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Introduction —  Kondo effect

Localized magnetic moment  
+ itinerant electrons

J. Kondo (1964) resistivity upturn in metal 

CeCu6

J

HK = J Si · c†i ασαβ ciβ

k,↓ k’,↓

↑ ↑J

k,↓ k’,↓

↑ ↑J

+

J

k’’,↑

↓

+ …

J2ρ∫dEk’’ (1-fEk’’)/(Ek-Ek’’) ~ J2ρ log (EF/T)  

Logarithmic correction 
in resistivity due to 
spin flip scattering

Z. Fisk et al PRB 34, 5959 (1986)
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Non Fermi Liquid?
Superconductivity?

Quadrupolar order? Fermi Liquid

Introduction —  Doniach Phase Diagram

Doniach phase diagram

Q) Search for new Doniach phase diagram with 
multipolar order ?



inelastic neutron scattering

 Multipolar order in Pr(TM)2(Al,Zn)20

Multipolar order with Γ3 doublets in Pr(TM)2(Al,Zn)20

Pr3+

Pr3+ 4f2 non Kramers Γ3 doublets

PrTM2(Al,Zn)20 experiments

five crystallographically different sites, namely, the Pr atom
at the 8a site, T at the 16d site, and X at the 16c, 48f, and 96g
sites. The Pr atoms form a diamond structure and the T atoms
form a pyrochlore structure. As shown in Fig. 1, the Pr atoms
are encapsulated in Frank-Kasper cages formed by 16 X
atoms.

Because of the large coordination number of the Pr atom,
the nearly spherical environment (the actual local point-group
symmetry is Td) provides ð4f Þ2 electrons in the Pr3+ ion with
relatively small CEF splitting and increased hybridization
between the 4f and conduction electrons. These aspects are
favorable for exploring exotic Kondo physics in terms of
higher-rank multipoles.

Compared with the one 4f electron in Ce3+, the two 4f
electrons in Pr3+ are more localized. Because of the even
number of 4f electrons, the CEF electronic states are free
from the Kramers theorem. Specifically, the Hund’s rule
J ¼ 4 (L ¼ 5, S¼ 1) ground-state multiplet in the ð4f Þ2
configuration is lifted by the CEF Hamiltonian for the cubic
symmetry,

HCEF ¼ W

!
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where Omn is the Stevens operator and y ¼ 0 for Td and Oh

symmetries. This expression is well known as the Lea–
Leask–Wolf (LLW) Hamiltonian for cubic symmetry.13,14)

The eigenstates of HCEF for Td are the !1 singlet, !3 doublet,
and !4 and !5 triplets. The expressions for their energies are
given by

E1 ¼ 4W½7x % 20ð1 % jxjÞ';
E3 ¼ 4W½x þ 16ð1 % jxjÞ';
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Among these irreducible representations, the !3 doublet has
pure electric quadrupoles of the !3-type: O20 (3z2 % r2) and
O22 (x2 % y2). The other internal degree of freedom in the !3

doublet is the magnetic octupole of the !1-type: Txyz (JxJyJz).
There are no active magnetic dipoles in the !3 doublet. In
contrast to the !3 non-Kramers doublet, the triplet states

accompany ordinary magnetic dipoles of the !4-type: Jx, Jy,
Jz, and other multipoles.

In PrRh2Zn20, a structural phase transition occurs at Ts,
which is much higher than the range of temperatures of
interest in this review, which lowers the local point-group
symmetry for the Pr sites to T, which is characterized by the
finite y parameter in Eq. (1). The compatibility relations
between Td and T are ð!1;!3;!4;!5Þ ! ð!1;!23;!

ð1Þ
4 ;!ð2Þ

4 Þ.
Note that this symmetry lowering does not essentially affect
the low-energy physics, as will be shown in later sections.
The details of the structural characteristics are discussed in
the Appendix.

The CEF level schemes of PrT2Zn20 (T = Ir, Rh) and
PrT2Al20 (T = V, Ti) are shown in Fig. 2, which are
confirmed by the combination of magnetization, specific
heat, ultrasound, and INS measurements as will be discussed
in Sect. 3. In all cases, the non-Kramers doublet !3 (!23) is
the CEF ground state, and the first excited state is the
magnetic triplet, either !4 or !5. The splitting between the !3

ground doublet and the excited triplet, denoted by Δ, should
be one of the important parameters of the system. If Δ were
sufficiently large as compared with other relevant energy
scales, such as the transition temperatures for the quadrupole
order and superconductivity, TQ and Tc, respectively (both
depend indirectly on the effective hybridization strength
between the 4f and conduction electrons), the quadrupolar
(and octupolar) degrees of freedom could dominate low-
energy physics. Otherwise, the interplay between the
quadrupolar and magnetic degrees of freedom would
predominate over pure quadrupolar physics. In Fig. 2, Δ
increases from the left panel to the right.

In Fig. 3, the relation between Δ and ðTQ; TcÞ for PrT2Zn20
and PrT2Al20 is shown. The linear dependences of TQ and Tc
on Δ indicate the existence of an overall characteristic energy
scale, which increases from PrIr2Zn20 to PrTi2Al20. We also
expect that the hybridization strength of the compounds will
increase in the same order. According to this consideration,
we would expect a very small TQ for the Cd systems with
much smaller Δ than that of the Zn systems as listed in
Table I.

The hybridization strength is also an important energy
scale of the system, which unfortunately cannot be extracted
directly from measurements of bulk properties. However, two
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Fig. 1. (Color online) Crystal structure of PrT2Zn20 (T = Ir, Rh,…) and
PrT2Al20 (T = V, Ti,…).12) (a) Unit cell with Z ¼ 8, (b) atomic cage
including Pr atom, and (c) another cage for X atom at the 16c site.
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Fig. 2. CEF level schemes of PrT2Zn20 (T = Ir, Rh) and PrT2Al20 (T = V,
Ti). The CEF ground states are non-Kramers doublets !3 (!23) for the point
group Td (T ). The first excited states are triplets.
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five crystallographically different sites, namely, the Pr atom
at the 8a site, T at the 16d site, and X at the 16c, 48f, and 96g
sites. The Pr atoms form a diamond structure and the T atoms
form a pyrochlore structure. As shown in Fig. 1, the Pr atoms
are encapsulated in Frank-Kasper cages formed by 16 X
atoms.

Because of the large coordination number of the Pr atom,
the nearly spherical environment (the actual local point-group
symmetry is Td) provides ð4f Þ2 electrons in the Pr3+ ion with
relatively small CEF splitting and increased hybridization
between the 4f and conduction electrons. These aspects are
favorable for exploring exotic Kondo physics in terms of
higher-rank multipoles.

Compared with the one 4f electron in Ce3+, the two 4f
electrons in Pr3+ are more localized. Because of the even
number of 4f electrons, the CEF electronic states are free
from the Kramers theorem. Specifically, the Hund’s rule
J ¼ 4 (L ¼ 5, S¼ 1) ground-state multiplet in the ð4f Þ2
configuration is lifted by the CEF Hamiltonian for the cubic
symmetry,

HCEF ¼ W
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where Omn is the Stevens operator and y ¼ 0 for Td and Oh

symmetries. This expression is well known as the Lea–
Leask–Wolf (LLW) Hamiltonian for cubic symmetry.13,14)

The eigenstates of HCEF for Td are the !1 singlet, !3 doublet,
and !4 and !5 triplets. The expressions for their energies are
given by

E1 ¼ 4W½7x % 20ð1 % jxjÞ';
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Among these irreducible representations, the !3 doublet has
pure electric quadrupoles of the !3-type: O20 (3z2 % r2) and
O22 (x2 % y2). The other internal degree of freedom in the !3

doublet is the magnetic octupole of the !1-type: Txyz (JxJyJz).
There are no active magnetic dipoles in the !3 doublet. In
contrast to the !3 non-Kramers doublet, the triplet states

accompany ordinary magnetic dipoles of the !4-type: Jx, Jy,
Jz, and other multipoles.

In PrRh2Zn20, a structural phase transition occurs at Ts,
which is much higher than the range of temperatures of
interest in this review, which lowers the local point-group
symmetry for the Pr sites to T, which is characterized by the
finite y parameter in Eq. (1). The compatibility relations
between Td and T are ð!1;!3;!4;!5Þ ! ð!1;!23;!
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Note that this symmetry lowering does not essentially affect
the low-energy physics, as will be shown in later sections.
The details of the structural characteristics are discussed in
the Appendix.

