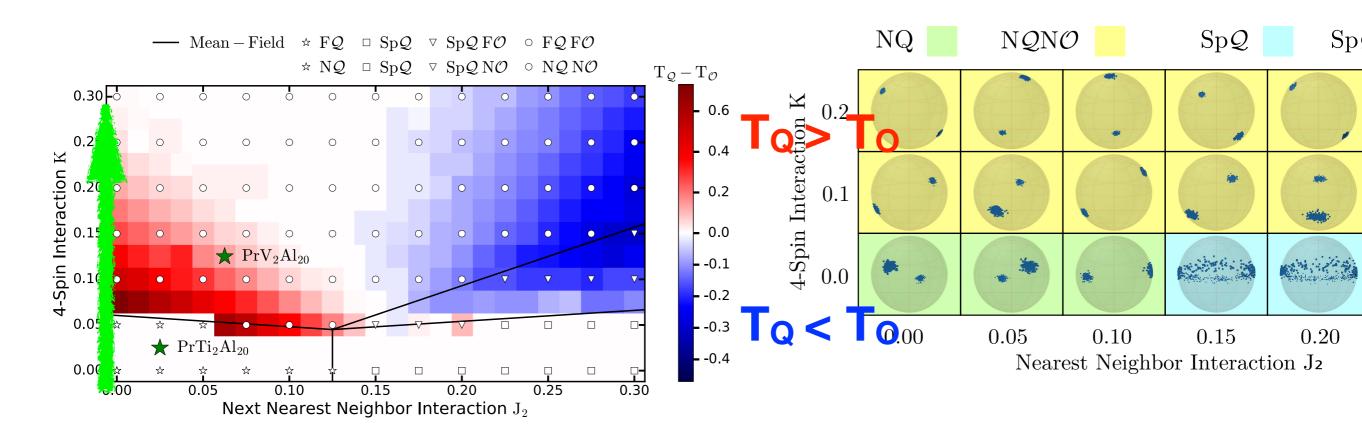




KAIST HAND

Quadrupolar, Octupolar orderings

Phase diagram based on MC



Pure (anti-) ferro quadrupolar order

quadrupolar + octupolar coexisting order with $T_Q > T_O$

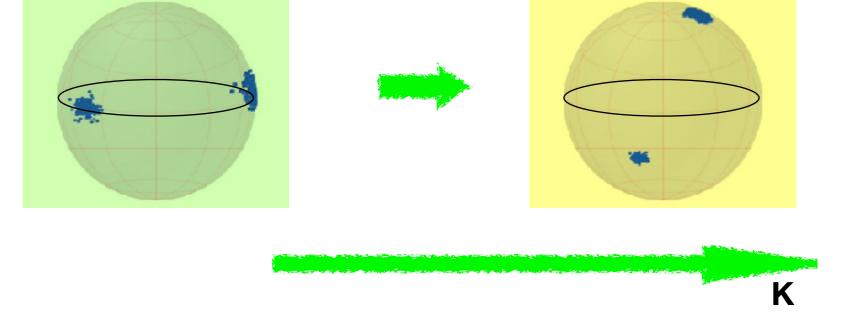
Next Nearest Neighbor Interaction J₂

quadrupolar + octupolar coexisting order

Common origin plots of T

pure quadrupolar order

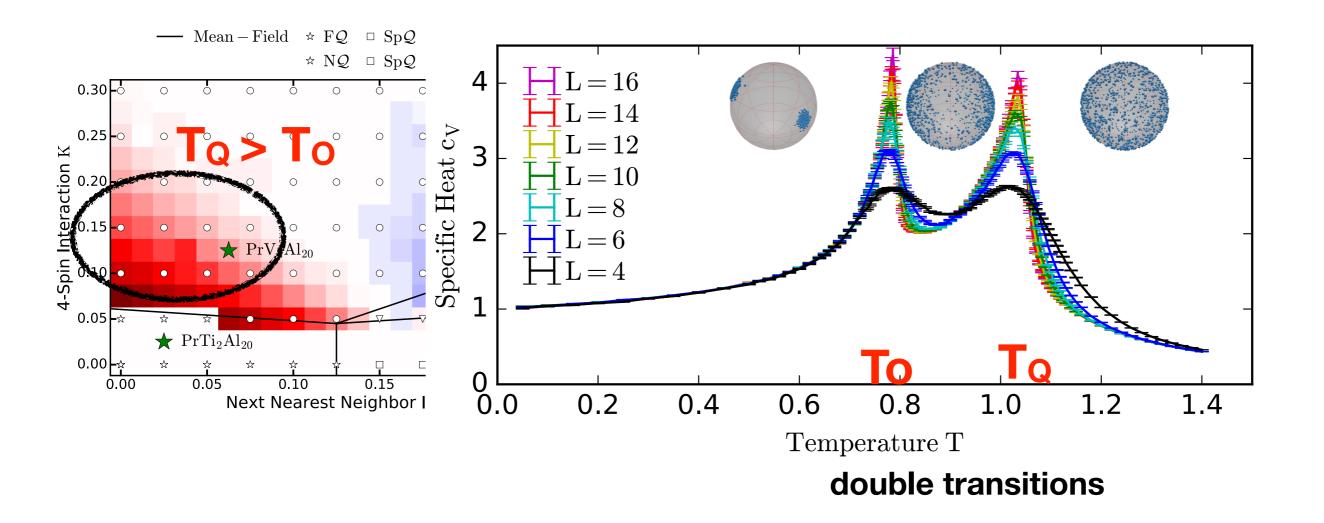
with increasing four spin interaction K