The CEF level schemes of PrT2Zn20 (T = Ir, Rh) and
PrT2Al20 (T = V, Ti) are shown in Fig. 2, which are
confirmed by the combination of magnetization, specific
heat, ultrasound, and INS measurements as will be discussed
in Sect. 3. In all cases, the non-Kramers doublet !3 (!23) is
the CEF ground state, and the first excited state is the
magnetic triplet, either !4 or !5. The splitting between the !3

ground doublet and the excited triplet, denoted by Δ, should
be one of the important parameters of the system. If Δ were
sufficiently large as compared with other relevant energy
scales, such as the transition temperatures for the quadrupole
order and superconductivity, TQ and Tc, respectively (both
depend indirectly on the effective hybridization strength
between the 4f and conduction electrons), the quadrupolar
(and octupolar) degrees of freedom could dominate low-
energy physics. Otherwise, the interplay between the
quadrupolar and magnetic degrees of freedom would
predominate over pure quadrupolar physics. In Fig. 2, Δ
increases from the left panel to the right.

In Fig. 3, the relation between Δ and ðTQ; TcÞ for PrT2Zn20
and PrT2Al20 is shown. The linear dependences of TQ and Tc
on Δ indicate the existence of an overall characteristic energy
scale, which increases from PrIr2Zn20 to PrTi2Al20. We also
expect that the hybridization strength of the compounds will
increase in the same order. According to this consideration,
we would expect a very small TQ for the Cd systems with
much smaller Δ than that of the Zn systems as listed in
Table I.

The hybridization strength is also an important energy
scale of the system, which unfortunately cannot be extracted
directly from measurements of bulk properties. However, two
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Fig. 1. (Color online) Crystal structure of PrT2Zn20 (T = Ir, Rh,…) and
PrT2Al20 (T = V, Ti,…).12) (a) Unit cell with Z ¼ 8, (b) atomic cage
including Pr atom, and (c) another cage for X atom at the 16c site.
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Fig. 2. CEF level schemes of PrT2Zn20 (T = Ir, Rh) and PrT2Al20 (T = V,
Ti). The CEF ground states are non-Kramers doublets !3 (!23) for the point
group Td (T ). The first excited states are triplets.
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crystal field splitting

ideal playground for exploring exotic phenomena originating
from the quadrupolar degrees of freedom. For comparison,
the properties of the related Pr-based cubic systems with the
non-Kramers !3 doublet CEF ground state are summarized in
Table I.

3. CEF Level Scheme

The CEF level scheme of the Pr3+ ion with the ð4f Þ2
configuration can be determined by combining magnetic
susceptibility, isothermal magnetization, specific heat, elastic
constant, and INS measurements. It has been revealed that the
Pr3+ ions in most PrT2X20 have a nonmagnetic !3 doublet
ground state as shown in Table I and Fig. 2. In this section,
we describe how the CEF levels were experimentally
determined.

3.1 PrT2Zn20 (T = Ir, Rh, and Ru)
First, we deal with the family of PrT2Zn20 (T = Ir, Rh, and

Ru). Figure 4 shows the temperature dependence of the
inverse magnetic susceptibility 1=!ðTÞ60) measured in a
magnetic field of B ¼ 0:1T applied along the [100] direction.
The inset shows the temperature dependence of χ. The Curie–
Weiss behavior of ! ¼ NA"2eff=3kBðT þ #pÞ in a wide range,
30 < T < 350K, indicates a rather weak CEF effect on the
Pr ions, where NA and kB are Avogadro’s number and
Boltzmann’s constant, respectively. The effective magnetic
moments "eff and paramagnetic Curie temperatures #p are
listed in Table II. For all these compounds, "eff is close to
that of the free Pr3+ ion, 3.58 in the unit of the Bohr
magneton, "B. The positive values of #p indicate that the
magnetic intersite interactions between Pr3+ ions are
antiferromagnetic (AFM). Note that the magnitude of #p is
small as compared with Δ but it is larger than TQ. Below
10K, the increase in χ for all these compounds tends to
saturate, indicating the Van Vleck susceptibility with non-
magnetic CEF ground states of either the !1 singlet or !3

doublet.
The temperature dependence of the magnetic part of the

specific heat CmagðTÞ is shown in Fig. 5.60) The phonon
contribution was subtracted by using the specific heat of the
La analogues. Cmag for all these compounds shows a peak at

around 14K. The solid line shows a Schottky peak calculated
using the two-level model of a doublet ground state and an
excited triplet state at " ¼ 35K.

For T = Ir, Rh, the doublet–triplet Schottky model very
closely reproduces the observed specific heat. Below about
5K, the observed Cmag is slightly larger than the fitting
curve (the solid line), indicating the gradual release of the
entropy of the !3 doublet, presumably due to the quadrupolar
Kondo effect. The jump in specific heat at TQ ¼ 0:11K
(0.06K) for T = Ir (T = Rh) is a manifestation of the
antiferro-quadrupole (AFQ) order, as will be discussed in
the next section.16,59)

For T = Ru, there is a structural phase transition at Ts ¼
138K, as will be discussed in the Appendix, which might
lower the local symmetry of the Pr site.15) When the cubic
symmetry of the Pr site is lost, the !3 doublet must be lifted.
Indeed, a shoulder-like anomaly exists at around 3K next to
the Schottky peak at around 12K. This anomaly may result
from the splitting of the doublet by symmetry lowering.
Actually, the specific-heat anomaly is well fitted by using a
singlet–singlet separation of 10K, as shown by the dashed
line in Fig. 5. The experimental data below 2K are somewhat
larger than the calculated values, which might be due to
the distribution of the magnitude of the energy splitting.
Symmetry lowering was also suggested by ultrasonic
measurements, which detected hardening of the transverse
elastic modulus, C!3

¼ ðC11 % C12Þ=2, with the !3 symme-
try.61) From these observations, the T = Ru system is
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Fig. 4. (Color online) Temperature dependence of the inverse magnetic
susceptibility, 1=!ðTÞ, of PrT2Zn20 (T = Ru, Rh, and Ir).60) The inset shows
the magnetic susceptibility !ðTÞ.

Table II. Curie–Weiss parameters, !ðTÞ ¼ NA"2eff=3kBðT þ #pÞ, and the
CEF parameters in the LLW Hamiltonian, Eq. (1). The CEF parameters were
determined by INS measurements except for PrV2Al20, whose values are
given by magnetization measurements.58)

Compounds
"eff

("B=f.u.)
#p
(K)

W
(K)

x y Refs.

PrIr2Zn20 3.49(2) 2.3 −1.22 0.537 0 15, 16, 18
PrRh2Zn20 3.54(2) 4.8 −1.06 0.417 0.0575 18, 59
PrRu2Zn20 3.50(2) 5.6 −0.63 0.02 0 15, 18
PrV2Al20 3.57 55 −2.55 −0.6 0 21, 58
PrTi2Al20 3.43 40 −1.53 0.25 0 21, 23
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Fig. 5. (Color online) Temperature dependence of the magnetic specific
heat of PrT2Zn20 (T = Ru, Rh, and Ir).60) The solid and dashed lines represent
Schottky peaks calculated using the doublet–triplet and singlet–singlet
models, respectively.
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characterized by a split singlet ground state having no
degrees of freedom. In contrast, for T = Rh, the cubic
symmetry seems to be maintained (but is reduced to T
symmetry), although a structural transition occurs at around
170–470K. It shows very similar low-temperature behaviors
to the T = Ir system.