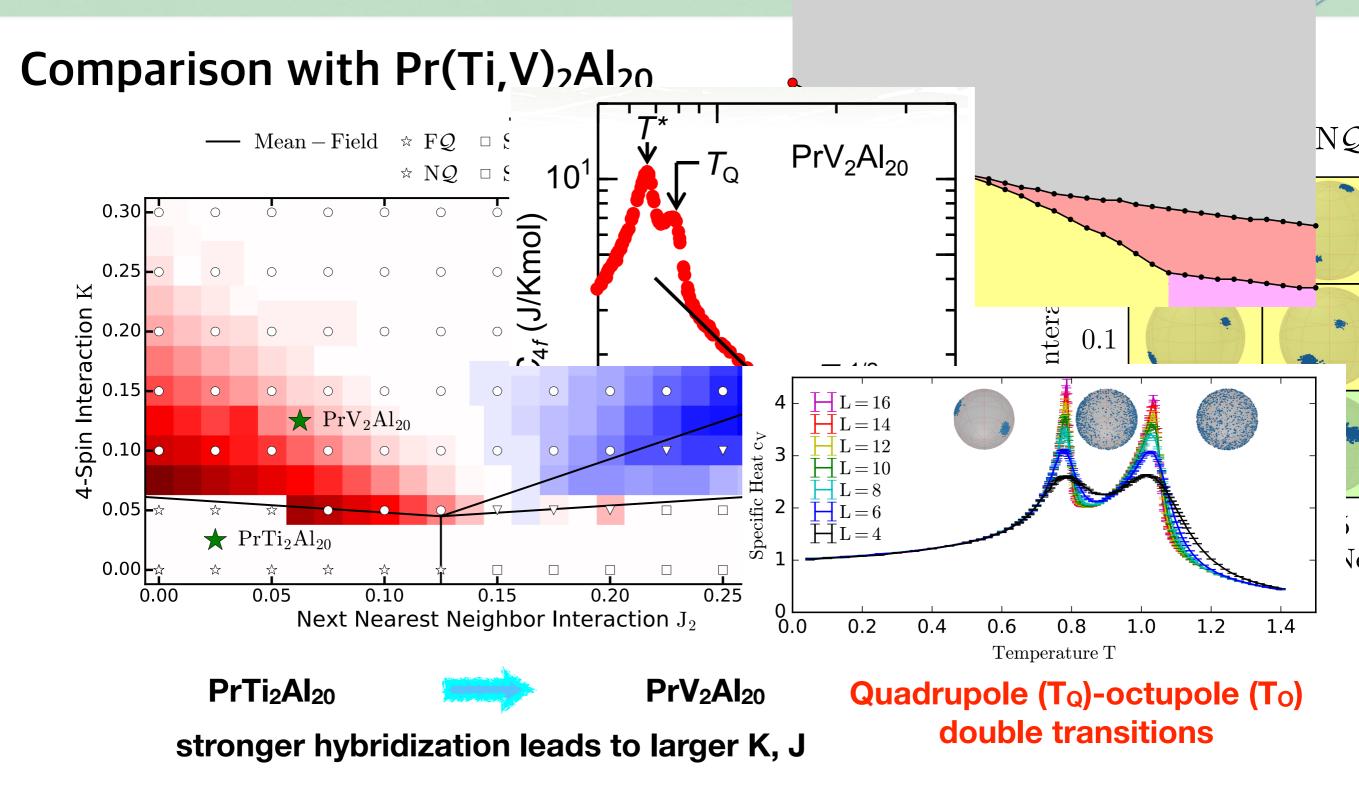
0.6 0.4 0.2 0.0 -0.1 -0.2 -0.3 -0.4

Quadrupolar, Octupola

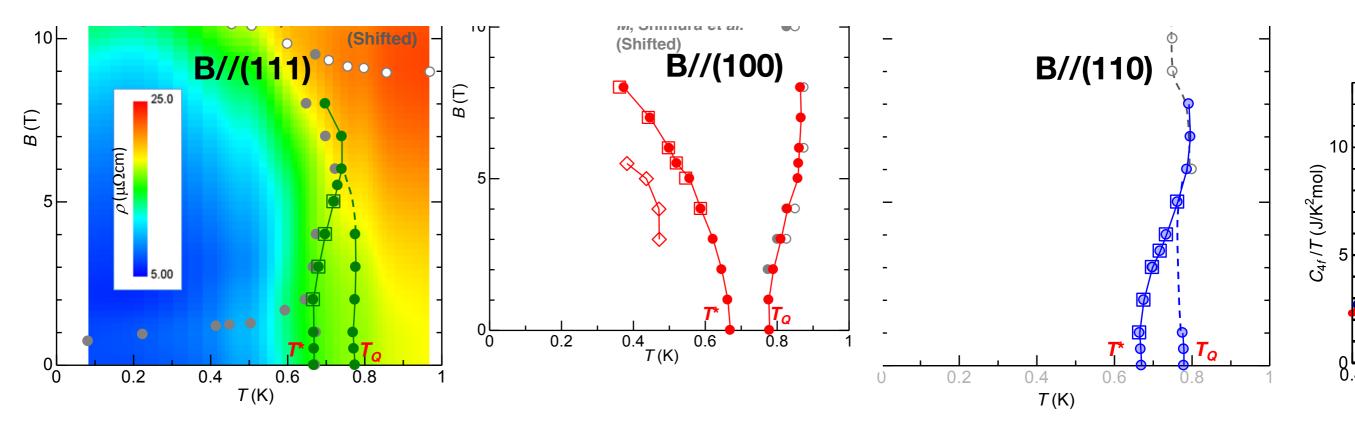
quadrupolar + octupolar coexi



Multipolar order and finite



PrV_2AI_{20}

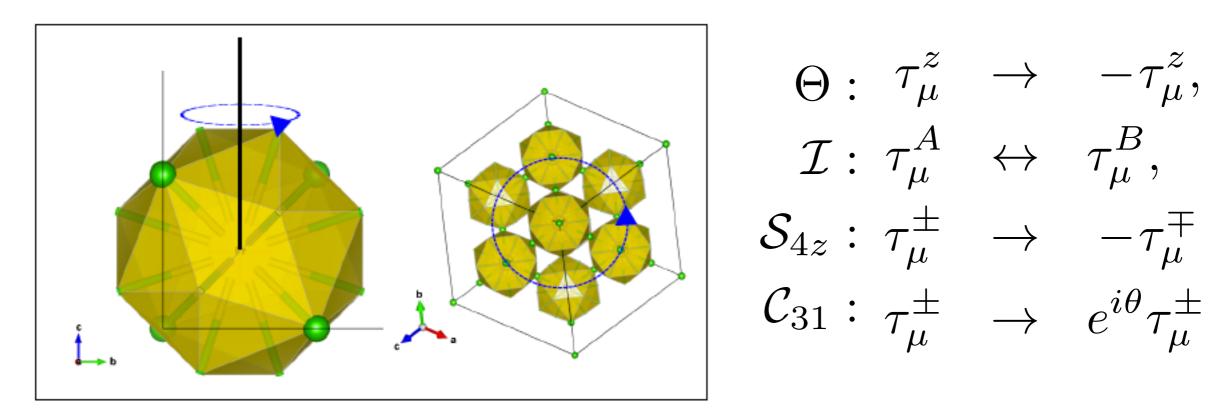


KAIS

197

Anisotropy in fields with double transitions

Local symmetry



symmetry analysis with antiferroquadrupolar order parameter φ and octupolar order parameter m