The CEF level schemes for T = Ir, Rh, and Ru have been
studied by INS experiments.18) Figure 6 shows the scattering
function SðQ;EÞ of PrIr2Zn20, which was derived from the
INS intensity measured at a scattering vector of jQj ¼ 3:26
Å−1. Clear excitation peaks were observed at energies of
! ¼ 2:4 and 5.7meV, whose intensities change with temper-
ature. Analyzing the observed excitation peaks on the basis
of the cubic TdCEF model, we obtain the CEF parameters in
the LLW Hamiltonian, Eq. (1), as shown in Table II. The
derived CEF level scheme is !3 (0meV)–!4 (2.36meV)–!1

(5.67meV)–!5 (5.80meV). The low-lying levels are con-
sistent with those expected from the specific heat and the
magnetization data.16,60)

For PrRh2Zn20, two excitation peaks from the ground state
were also observed at ! ¼ 2:7 and 5.8meV at 4.9K. The
structure of the spectra is very similar to that of PrIr2Zn20,
with excitations from the !3 doublet to the !4 and !5 triplets.
However, the quantitative analysis of the spectra must take
account of the symmetry lowering from Td to T due to the
structural transition.59) In the case of the T symmetry, there is
an additional term in the LLW Hamiltonian for Td symmetry
as shown in Eq. (1). By fitting the INS spectra, the CEF
parameters were determined as shown in Table II, which
correspond to the CEF level scheme of !23 (0meV)–!ð1Þ

4

(2.67meV)–!ð2Þ
4 (5.78meV)–!1 (6.77meV). These analyses

strongly support the occurrence of symmetry lowering to T,
for which structural refinement is highly anticipated.

In contrast, only one broad peak was observed at around
4meV for PrRu2Zn20 at a temperature much lower than
Ts ¼ 138K.15) Neglecting the splitting of the !3 doublet due
to the symmetry lowering, an analysis of the INS spectra led
to the CEF level scheme, i.e., the !3 ground state with the
first excited !5 triplet at 3.16meV. However, this CEF level
scheme cannot reproduce the specific heat and magnetic
susceptibility at all. This indicates that the !3 splitting indeed
occurs as a result of the structural transition, which is also
consistent with the absence of quadrupole transitions down to
0.04K.

3.2 PrT2Al20 (T = V, Ti, and Nb)
The !3 doublet ground state has been proposed for

PrV2Al20 and PrTi2Al20 owing to the presence of the
Schottky anomaly in the specific heat at around 30K as
shown in Fig. 7.21) It is also supported by elastic softening in
the elastic moduli CL ¼ ðC11 þ 2C12 þ 4C44Þ=3 and CT ¼
ðC11 % C12 þ C44Þ=3 of PrTi2Al20, i.e., the softening corre-
sponding to the fluctuations of the quadrupoles, O20 and O22,
indicating the orbital degeneracy of the ground state.62) In
PrV2Al20, although the elastic moduli have not yet been
reported, the CEF ground state should be the !3 doublet
because of the appearance of the AFQ order at a lower
temperature as will be shown in the following section.

In the INS experiments on PrTi2Al20, magnetic excitations
between the !3 ground state and excited states were
observed.23) The analysis of the spectra gives the CEF
parameters shown in Table II and the corresponding CEF
level scheme is !3 (0meV)–!4 (5.61meV)–!5 (9.30meV)–
!1 (13.47meV).

In the isostructural PrNb2Al20, the magnetic susceptibil-
ity exhibits Curie–Weiss behavior between 50 and 300K,
indicating the trivalent state of the Pr ion.25) So far, no
anomaly suggesting long-range orders has been observed
at low temperatures down to 1.8K. Although there is no
evidence for the !3 doublet ground state, the Van Vleck
behavior of !ðTÞ and the logarithmic increase in C=T for
T < 3K strongly indicate the existence of nonmagnetic
degeneracy in the ground state.

Fig. 6. (Color online) INS spectra of PrIr2Zn20 at T ¼ 3:5, 30, 50, and
70K.18) Magnetic excitations from the !3 doublet to the excited !4 and !5

triplets were observed at 30 (2.4) and 65 (5.7)K (meV), respectively.

Fig. 7. (Color online) Temperature dependence of 4f contribution to the
specific heat, C4f ðTÞ, in PrV2Al20 (circles) and PrTi2Al20 (squares) under
B ¼ 0 (solid) and 9T (open) applied along the [100] direction.21)
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purity sample, which includes [100] and [110] crystalline
domains. Indeed, the high-purity sample shows no splitting,
as will be shown later in Fig. 24(a), and the AFQ order
collapses at around 5T for B k ½100". The critical fields of
the AFQ order for B k ½110" and [111] are much higher than
that for [100], which will be discussed in the next subsection,
as PrRh2Zn20 exhibits similar anisotropy.16,17) Note that the
increase in TQ in magnetic fields is similar to that of the AFQ
order in PrPb3,32,33,50) which can be understood by taking
account of the gain in the interaction energies of the field-
induced multipoles68) and=or the suppression of multipolar
fluctuations due to magnetic fields.69,70) The properties of
the quadrupole order including the critical magnetic-field
strengths for the three principal axes are summarized in
Table III.

Firm evidence for the AFQ order has been obtained by
ultrasonic measurements.17) For example, hardening of the
!3-type elastic modulus, C!3 , at the onset of TQ indicates
quenching of the quadrupole moment due to ordering. Here,
the elastic modulus C!3

ðTÞ is analyzed by the following
expression:

C!3
ðTÞ ¼ & NPrg

2
!3

!quadðTÞ
1 & g0!3

!quadðTÞ
þ C0ðTÞ; ð3Þ

where NPr ¼ 2:751 ( 1027m−3 is the density of Pr ions at
room temperature, C0ðTÞ is the background stiffness, and
!quadðTÞ is the irreducible quadrupolar susceptibility. !quadðTÞ
is evaluated by the effective Hamiltonian,

Heff ¼ HCEF & g!3
O!3

"!3
& g0!3

O!3
hO!3

i; ð4Þ

where the second term is the quadrupole-strain coupling in
the !3 mode and the third term represents the intersite
interaction between the quadrupoles adopted by the molecu-
lar-field approximation with a thermal average of hO!3i. The
analysis of the elastic constant indicates the AFQ interaction
of g0!3

¼ & 0:13K as shown in Table III. It is useful to
apply Levy’s criterion, D ) jg0!3

C0=NPrg2!3
j, to evaluate

the importance of the intersite quadrupolar interaction as
compared with the cooperative Jahn-Teller effect. The
obtained value of D ¼ 181 * 1 together with the negative
value of the quadrupolar interaction g0!3

is a clear indication
of the AFQ order.

Very recently, the AFQ phase was investigated by neutron
diffraction measurements of single-crystalline samples. Field-
induced magnetic reflections were observed at q ¼ ð1=2;
1=2; 1=2Þ and its equivalents under magnetic fields applied
along the ½"110" axis. The q dependence of the intensity
suggests that AF-type field-induced magnetic dipoles are
oriented approximately along the [111] direction perpendic-
ular to the magnetic field.71) The results are consistent with
the primary order parameter being the !3-type quadrupole.
This is the first direct observation of the AFQ ordered
structure under Td symmetry. On the other hand, the
quadrupoles do not form a simple two-sublattice in the
AFQ ordered phase. Details on the quadrupole alignments
and the AFQ order parameters will be reported elsewhere.

4.2 PrRh2Zn20 (AFQ)
PrRh2Zn20 exhibits a structural transition between Ts of

170 and 470K.59) Nevertheless, the local symmetry at the Pr
sites remains as cubic T symmetry. Indeed, the doublet
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Table III. Properties of the quadrupole orders of Pr 1-2-20. g0!3
is the

intersite quadrupolar interaction for the !3-type mode evaluated by ultrasonic
measurements. In PrTi2Al20, the phase boundary becomes a crossover as it is
the FQ order. (+) A high-field phase exists for PrV2Al20 above 11T along the
[100] axis.65) (++) The value was estimated from the transverse mode of
CTðTÞ ¼ ðC11 & C12 þ C44Þ=3 along the [111] axis by neglecting the C44

mode with the !5 symmetry, where only the [111] axis is accessible because
of the shape of a single-crystalline sample.

Compound
TQ

(K)
B½100"
c ð0Þ
(T)

B½110"
c ð0Þ
(T)

B½111"
c ð0Þ
(T)

g0!3

(K)
Refs.