ferro- case

antiferro- case

KAIS

197

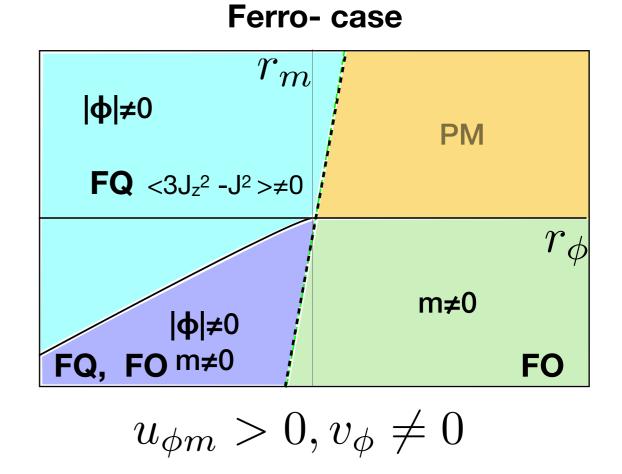
$$\begin{array}{ll} \phi \equiv \langle \tau_{\mu}^{+} \rangle & \tilde{\phi} \equiv \langle \tau_{A}^{+} \rangle - \langle \tau_{B}^{+} \rangle \\ m \equiv \langle \tau_{z}^{\mu} \rangle & \tilde{m} \equiv \langle \tau_{z}^{A} \rangle - \langle \tau_{z}^{B} \rangle \end{array}$$

Landau Theory Analysis – No field

$$\begin{split} \Theta &: \ m \to -m, \ \tilde{m} \to -\tilde{m} \\ \mathcal{I} &: \ \tilde{\phi} \to -\tilde{\phi}, \ \tilde{m} \to -\tilde{m}, \\ \mathcal{S}_{4z} &: \ \phi \to -\phi^*, \ m \to -m, \ \tilde{\phi} \to -\tilde{\phi}^*, \ \tilde{m} \to -\tilde{m} \\ \mathcal{C}_{31} &: \ \phi \to e^{i\theta}\phi, \ \tilde{\phi} \to e^{i\theta}\tilde{\phi} \end{split}$$

$$\begin{split} F_{\phi,m}^{(2)} &= r_{\phi} |\phi|^2 + r_m m^2, \\ F_{\phi,m}^{(4)} &= u_{\phi} |\phi|^4 + u_m m^4 + u_{\phi m} |\phi^2| m^2. \end{split}$$

ferroquadrupole $2v_{\phi}|\phi|^{3}\sin 3\theta_{\phi}$. anti-ferroquadrupole $-w_{\tilde{\phi}}|\tilde{\phi}|^{6}\cos 6\theta_{\tilde{\phi}}$



KAIS

197:

SBL, A. Paramekanti, F. Freyer, J. Attig, S. Trebst and Y.B Kim To appear in ArXiv soon

Landau Theory Analysis with fields

Focus on double transitions

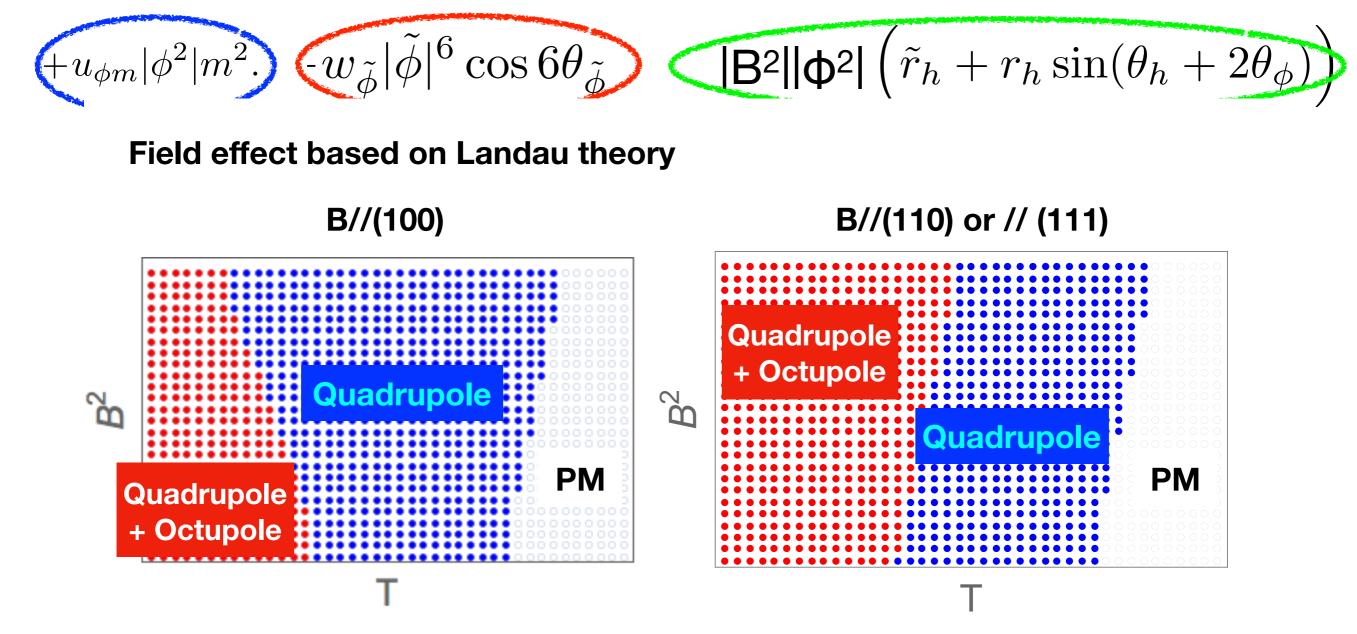
$$F_{\phi,m}^{(2)} = r_{\phi} |\phi|^{2} + r_{m} m^{2},$$

$$F_{\phi,m}^{(4)} = u_{\phi} |\phi|^{4} + u_{m} m^{4} + u_{\phi m} |\phi^{2}| m^{2}.$$
couple quadrupolar-octuplar moments
anti-ferroquadrupole $\psi_{\phi} |\tilde{\phi}|^{6} \cos 6\theta_{\tilde{\phi}}$
Phase locking of quadrupolar
order $\phi = \tau_{x} + i \tau_{y}$
competition
with magnetic field $\mathbf{E} [\mathbf{B}^{2}] [\phi^{2}] \left(\tilde{r}_{h} + r_{h} \sin(\theta_{h} + 2\theta_{\phi})\right)$

$$H_{\text{field}} = \gamma B^{2} (\frac{\sqrt{3}}{2} (\hat{B}_{x}^{2} - \hat{B}_{y}^{2}) \tau^{x} + \frac{1}{2} (3\hat{B}_{z}^{2} - 1) \tau^{y})$$

Quadrupole moments coupled to field B²

KΔI



KAIS

octupolar order transition temperature T₀ is very sensitive to B direction

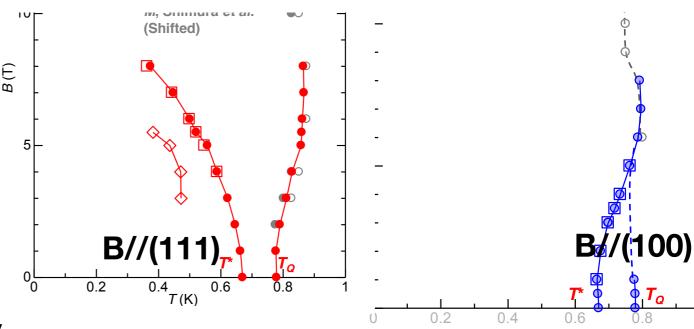
Landau Theory Analysis with fields

Comparison with PrV₂Al₂₀

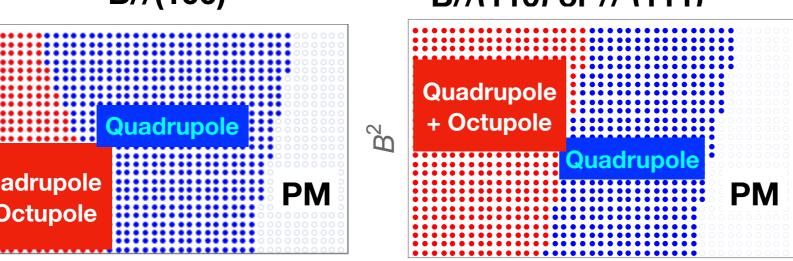
Field effect based on Landau theory

B//(100) B//(110) or // (111) Quadrupole Octupole \mathbf{B}^2 Quadrupole PM **PM** + Octupole

Quadrupolar and octupolar double transition in fields -> Field direction matters! anisotropic (100) vs (110) or (111)



T(K)

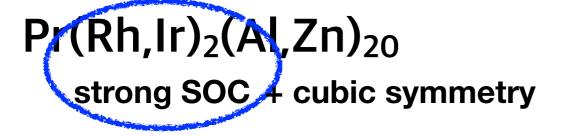


Superconductivity in Pr(TM)₂(Al,Zn)₂₀

	$T_s(K)$	$T_{N/Q}(K)$	$T_c(K)$	SC type	structure $(T < T_s)$	$\rho(\mu\Omega cm)$ (at RT)	pressure
Al	-	-	1.2	Ι	fcc	2.82	$T_c \downarrow$
Zn	-	-	0.85	Ι	hexagonal	5.9	$T_c \uparrow$
PrTi ₂ Al ₂₀	-	2	0.2	Π	Fd3m	?	$T_c \uparrow$
PrV ₂ Al ₂₀	-	0.9	-	-	Fd3m	?	?
LaV_2Al_{20}	-	-	-	-	Fd3m	?	?
$Al_{0.3}V_2Al_{20}\\$	-	-	1.49	?	Fd3m	80	?
$\mathrm{Ga}_{0.2}V_2\mathrm{Al}_{20}$	-	-	1.66	?	Fd3m	100	?
YV ₂ Al ₂₀	-	-	0.69	?	Fd3m	60	?
PrRh ₂ Zn ₂₀	140	0.06	0.06	?	?	80	?
PrIr ₂ Zn ₂₀	-	0.2	0.05	?	Fd3m	90	$T_Q\uparrow$
LaIr ₂ Zn ₂₀	200	-	0.6	?	?	100	$T_s\uparrow,T_c\downarrow$
$PrRu_2Zn_{20}$	138	none	-	-	?	90	$T_s \downarrow$
$\mathrm{LaRu}_{2}\mathrm{Zn}_{20}$	150	-	0.2	?	?	100	$T_s \downarrow, T_c \downarrow$

GB Sim, A. Mishra, G-Y Cho and SBL In preparation

Multipolar order and Superconductivity

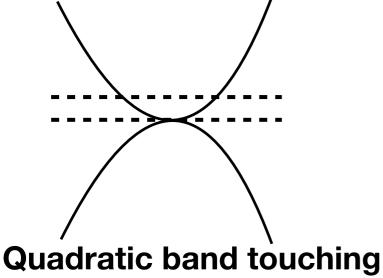


Quadratic band touching at k=0 point : Near Fermi level or not?