PrIr2Zn20 0.11 (AFQ) 5 10 11.5 −0.13 16, 17
PrRh2Zn20 0.06 (AFQ) 3 11.7 12.9 −2.33 19, 59
PrV2Al20 0.6 (AFQ) 11+ >9 11 21, 66
PrTi2Al20 2.0 (FQ) — — — 0.156++ 21, 62
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purity sample, which includes [100] and [110] crystalline
domains. Indeed, the high-purity sample shows no splitting,
as will be shown later in Fig. 24(a), and the AFQ order
collapses at around 5T for B k ½100". The critical fields of
the AFQ order for B k ½110" and [111] are much higher than
that for [100], which will be discussed in the next subsection,
as PrRh2Zn20 exhibits similar anisotropy.16,17) Note that the
increase in TQ in magnetic fields is similar to that of the AFQ
order in PrPb3,32,33,50) which can be understood by taking
account of the gain in the interaction energies of the field-
induced multipoles68) and=or the suppression of multipolar
fluctuations due to magnetic fields.69,70) The properties of
the quadrupole order including the critical magnetic-field
strengths for the three principal axes are summarized in
Table III.

Firm evidence for the AFQ order has been obtained by
ultrasonic measurements.17) For example, hardening of the
!3-type elastic modulus, C!3 , at the onset of TQ indicates
quenching of the quadrupole moment due to ordering. Here,
the elastic modulus C!3

ðTÞ is analyzed by the following
expression:

C!3
ðTÞ ¼ & NPrg

2
!3

!quadðTÞ
1 & g0!3

!quadðTÞ
þ C0ðTÞ; ð3Þ

where NPr ¼ 2:751 ( 1027m−3 is the density of Pr ions at
room temperature, C0ðTÞ is the background stiffness, and
!quadðTÞ is the irreducible quadrupolar susceptibility. !quadðTÞ
is evaluated by the effective Hamiltonian,

Heff ¼ HCEF & g!3
O!3

"!3
& g0!3

O!3
hO!3

i; ð4Þ

where the second term is the quadrupole-strain coupling in
the !3 mode and the third term represents the intersite
interaction between the quadrupoles adopted by the molecu-
lar-field approximation with a thermal average of hO!3i. The
analysis of the elastic constant indicates the AFQ interaction
of g0!3

¼ & 0:13K as shown in Table III. It is useful to
apply Levy’s criterion, D ) jg0!3

C0=NPrg2!3
j, to evaluate

the importance of the intersite quadrupolar interaction as
compared with the cooperative Jahn-Teller effect. The
obtained value of D ¼ 181 * 1 together with the negative
value of the quadrupolar interaction g0!3

is a clear indication
of the AFQ order.

Very recently, the AFQ phase was investigated by neutron
diffraction measurements of single-crystalline samples. Field-
induced magnetic reflections were observed at q ¼ ð1=2;
1=2; 1=2Þ and its equivalents under magnetic fields applied
along the ½"110" axis. The q dependence of the intensity
suggests that AF-type field-induced magnetic dipoles are
oriented approximately along the [111] direction perpendic-
ular to the magnetic field.71) The results are consistent with
the primary order parameter being the !3-type quadrupole.
This is the first direct observation of the AFQ ordered
structure under Td symmetry. On the other hand, the
quadrupoles do not form a simple two-sublattice in the
AFQ ordered phase. Details on the quadrupole alignments
and the AFQ order parameters will be reported elsewhere.

4.2 PrRh2Zn20 (AFQ)
PrRh2Zn20 exhibits a structural transition between Ts of

170 and 470K.59) Nevertheless, the local symmetry at the Pr
sites remains as cubic T symmetry. Indeed, the doublet
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Table III. Properties of the quadrupole orders of Pr 1-2-20. g0!3
is the

intersite quadrupolar interaction for the !3-type mode evaluated by ultrasonic
measurements. In PrTi2Al20, the phase boundary becomes a crossover as it is
the FQ order. (+) A high-field phase exists for PrV2Al20 above 11T along the
[100] axis.65) (++) The value was estimated from the transverse mode of
CTðTÞ ¼ ðC11 & C12 þ C44Þ=3 along the [111] axis by neglecting the C44

mode with the !5 symmetry, where only the [111] axis is accessible because
of the shape of a single-crystalline sample.
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Refs.

PrIr2Zn20 0.11 (AFQ) 5 10 11.5 −0.13 16, 17
PrRh2Zn20 0.06 (AFQ) 3 11.7 12.9 −2.33 19, 59
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ground state !23 has been confirmed by INS experiments,18)

and hence PrRh2Zn20 also provides a similar playground to
PrIr2Zn20.

Figure 11 shows the magnetic specific heat divided by
temperature, CmðTÞ=T,59 ) in which the peak at TQ ¼ 0:06K
indicates the onset of quadrupole order. In Fig. 11, the
magnetic entropy SðTÞ, evaluated by the integration of
CmðTÞ=T, is also shown by the blue solid line. The value
of S is R ln 2 at around 2K. On cooling, SðTÞ decreases
monotonically, and it reaches about 0:1R ln 2 at TQ. This
entropy release above TQ also suggests a quadrupolar Kondo
effect, similar to that of PrIr2Zn20. Moreover, the elastic
softening of the transverse modulus C!3 stops abruptly at TQ,
suggesting quenching of the quadrupole moment.19 ) The
intersite quadrupolar interaction was also estimated to be
compatible with the AFQ order. Nevertheless, in spite of the
fact that TQ of PrRh2Zn20 is about half that of PrIr2Zn20, the
absolute value of g0!3

is one order of magnitude larger than
that estimated for PrIr2Zn20 as shown in Table III. It remains
unclear why g0!3

is not compatible with TQ.
As will be shown below, the anisotropy of the AFQ

boundary in the B–T phase diagram for fields along the three
principal directions has a considerable role in the magnetic
intersite interaction as well as the quadrupolar interaction.
The B–T phase diagram is shown in Fig. 12(a), which was
determined by specific heat measurement.59 ) The anisotropy
of the enhanced TQ with increasing magnetic field, "T½B%

Q , is
given by "T½111%

Q > "T½110%
Q > "T½100%

Q , indicating that the
AFQ for B k ½111% is more stable than that for B k ½100%.
Using the CEF parameters determined in the paramagnetic
state (see Table II), the splitting of the !3 doublet by magnetic
fields, "½B%, shows the anisotropy "½111% < "½110% < "½100%.
Since the quadrupole order vanishes when the splitting "½B%

exceeds TQðB ¼ 0Þ, the present CEF model can explain the
tendency of the anisotropy of the AFQ boundary in the B–T
phase diagram. This CEF level scheme also reproduces the
observed anisotropy in the isothermal magnetization at 1.8K,
where M½100% exceeds M½110% and M½111% above 2T.

Figure 12(b) shows the B–T phase diagrams obtained by
MF calculation (dashed lines),59 ) in which the CEF parame-

ters W ¼ & 1:1K and x ¼ 0:46 and the quadrupolar inter-
action K!3

¼ & 0:0037K were used. The calculation based
on the CEF model qualitatively reproduces the anisotropic
boundary of the AFQ phase. However, the initial slope of
TQ as a function of B is not well reproduced. This drawback
is remedied by introducing the AF magnetic intersite
interaction K1 ¼ & 0:4K in addition to the quadrupolar
interaction. The resultant phase diagram is indicated by the
solid lines in Fig. 12(b). Now, TQ for B k ½100%, [110], and
[111] increases with increasing magnetic field up to B ¼ 1, 3,
and 5T, and the AFQ phase at T ¼ 0 closes at critical fields
of B ¼ 2:3, 4.0, and 6.3 T, respectively. In this way, the
mean-field calculation based on the CEF model semi-
quantitatively reproduces both the anisotropic boundary of
the AFQ phase and the initial slope of TQ under magnetic
fields. On the other hand, the calculated critical fields of the
AFQ ordered phase are much lower than the experimental
data. The quantitative disagreement is due to the simple two-
sublattice model, where only the isotropic magnetic and
quadrupole interactions were taken into consideration.
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ground state !23 has been confirmed by INS experiments,18)

and hence PrRh2Zn20 also provides a similar playground to
PrIr2Zn20.