Luttinger Hamiltonian with J=3/2

 \mathcal{H}_0

Luttinger Hamiltonian with J=3/2



with cubic symmetry

$$d_{1} = \sqrt{3}k_{y}k_{z},$$

$$d_{2} = \sqrt{3}k_{x}k_{z},$$

$$d_{3} = \sqrt{3}k_{x}k_{y},$$

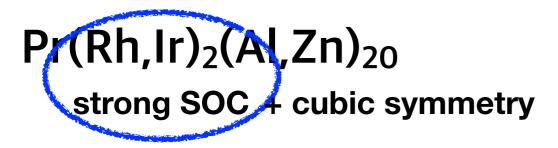
$$d_{4} = \frac{\sqrt{3}}{2}(k_{x}^{2} - k_{y}^{2}),$$

$$d_{5} = \frac{1}{2}(3k_{z}^{2} - \mathbf{k}^{2})$$

ΚΔΙΞ

$$(\mathbf{k}) = \psi_{\mathbf{k}}^{\dagger} \Big(c_0 \mathbf{k}^2 - \mu + \sum_{i=1}^{5} \underbrace{c_i d_i(\mathbf{k})}_{\mathbf{t}_{20} \& \mathbf{e}_0} \underbrace{\phi_{\mathbf{k}}}_{\mathbf{k}} \psi_{\mathbf{k}}$$

$$d_5 = -\frac{1}{2}(3k_z^2 - \mathbf{k})$$



Quadratic band touching at k=0 point + interaction

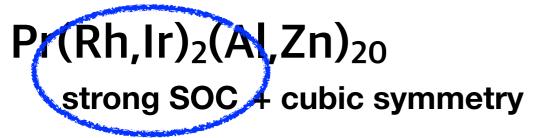
Fierz Identity

exactly decoupled into s and d wave pairing channels

$$\begin{split} \Delta_{i} &\equiv \left\langle \sum_{\mathbf{k}} \psi_{-\mathbf{k}}^{T} \gamma_{13} \gamma_{i} \psi_{\mathbf{k}} \right\rangle \\ \left(\frac{u}{4} + \frac{3v}{4} + \frac{w_{1}}{4} + \frac{w_{2}}{4} \right) (\psi^{\dagger} (\gamma_{13})^{*} \psi^{*} \Delta_{0} + \psi^{T} (\gamma_{13})^{T} \psi \Delta_{0}^{*}) \\ &+ \left(\frac{u}{4} - \frac{v}{4} - \frac{w_{1}}{4} - \frac{w_{2}}{4} \right) (\psi^{\dagger} i \gamma_{13} \gamma_{1} \psi^{*}) (\psi^{T} i \gamma_{13} \gamma_{1} \psi) \\ &+ \left(\frac{u}{4} - \frac{v}{4} - \frac{w_{1}}{4} - \frac{w_{2}}{4} \right) (\psi^{\dagger} \gamma_{13} \gamma_{2} \psi^{*}) (\psi^{T} \gamma_{13} \gamma_{2} \psi) \end{split}$$

KAIS

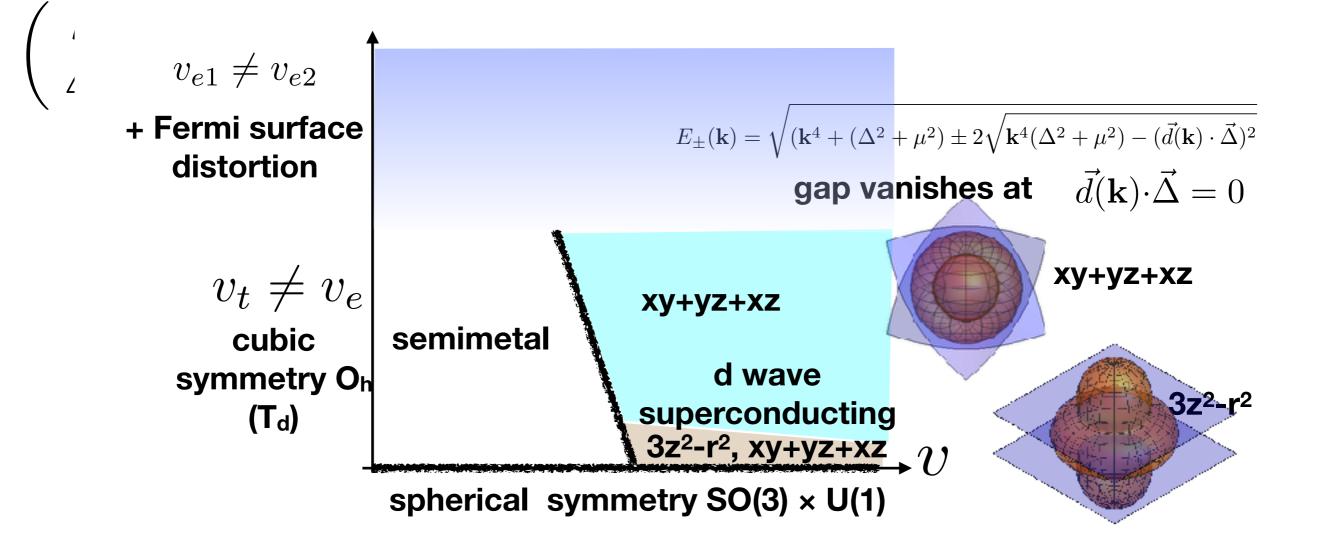
$$\begin{aligned} \mathsf{Pr}(\mathsf{Rh},\mathsf{Ir})_2(\mathsf{Al},\mathsf{Zn})_{20} \\ \text{strong SOC 4 cubic symmetry} \\ & \Delta_i \equiv \langle \sum_{\mathbf{k}} \psi_{-\mathbf{k}}^T \gamma_{13} \gamma_i \psi_{\mathbf{k}} \rangle \\ & \mathcal{H}_{int}(\mathbf{k}) = u(\psi^{\dagger}\psi) + \sum_{i=1}^5 v_i \left(\psi^{\dagger}\gamma_i\psi\right)^2 = \left(\frac{u}{4} + \frac{3v}{4} + \frac{w_1}{4} + \frac{w_2}{4}\right)(\psi^{\dagger}\gamma_{13}\gamma_i)(\psi^{T}\gamma_{13}\psi) \\ & + \left(\frac{u}{4} - \frac{v}{4} - \frac{w_1}{4} - \frac{w_2}{4}\right)(\psi^{\dagger}\gamma_{13}\gamma_1\psi^*)(\psi^{T}\gamma_{13}\gamma_1\psi) \\ & + \left(\frac{u}{4} - \frac{v}{4} - \frac{w_1}{4} - \frac{w_2}{4}\right)(\psi^{\dagger}\gamma_{13}\gamma_2\psi^*)(\psi^{T}\gamma_{13}\gamma_2\psi) \\ & + \left(\frac{u}{4} - \frac{w}{4} - \frac{w_1}{4} - \frac{w_2}{4}\right)(\psi^{\dagger}\gamma_{13}\gamma_2\psi^*)(\psi^{T}\gamma_{13}\gamma_2\psi) \\ & + \left(\frac{u}{4} - \frac{3v}{4} - \frac{w_1}{4} - \frac{w_2}{4}\right)(\psi^{\dagger}\gamma_{13}\gamma_5\psi^*)(\psi^{T}\gamma_{13}\gamma_5\psi) \\ & + \left(\frac{u}{4} - \frac{3v}{4} - \frac{w_1}{4} - \frac{w_2}{4}\right)(\psi^{\dagger}\gamma_{13}\gamma_5\psi^*)(\psi^{T}\gamma_{13}\gamma_2\psi) \\ & + \left(\frac{u}{4} - \frac{w}{4} - \frac{w_1}{4} - \frac{w_2}{4}\right)(\psi^{\dagger}(\gamma_{13}\gamma_1)^{\dagger}\psi^*)(\psi^{T}\gamma_{13}\gamma_2\psi) \\ & + \left(\frac{u}{4} - \frac{w}{4} - \frac{w_1}{4} - \frac{w_2}{4}\right)(\psi^{\dagger}(\gamma_{13}\gamma_1)^{\dagger}\psi^*)(\psi^{T}\gamma_{13}\gamma_2\psi) \\ & + \left(\frac{u}{4} - \frac{w}{4} - \frac{w_1}{4} - \frac{w_2}{4}\right)(\psi^{\dagger}(\gamma_{13}\gamma_1)^{\dagger}\psi^*)(\psi^{T}\gamma_{13}\gamma_2\psi) \\ & + \left(\frac{u}{4} - \frac{3w}{4} + \frac{w_1}{4} - \frac{w_2}{4}\right)(\psi^{\dagger}(\gamma_{13}\gamma_1)^{\dagger}\psi^*)(\psi^{T}\gamma_{13}\gamma_2\psi) \\ & + \left(\frac{u}{4} - \frac{3w}{4} - \frac{w_1}{4} - \frac{w_2}{4}\right)(\psi^{\dagger}(\gamma_{13}\gamma_1)^{\dagger}\psi^*)(\psi^{T}\gamma_{13}\gamma_2\psi) \\ & + \left(\frac{u}{4} - \frac{3w}{4} - \frac{w_1}{4} - \frac{w_2}{4}\right)(\psi^{\dagger}(\gamma_{13}\gamma_1)^{\dagger}\psi^*)(\psi^{T}\gamma_{13}\gamma_2\psi) \\ & + \left(\frac{u}{4} - \frac{3w}{4} - \frac{w_1}{4} - \frac{w_2}{4}\right)(\psi^{\dagger}(\gamma_{13}\gamma_1)^{\dagger}\psi^*)(\psi^{T}\gamma_{13}\gamma_2\psi) \\ & + \left(\frac{u}{4} - \frac{3w}{4} - \frac{w_1}{4} - \frac{w_2}{4}\right)(\psi^{\dagger}(\gamma_{13}\gamma_1)^{\dagger}\psi^*)(\psi^{T}\gamma_{13}\gamma_2\psi) \\ & + \left(\frac{u}{4} - \frac{3w}{4} - \frac{w_1}{4} - \frac{w_2}{4}\right)(\psi^{\dagger}(\gamma_{13}\gamma_1)^{\dagger}\psi^*)(\psi^{T}\gamma_{13}\gamma_2\psi) \\ & + \left(\frac{u}{4} - \frac{3w}{4} - \frac{w_1}{4} - \frac{w_2}{4}\right)(\psi^{\dagger}(\gamma_{13}\gamma_1)^{\dagger}\psi^*)(\psi^{T}\gamma_{13}\gamma_2\psi) \\ & + \left(\frac{u}{4} - \frac{3w}{4} - \frac{w_1}{4} - \frac{w_2}{4}\right)(\psi^{\dagger}(\gamma_{13}\gamma_1)^{\dagger}\psi^*)(\psi^{T}\gamma_{13}\gamma_2\psi) \\ & + \left(\frac{w}{4} - \frac{3w}{4} - \frac{w_1}{4} - \frac{w_2}{4}\right)(\psi^{\dagger}(\gamma_{13}\gamma_1)^{\dagger}\psi^*)(\psi^{T}\gamma_{13}\gamma_2\psi) \\ & + \left(\frac{w}{4} - \frac{3w}{4} - \frac{w}{4} - \frac{w}{4}\right)(\psi^{\dagger}(\gamma_{13}\gamma_1)^{\dagger}\psi^*)(\psi^{T}\gamma_{13}\gamma_2\psi) \\ & + \left(\frac{w}{4} - \frac{3w}{4} - \frac{w}{4} - \frac{w}{4}\right)(\psi^{\dagger}(\gamma_{13}\gamma_{1})^{\dagger}\psi^*)(\psi^{T}\gamma_{13}\gamma_2\psi) \\ & + \left($$