Figure 11 shows the magnetic specific heat divided by
temperature, CmðTÞ=T,59 ) in which the peak at TQ ¼ 0:06K
indicates the onset of quadrupole order. In Fig. 11, the
magnetic entropy SðTÞ, evaluated by the integration of
CmðTÞ=T, is also shown by the blue solid line. The value
of S is R ln 2 at around 2K. On cooling, SðTÞ decreases
monotonically, and it reaches about 0:1R ln 2 at TQ. This
entropy release above TQ also suggests a quadrupolar Kondo
effect, similar to that of PrIr2Zn20. Moreover, the elastic
softening of the transverse modulus C!3 stops abruptly at TQ,
suggesting quenching of the quadrupole moment.19 ) The
intersite quadrupolar interaction was also estimated to be
compatible with the AFQ order. Nevertheless, in spite of the
fact that TQ of PrRh2Zn20 is about half that of PrIr2Zn20, the
absolute value of g0!3

is one order of magnitude larger than
that estimated for PrIr2Zn20 as shown in Table III. It remains
unclear why g0!3

is not compatible with TQ.
As will be shown below, the anisotropy of the AFQ

boundary in the B–T phase diagram for fields along the three
principal directions has a considerable role in the magnetic
intersite interaction as well as the quadrupolar interaction.
The B–T phase diagram is shown in Fig. 12(a), which was
determined by specific heat measurement.59 ) The anisotropy
of the enhanced TQ with increasing magnetic field, "T½B%

Q , is
given by "T½111%

Q > "T½110%
Q > "T½100%

Q , indicating that the
AFQ for B k ½111% is more stable than that for B k ½100%.
Using the CEF parameters determined in the paramagnetic
state (see Table II), the splitting of the !3 doublet by magnetic
fields, "½B%, shows the anisotropy "½111% < "½110% < "½100%.
Since the quadrupole order vanishes when the splitting "½B%

exceeds TQðB ¼ 0Þ, the present CEF model can explain the
tendency of the anisotropy of the AFQ boundary in the B–T
phase diagram. This CEF level scheme also reproduces the
observed anisotropy in the isothermal magnetization at 1.8K,
where M½100% exceeds M½110% and M½111% above 2T.

Figure 12(b) shows the B–T phase diagrams obtained by
MF calculation (dashed lines),59 ) in which the CEF parame-

ters W ¼ & 1:1K and x ¼ 0:46 and the quadrupolar inter-
action K!3

¼ & 0:0037K were used. The calculation based
on the CEF model qualitatively reproduces the anisotropic
boundary of the AFQ phase. However, the initial slope of
TQ as a function of B is not well reproduced. This drawback
is remedied by introducing the AF magnetic intersite
interaction K1 ¼ & 0:4K in addition to the quadrupolar
interaction. The resultant phase diagram is indicated by the
solid lines in Fig. 12(b). Now, TQ for B k ½100%, [110], and
[111] increases with increasing magnetic field up to B ¼ 1, 3,
and 5T, and the AFQ phase at T ¼ 0 closes at critical fields
of B ¼ 2:3, 4.0, and 6.3 T, respectively. In this way, the
mean-field calculation based on the CEF model semi-
quantitatively reproduces both the anisotropic boundary of
the AFQ phase and the initial slope of TQ under magnetic
fields. On the other hand, the calculated critical fields of the
AFQ ordered phase are much lower than the experimental
data. The quantitative disagreement is due to the simple two-
sublattice model, where only the isotropic magnetic and
quadrupole interactions were taken into consideration.

0.1 1 100.03 40

15

10

5

0

S
 (J

 / 
K

 m
ol

)

30

20

10

0

C
m

 / 
T 

(J
 / 

K
2 

m
ol

)

T (K)

TQ=0.06 K

Rln2

Rln5

-lnT∝

0.6

0.4

0.2

0
3020100

PrRh 2 20Zn

Fig. 11. (Color online) Temperature dependence of the magnetic specific
heat in PrRh2Zn20 divided by temperature, CmðTÞ=T (red symbols), and the
entropy SðTÞ obtained from its integration (blue solid line).59 ) The inset
shows CmðTÞ=T in a linear T scale.

8

6

4

2

0

B
 (T

)

0.150.100.050

PrRh2Zn20

AFQ PM
B || [100]

B || [110]

B || [111]

SC
TQ

Tc

(a)

8

6

4

2

0

B
 (T

)

0.150.100.050
T  (K)

W = − 1.1 K
x = 0.46

K = − 0.0037 K
K1= − 0.4 K

TQ

B || [111]

B || [110]
B || [100]

AFQ

(b)

Γ3

(Thick line)

Fig. 12. (Color online) (a) B–T phase diagram for fields along the three
principal directions, which was determined by the specific heat meas-
urements.59 ) (b) B–T phase diagram obtained by MF calculation with (solid
lines) or without (dashed lines) the AF magnetic intersite interaction, K1. The
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purity sample, which includes [100] and [110] crystalline
domains. Indeed, the high-purity sample shows no splitting,
as will be shown later in Fig. 24(a), and the AFQ order
collapses at around 5T for B k ½100". The critical fields of
the AFQ order for B k ½110" and [111] are much higher than
that for [100], which will be discussed in the next subsection,
as PrRh2Zn20 exhibits similar anisotropy.16,17) Note that the
increase in TQ in magnetic fields is similar to that of the AFQ
order in PrPb3,32,33,50) which can be understood by taking
account of the gain in the interaction energies of the field-
induced multipoles68) and=or the suppression of multipolar
fluctuations due to magnetic fields.69,70) The properties of
the quadrupole order including the critical magnetic-field
strengths for the three principal axes are summarized in
Table III.

Firm evidence for the AFQ order has been obtained by
ultrasonic measurements.17) For example, hardening of the
!3-type elastic modulus, C!3 , at the onset of TQ indicates
quenching of the quadrupole moment due to ordering. Here,
the elastic modulus C!3

ðTÞ is analyzed by the following
expression:

C!3
ðTÞ ¼ & NPrg

2
!3

!quadðTÞ
1 & g0!3

!quadðTÞ
þ C0ðTÞ; ð3Þ

where NPr ¼ 2:751 ( 1027m−3 is the density of Pr ions at
room temperature, C0ðTÞ is the background stiffness, and
!quadðTÞ is the irreducible quadrupolar susceptibility. !quadðTÞ
is evaluated by the effective Hamiltonian,

Heff ¼ HCEF & g!3
O!3

"!3
& g0!3

O!3
hO!3

i; ð4Þ

where the second term is the quadrupole-strain coupling in
the !3 mode and the third term represents the intersite
interaction between the quadrupoles adopted by the molecu-
lar-field approximation with a thermal average of hO!3i. The
analysis of the elastic constant indicates the AFQ interaction
of g0!3

¼ & 0:13K as shown in Table III. It is useful to
apply Levy’s criterion, D ) jg0!3

C0=NPrg2!3
j, to evaluate

the importance of the intersite quadrupolar interaction as
compared with the cooperative Jahn-Teller effect. The
obtained value of D ¼ 181 * 1 together with the negative
value of the quadrupolar interaction g0!3

is a clear indication
of the AFQ order.

Very recently, the AFQ phase was investigated by neutron
diffraction measurements of single-crystalline samples. Field-
induced magnetic reflections were observed at q ¼ ð1=2;
1=2; 1=2Þ and its equivalents under magnetic fields applied
along the ½"110" axis. The q dependence of the intensity
suggests that AF-type field-induced magnetic dipoles are
oriented approximately along the [111] direction perpendic-
ular to the magnetic field.71) The results are consistent with
the primary order parameter being the !3-type quadrupole.
This is the first direct observation of the AFQ ordered
structure under Td symmetry. On the other hand, the
quadrupoles do not form a simple two-sublattice in the
AFQ ordered phase. Details on the quadrupole alignments
and the AFQ order parameters will be reported elsewhere.

4.2 PrRh2Zn20 (AFQ)
PrRh2Zn20 exhibits a structural transition between Ts of

170 and 470K.59) Nevertheless, the local symmetry at the Pr
sites remains as cubic T symmetry. Indeed, the doublet
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Fig. 10. (Color online) B–T phase diagram of PrIr2Zn20 for B k ½100"
(open circles) and B k ½110" (closed triangles).16) The transition
temperatures TQ, TQ1, and TQ2 were determined by the peak positions in
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critical field. The inset shows the temperature dependence of the AC
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Table III. Properties of the quadrupole orders of Pr 1-2-20. g0!3
is the

intersite quadrupolar interaction for the !3-type mode evaluated by ultrasonic
measurements. In PrTi2Al20, the phase boundary becomes a crossover as it is
the FQ order. (+) A high-field phase exists for PrV2Al20 above 11T along the
[100] axis.65) (++) The value was estimated from the transverse mode of
CTðTÞ ¼ ðC11 & C12 þ C44Þ=3 along the [111] axis by neglecting the C44

mode with the !5 symmetry, where only the [111] axis is accessible because
of the shape of a single-crystalline sample.

Compound
TQ

(K)
B½100"
c ð0Þ
(T)

B½110"
c ð0Þ
(T)

B½111"
c ð0Þ
(T)

g0!3

(K)
Refs.

PrIr2Zn20 0.11 (AFQ) 5 10 11.5 −0.13 16, 17
PrRh2Zn20 0.06 (AFQ) 3 11.7 12.9 −2.33 19, 59
PrV2Al20 0.6 (AFQ) 11+ >9 11 21, 66
PrTi2Al20 2.0 (FQ) — — — 0.156++ 21, 62
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Rh: Large intersite interaction ~-2K  
but small TQ?

Ti : small hybridization
anomalous metal above TQ for V  
: stronger hybridization 
V : two transitions TQ, T*
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double transitions with V ?

 Multipolar order in Pr(TM)2(Al,Zn)20



Multipolar order with Γ3 doublets in PrTi2Al20 in fields
Monotonic increase of 
TQ and broadening of 
CP anomaly under B 
for PrTi2Al20.  

Î FQ for PrTi2Al20? 

Magnetic field dependence
PrTi2Al20 Ferro-Q

Ferro-Q order of Γ3 doublets does not couple to h//(111) 
- specific heat barely changes with field.  
- enhanced Tc for h // (100) or (110) (expected for ferro) 
- insensitive up to 6T —- large crystal field splitting Δ  (heft ~ h2/Δ)

For pseudospins of Γ3 doublets,  
Sx ~   √3 (Jx2-Jy2) 
Sz ~  3Jz2 -J2

Ferro-quadrupolar order does not couple to B//(111)PrTi2Al20
 specific heat barely changes with field 
 enhanced Tc for B//(100) or (110) - expected for ferro 
 insensitive up to 6T - large crystal field splitting Δ ( huff ~ B2/Δ )

 Multipolar order in fields



Multipolar order with Γ3 doublets in PrV2Al20 in fields

Antiferro-quadrupolar order - insensitive with small fieldsPrV2Al20
 double transition - 0.9K (high-T transition) and 0.65K  (low-T transition) 
 high-T transition insensitive in fields, but low-T transition very anisotropic 
depending on field directions
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for PrTi2Al20, suggesting that the transition is not well-defined under field. This type

of crossover is not allowed for an antiferro type, but for a ferroquadrupolar order as in

PrPtBi,5) because only the symmetry in a ferroquadrupolar state can be the same as

the one in a para state under field. Therefore, the multipolar transitions in PrTi2Al20

and PrV2Al20 are most likely a ferro- and antiferro-quadrupolar ordering, respectively.

Further evidence for quadrupolar order comes from H-T phase diagrams of both

PrTi2Al20 and PrV2Al20 under fields along [100], [110] and [111], as shown in Figs. 3(c)

and (d). The transition temperature TO(H) is determined as the peak T of CP (T ).

In both systems, TO(H) increases with increasing field in the low field regime, except

for H ∥ [111] in PrTi2Al20. This increase of the boundary with field is characteristic

to quadrupolar order, and is the effects of dipole moments induced by magnetic field,

which assist the quadrupolar ordering.14, 15)

Now, we consider the paramagnetic phase above TO to discuss the Kondo effect.
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Multipolar order with Γ3 doublets in Pr3+

 Multipolar order and finite T transitions

Pr3+

Pr3+ ions form a diamond lattice

Jx2 -Jy2 3Jz2 -J2 

Γ3 doublets describes 

JxJyJz

Quadrupole Octupole

⌧x ⌧y ⌧z
in pseudospin-1/2 basis 

2

In this Letter, we consider a frustrated local-moment
model with two-spin and four-spin interactions, that are
allowed by symmetry associated with the local envi-
ronment of Pr3+ ions and their coupling to the con-
duction electrons. Since our main interest is the in-
terplay between di↵erent multipolar orders and their
thermal phase transitions, we employ mean field theory
and Monte Carlo simulations to investigate the thermal
phase diagram of this model. Our key result is that such
interactions can lead to ground states with coexisting
multipolar orders; we show that this can lead to a single
or two-stage multipolar thermal transitions, and present
results on the e↵ect of a magnetic field. We discuss how
this provides a natural framework to interpret the exper-
iments on PrTi2Al20 and PrV2Al20, which is thus also of
potential importance for other heavy fermion materials.

Model.— In Pr(TM)2Al20 (with TM=Ti, V), the 4f2

Pr3+ ion lives in a Td local environment, arising from
the Frank Kasper cage formed by 16 neighboring Al
ions [22]. Inelastic neutron scattering and specific heat
studies have shed light on the local spectrum of the Pr3+

ion, arising from crystal field splitting of the J = 4
angular momentum multiplet [18, 21]. These indicate
a �3 non-Kramers doublet ground state separated from
the next �4 triplet of states by an energy gap ⇠ 50K. At
temperatures T ⌧ 50K, we can e↵ectively ignore these
excited crystal field multiplets [18]. Thus, for the low
energy physics of these materials, especially the broken
symmetry phases found at T . 5K, it is su�cient to
consider a model of conduction electrons Kondo-coupled
to this �3 doublet, whose wavefunctions are [21, 45]
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Using these, we can define the pseudospin-1/2 basis

|"i ⌘
1
p
2
(|�(1)

3 i+ i |�(2)
3 i) and |#i ⌘

1
p
2
(i |�(1)

3 i+ |�(2)
3 i).

We identify the corresponding pseudospin operators in

terms of Stevens operators O22 =
p
3
2 (J2

x �J2
y ), O20 =

1
2 (3J

2
z �J2), and Txyz =

p
15
6 JxJyJz (overline denoting

a symmetrized product), as ⌧x = �
1
4O22, ⌧y = �

1
4O20,

and ⌧z =
1

3
p
5
Txyz[46, 47]. Here, (⌧x, ⌧y)⌘ ~⌧? describes

a time-reversal invariant quadrupolar moment, while ⌧z
describes a time-reversal odd octupolar moment. In ad-
dition, the point group symmetry of the Pr3+ ion in-
cludes an S4z operation under which ⌧± ! �⌧±, and a
C31 operation under which ⌧± ! e±i2⇡/3⌧±.

With this in mind, we consider a symmetry-allowed
model of short-distance two-spin exchange between the
pseudospin-1/2 local moments ~⌧ , supplemented with the

simplest four-spin interaction that couples quadrupolar
and octupolar degrees of freedom,

H=
1
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j )�K
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z
m .(2)

We will assume Jij = J1, J2 for nearest and next-nearest
neighbors respectively, and ignore further neighbor two-
spin interactions. For the four-spin coupling, the no-
tation hhijihkmii means that we consider a nearest-
neighbor pair hiji coupled to a distinct nearest-neighbor
pair hkmi, such that the two pairs are separated by a
single bond, leading to the shortest four-site cluster [48].

We consider the easy-plane regime, � < 1, so that
the two-spin interactions favor quadrupolar ⌧x,y order
over octupolar ⌧z order as is observed in many of these
compounds. While J1 < 0 will drive FQ order, as ob-
served in PrTi2Al20, increasing pressure might lead to
AFQ orders, either via a frustrating J2/|J1|> 0 which
leads to incommensurate spiral order (SpQ), or via a
sign change J1>0 which will lead to commensurate Néel
quadrupolar order (NQ) [18, 21]. Our main insight is
that while the two-spin interactions alone will favor pure
quadrupolar order, four-spin interactions will generi-
cally lead to coexisting multipolar orders. For K > 0,
quadrupolar orders with nearest-neighbor h~⌧?i · ~⌧?j i>0

will favor ferro-octupolar (FO) order, while h~⌧?i ·~⌧?j i<0
will favor Néel octupolar (NO) order; the FO and
NO orders get switched when we consider K < 0.