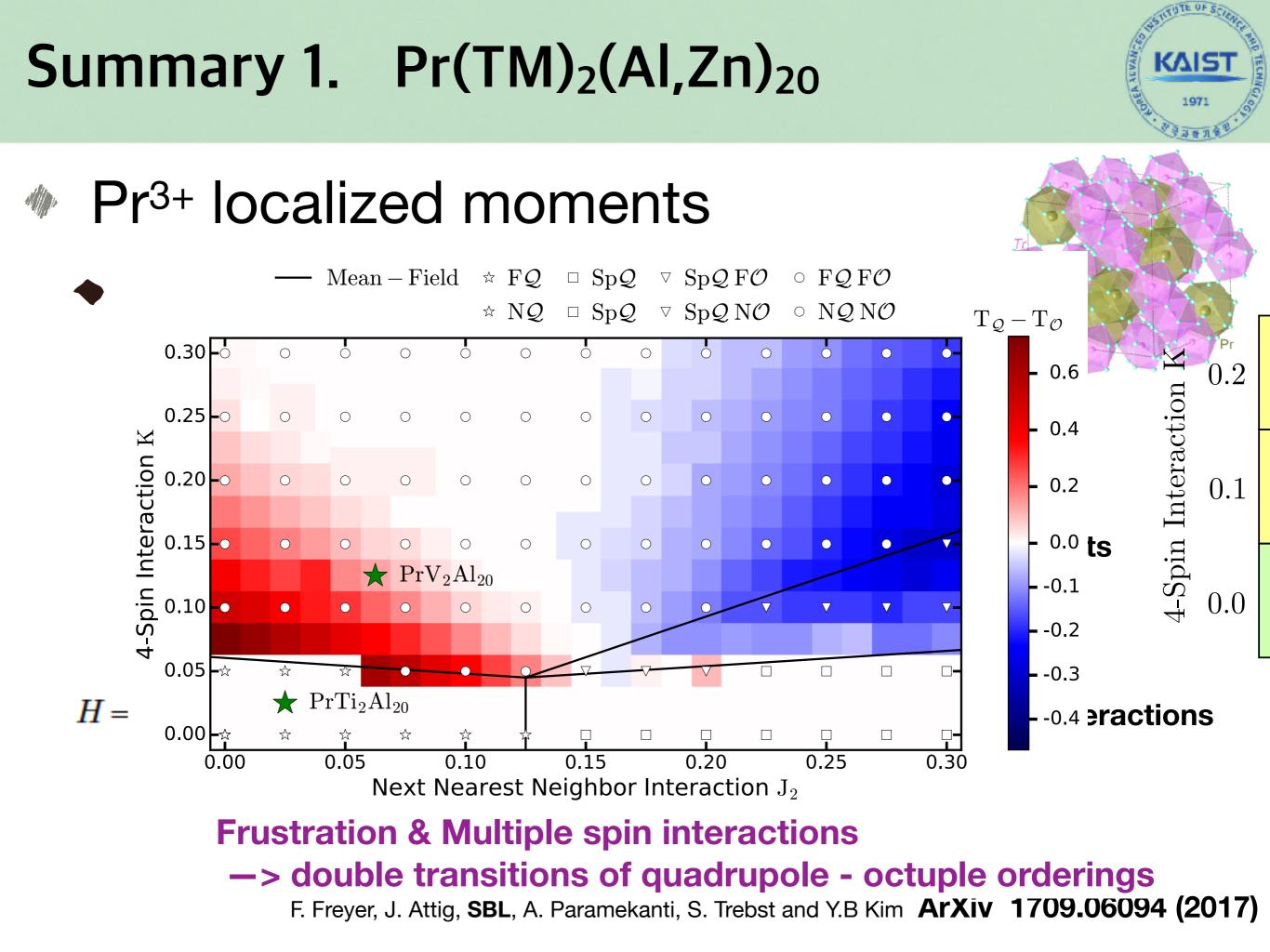


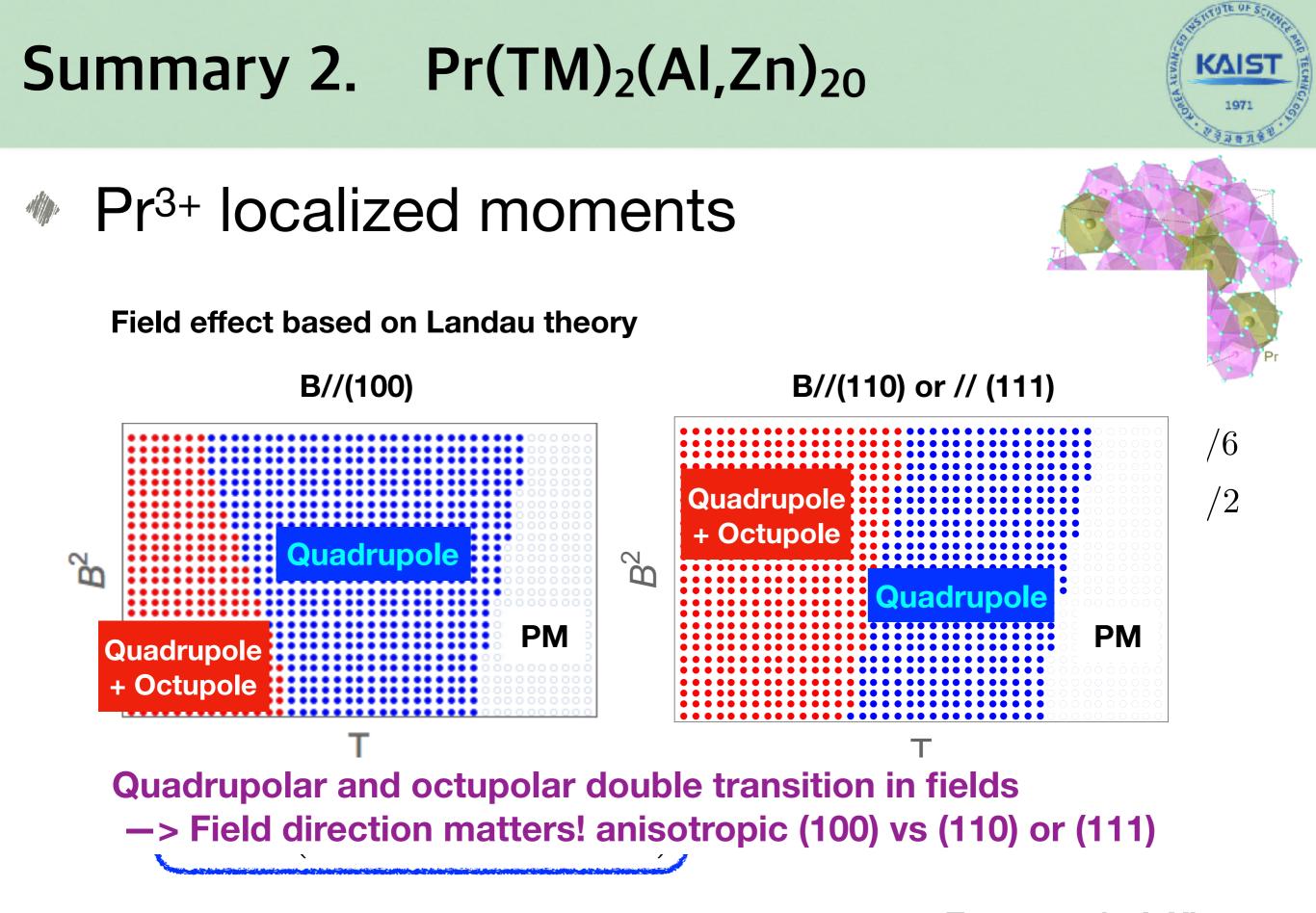
$$\Delta_i \equiv \langle \sum_{\mathbf{k}} \psi_{-\mathbf{k}}^T \gamma_{13} \gamma_i \psi_{\mathbf{k}} \rangle$$