Motivated by constructing the simplest model to cap-
ture the phenomenology of PrTM2Al20, we will set
J1<0 for PrTi2Al20 which favors FQ order, and J1>0
for PrV2Al20 favoring NQ order. In both cases, we fix
J2>0 andK>0, and study the phases and their proper-
ties as we vary J2/|J1| and K/|J1|. At the classical level
of the analysis done here, we note that the model with
J1 < 0 maps onto the model with J1 > 0 by changing
~⌧ ! �~⌧ on one sublattice; with this understanding, we
will mainly focus on fixed J1 = +1, but present results
which are applicable for both systems.

Ground state phase diagram.— For J1 > 0, con-
sider an ansatz ~⌧+A/B =

p
1�⌘2 exp(iq · r ± �

2 ) for

unit length spins on A/B sublattices, with ⌧zA/B =

±⌘. Here q,� specify a spiral of ~⌧? which is a
generic SpQ order with magnitude
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Kondo coupling with itinerant electrons 
—> multiple spin interactions 



Multipolar order with Γ3 doublets in Pr3+
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In this Letter, we consider a frustrated local-moment
model with two-spin and four-spin interactions, that are
allowed by symmetry associated with the local envi-
ronment of Pr3+ ions and their coupling to the con-
duction electrons. Since our main interest is the in-
terplay between di↵erent multipolar orders and their
thermal phase transitions, we employ mean field theory
and Monte Carlo simulations to investigate the thermal
phase diagram of this model. Our key result is that such
interactions can lead to ground states with coexisting
multipolar orders; we show that this can lead to a single
or two-stage multipolar thermal transitions, and present
results on the e↵ect of a magnetic field. We discuss how
this provides a natural framework to interpret the exper-
iments on PrTi2Al20 and PrV2Al20, which is thus also of
potential importance for other heavy fermion materials.

Model.— In Pr(TM)2Al20 (with TM=Ti, V), the 4f2

Pr3+ ion lives in a Td local environment, arising from
the Frank Kasper cage formed by 16 neighboring Al
ions [22]. Inelastic neutron scattering and specific heat
studies have shed light on the local spectrum of the Pr3+

ion, arising from crystal field splitting of the J = 4
angular momentum multiplet [18, 21]. These indicate
a �3 non-Kramers doublet ground state separated from
the next �4 triplet of states by an energy gap ⇠ 50K. At
temperatures T ⌧ 50K, we can e↵ectively ignore these
excited crystal field multiplets [18]. Thus, for the low
energy physics of these materials, especially the broken
symmetry phases found at T . 5K, it is su�cient to
consider a model of conduction electrons Kondo-coupled
to this �3 doublet, whose wavefunctions are [21, 45]
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We identify the corresponding pseudospin operators in

terms of Stevens operators O22 =
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Txyz[46, 47]. Here, (⌧x, ⌧y)⌘ ~⌧? describes

a time-reversal invariant quadrupolar moment, while ⌧z
describes a time-reversal odd octupolar moment. In ad-
dition, the point group symmetry of the Pr3+ ion in-
cludes an S4z operation under which ⌧± ! �⌧±, and a
C31 operation under which ⌧± ! e±i2⇡/3⌧±.

With this in mind, we consider a symmetry-allowed
model of short-distance two-spin exchange between the
pseudospin-1/2 local moments ~⌧ , supplemented with the

simplest four-spin interaction that couples quadrupolar
and octupolar degrees of freedom,
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We will assume Jij = J1, J2 for nearest and next-nearest
neighbors respectively, and ignore further neighbor two-
spin interactions. For the four-spin coupling, the no-
tation hhijihkmii means that we consider a nearest-
neighbor pair hiji coupled to a distinct nearest-neighbor
pair hkmi, such that the two pairs are separated by a
single bond, leading to the shortest four-site cluster [48].

We consider the easy-plane regime, � < 1, so that
the two-spin interactions favor quadrupolar ⌧x,y order
over octupolar ⌧z order as is observed in many of these
compounds. While J1 < 0 will drive FQ order, as ob-
served in PrTi2Al20, increasing pressure might lead to
AFQ orders, either via a frustrating J2/|J1|> 0 which
leads to incommensurate spiral order (SpQ), or via a
sign change J1>0 which will lead to commensurate Néel
quadrupolar order (NQ) [18, 21]. Our main insight is
that while the two-spin interactions alone will favor pure
quadrupolar order, four-spin interactions will generi-
cally lead to coexisting multipolar orders. For K > 0,
quadrupolar orders with nearest-neighbor h~⌧?i · ~⌧?j i>0

will favor ferro-octupolar (FO) order, while h~⌧?i ·~⌧?j i<0
will favor Néel octupolar (NO) order; the FO and
NO orders get switched when we consider K < 0.

Motivated by constructing the simplest model to cap-
ture the phenomenology of PrTM2Al20, we will set
J1<0 for PrTi2Al20 which favors FQ order, and J1>0
for PrV2Al20 favoring NQ order. In both cases, we fix
J2>0 andK>0, and study the phases and their proper-
ties as we vary J2/|J1| and K/|J1|. At the classical level
of the analysis done here, we note that the model with
J1 < 0 maps onto the model with J1 > 0 by changing
~⌧ ! �~⌧ on one sublattice; with this understanding, we
will mainly focus on fixed J1 = +1, but present results
which are applicable for both systems.

Ground state phase diagram.— For J1 > 0, con-
sider an ansatz ~⌧+A/B =

p
1�⌘2 exp(iq · r ± �

2 ) for

unit length spins on A/B sublattices, with ⌧zA/B =

±⌘. Here q,� specify a spiral of ~⌧? which is a
generic SpQ order with magnitude
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Q) Possible phases and finite T transitions ?

 Multipolar order and finite T transitions



Quadrupolar, Octupolar orderings 

2

In this Letter, we consider a frustrated local-moment
model with two-spin and four-spin interactions, that are
allowed by symmetry associated with the local envi-
ronment of Pr3+ ions and their coupling to the con-
duction electrons. Since our main interest is the in-
terplay between di↵erent multipolar orders and their
thermal phase transitions, we employ mean field theory
and Monte Carlo simulations to investigate the thermal
phase diagram of this model. Our key result is that such
interactions can lead to ground states with coexisting
multipolar orders; we show that this can lead to a single
or two-stage multipolar thermal transitions, and present
results on the e↵ect of a magnetic field. We discuss how
this provides a natural framework to interpret the exper-
iments on PrTi2Al20 and PrV2Al20, which is thus also of
potential importance for other heavy fermion materials.

Model.— In Pr(TM)2Al20 (with TM=Ti, V), the 4f2

Pr3+ ion lives in a Td local environment, arising from
the Frank Kasper cage formed by 16 neighboring Al
ions [22]. Inelastic neutron scattering and specific heat
studies have shed light on the local spectrum of the Pr3+

ion, arising from crystal field splitting of the J = 4
angular momentum multiplet [18, 21]. These indicate
a �3 non-Kramers doublet ground state separated from
the next �4 triplet of states by an energy gap ⇠ 50K. At
temperatures T ⌧ 50K, we can e↵ectively ignore these
excited crystal field multiplets [18]. Thus, for the low
energy physics of these materials, especially the broken
symmetry phases found at T . 5K, it is su�cient to
consider a model of conduction electrons Kondo-coupled
to this �3 doublet, whose wavefunctions are [21, 45]
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Txyz[46, 47]. Here, (⌧x, ⌧y)⌘ ~⌧? describes

a time-reversal invariant quadrupolar moment, while ⌧z
describes a time-reversal odd octupolar moment. In ad-
dition, the point group symmetry of the Pr3+ ion in-
cludes an S4z operation under which ⌧± ! �⌧±, and a
C31 operation under which ⌧± ! e±i2⇡/3⌧±.

With this in mind, we consider a symmetry-allowed
model of short-distance two-spin exchange between the
pseudospin-1/2 local moments ~⌧ , supplemented with the

simplest four-spin interaction that couples quadrupolar
and octupolar degrees of freedom,
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We will assume Jij = J1, J2 for nearest and next-nearest
neighbors respectively, and ignore further neighbor two-
spin interactions. For the four-spin coupling, the no-
tation hhijihkmii means that we consider a nearest-
neighbor pair hiji coupled to a distinct nearest-neighbor
pair hkmi, such that the two pairs are separated by a
single bond, leading to the shortest four-site cluster [48].