KAIST

Quadrupolar fluctuation drives d-wave superconductivity

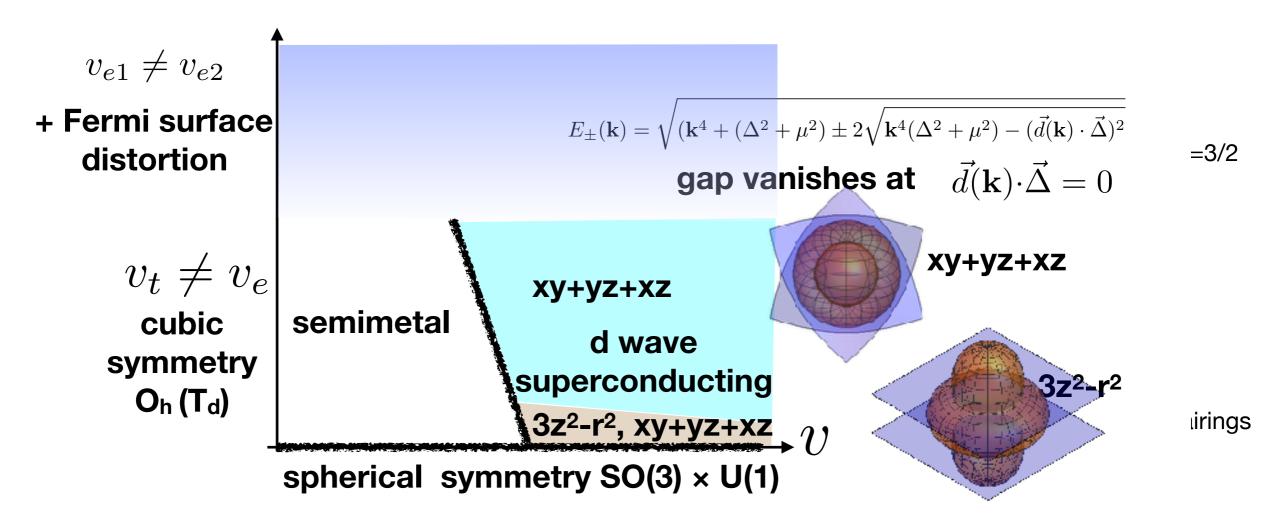






SBL, A. Paramekanti, F. Freyer, J. Attig, S. Trebst and Y.B Kim To appear in ArXiv soon

Summary 3. Pr(TM)₂(Al,Zn)₂₀



Quadrupolar fluctuation drives d-wave superconductivity

$$(u - 3v_t + v_{e1} - v_{e2}) \left(\Delta_4 \psi^{\dagger} \gamma_{13}^* \psi^* + h.c \right)$$

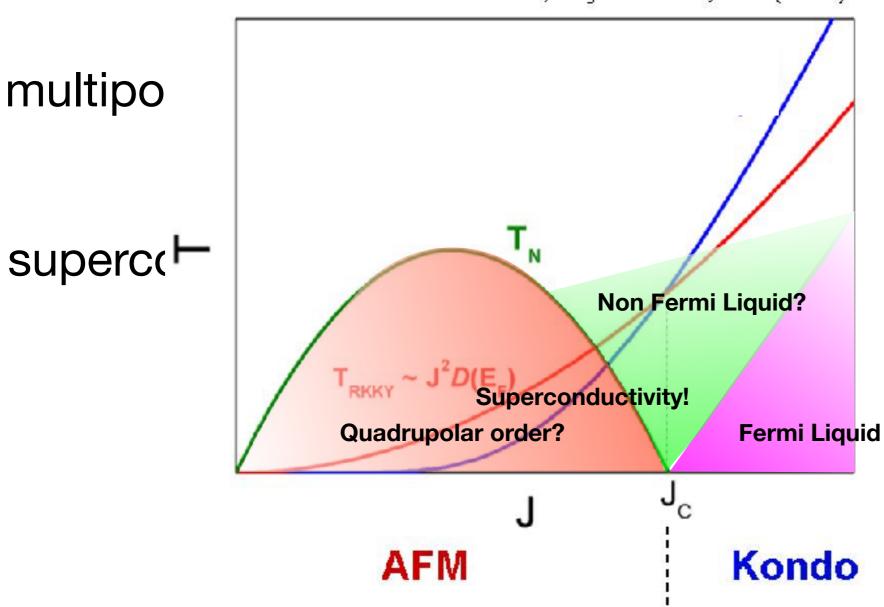
GB Sim, A. Mishra, G-Y Cho and SBL In preparation

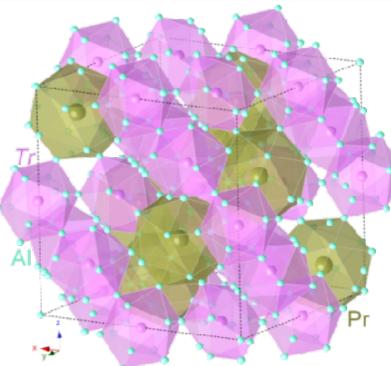
KAIS

Summary

Pr(TM)₂(Al,Zn)₂₀

S. Doniach, Physica B 91, 231 (1977)





Thank you!