We consider the easy-plane regime, � < 1, so that
the two-spin interactions favor quadrupolar ⌧x,y order
over octupolar ⌧z order as is observed in many of these
compounds. While J1 < 0 will drive FQ order, as ob-
served in PrTi2Al20, increasing pressure might lead to
AFQ orders, either via a frustrating J2/|J1|> 0 which
leads to incommensurate spiral order (SpQ), or via a
sign change J1>0 which will lead to commensurate Néel
quadrupolar order (NQ) [18, 21]. Our main insight is
that while the two-spin interactions alone will favor pure
quadrupolar order, four-spin interactions will generi-
cally lead to coexisting multipolar orders. For K > 0,
quadrupolar orders with nearest-neighbor h~⌧?i · ~⌧?j i>0

will favor ferro-octupolar (FO) order, while h~⌧?i ·~⌧?j i<0
will favor Néel octupolar (NO) order; the FO and
NO orders get switched when we consider K < 0.

Motivated by constructing the simplest model to cap-
ture the phenomenology of PrTM2Al20, we will set
J1<0 for PrTi2Al20 which favors FQ order, and J1>0
for PrV2Al20 favoring NQ order. In both cases, we fix
J2>0 andK>0, and study the phases and their proper-
ties as we vary J2/|J1| and K/|J1|. At the classical level
of the analysis done here, we note that the model with
J1 < 0 maps onto the model with J1 > 0 by changing
~⌧ ! �~⌧ on one sublattice; with this understanding, we
will mainly focus on fixed J1 = +1, but present results
which are applicable for both systems.
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FIG. 1. Ground state phase diagram for the J1-J2-K
model for fixed J1 = +1, showing various ordered quadrupo-
lar phases (NQ=Néel quadrupolar, SpQ=spiral quadrupo-
lar) as well as coexisting octupolar order (NO=Néel octupo-
lar). For J1 = �1, the phase diagram is identical but phases
get relabelled as NQ ! FQ (ferroquadrupolar) and NO!

FO (ferrooctupolar). Solid lines are T = 0 mean field phase
boundaries, points are obtained fromMonte Carlo (MC) sim-
ulations on system sizes L = 8 (1024 spins) showing excellent
agreement. Color indicates regions where we find two-stage
thermal ordering in MC; the scale shows which broken sym-
metry (quadrupolar/octupolar) has a higher transition tem-
perature. The “stars” indicate regions where we tentatively
place the PrTM2Al20 materials (with J1 < 0 for PrTi2Al20
and J1 > 0 for PrV2Al20).

of which we find the energy per site in the classical limit

Ecl

Nsite
= �2(J1 � 18K⌘2)(1� ⌘2)F (�,q) + 2J1�⌘

2

+ 6J2�⌘
2 + 2J2(1� ⌘2)G(q) . (3)

Minimizing this variational energy with respect to
(q,�, ⌘), we arrive at the T = 0 phase diagram, with
phase boundaries depicted by solid lines in Fig. 1 for
the choice � = 0. Along the line K = 0, this phase
diagram is identical with previous results obtained for
Heisenberg spins on the diamond lattice, where J2/J1>
1/8 drives a Néel to incommensurate spiral transition
[49, 50]. Our new results show that K 6= 0 can in-
duce NQ/SpQ phases which coexist with Ising NO or-
der; we find qualitatively similar results for generic
� < 1 (see Supplemental Material). For J1 < 0, the
NQ/NO phases get replaced by FQ/FO phases, while
the spiral is modified by flipping ~⌧ on one sublattice.

We have checked the T = 0 phase diagram in Fig. 1
using classical Monte Carlo (MC) simulations for system
sizes up to L=8 (with 2L3=1024 spins) down to T/J1=
0.001 at a large number of depicted points. The distinct
ground states are best visualized in common origin plots
of the spin vectors of configuration snapshots in the MC
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FIG. 2. Common-origin plots of the spin vectors in con-
figuration snapshots from Monte Carlo simulations visualize
the nature of the low-temperature ordering in the ground-
state phase diagram of the J1-J2-K model in the J2-K plane.

simulation as shown in Fig. 2. Depending on the ⌧z-
order of the phase, characteristic ~⌧?-features (such as
a ring for the spiral phase) are shifted along the z-axis
in the common origin plot. The MC simulations clearly
confirm our mean field ground state phase diagram.

Thermal transitions.— In order to explore the phase
diagram of this model at nonzero temperatures, we have
carried out extensive MC simulations for various system
sizes and across a broad temperature regime. Fig. 3(a)
shows the phase diagram in the J2-T plane at fixed
J1 = 1,K = 0.15. We find that both the NQNO and
the SpQNO phases generically undergo multiple phase
transitions enroute to the high temperature paramag-
net, with intervening phases which have pure octupolar
or quadrupolar order. We deduce the existence of such
transitions via peaks in the specific heat versus tem-
perature, as illustrated in Fig. 3(b) for J2 = 0, which
get sharper with increasing system size. The nature of
the phases can be deduced from common origin plots of
snapshot MC configurations as shown for the NQNO,
NQ, and paramagnetic phases in Fig. 3(b). Using ex-
tensive MC simulations of this sort over a wide range
of parameters, we have compiled a detailed map of the
two phase transitions, as shown in Fig. 1 with the color
scale indicating regions where, upon lowering tempera-
ture, quadrupolar ~⌧? orders first (red, TQ � TO > 0) or
octupolar ⌧z orders first (blue, TQ � TO < 0).

Magnetic field e↵ect.— We next turn to the impact
of an applied magnetic field as a further way to dis-
tinguish FQ from AFQ order. We begin by noting
that the quadrupolar and octupolar moments of the
Pr3+ �3 doublet do not linearly couple to the magnetic
field. The leading term is a quadratic-in-field coupling
to the quadrupolar moment originating at second or-
der perturbation theory in ~h · ~J . This leads to nonzero
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FIG. 1. Ground state phase diagram for the J1-J2-K
model for fixed J1 = +1, showing various ordered quadrupo-
lar phases (NQ=Néel quadrupolar, SpQ=spiral quadrupo-
lar) as well as coexisting octupolar order (NO=Néel octupo-
lar). For J1 = �1, the phase diagram is identical but phases
get relabelled as NQ ! FQ (ferroquadrupolar) and NO!

FO (ferrooctupolar). Solid lines are T = 0 mean field phase
boundaries, points are obtained fromMonte Carlo (MC) sim-
ulations on system sizes L = 8 (1024 spins) showing excellent
agreement. Color indicates regions where we find two-stage
thermal ordering in MC; the scale shows which broken sym-
metry (quadrupolar/octupolar) has a higher transition tem-
perature. The “stars” indicate regions where we tentatively
place the PrTM2Al20 materials (with J1 < 0 for PrTi2Al20
and J1 > 0 for PrV2Al20).

of which we find the energy per site in the classical limit
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Nsite
= �2(J1 � 18K⌘2)(1� ⌘2)F (�,q) + 2J1�⌘

2

+ 6J2�⌘
2 + 2J2(1� ⌘2)G(q) . (3)

Minimizing this variational energy with respect to
(q,�, ⌘), we arrive at the T = 0 phase diagram, with
phase boundaries depicted by solid lines in Fig. 1 for
the choice � = 0. Along the line K = 0, this phase
diagram is identical with previous results obtained for
Heisenberg spins on the diamond lattice, where J2/J1>
1/8 drives a Néel to incommensurate spiral transition
[49, 50]. Our new results show that K 6= 0 can in-
duce NQ/SpQ phases which coexist with Ising NO or-
der; we find qualitatively similar results for generic
� < 1 (see Supplemental Material). For J1 < 0, the
NQ/NO phases get replaced by FQ/FO phases, while
the spiral is modified by flipping ~⌧ on one sublattice.

We have checked the T = 0 phase diagram in Fig. 1
using classical Monte Carlo (MC) simulations for system
sizes up to L=8 (with 2L3=1024 spins) down to T/J1=
0.001 at a large number of depicted points. The distinct
ground states are best visualized in common origin plots
of the spin vectors of configuration snapshots in the MC
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FIG. 2. Common-origin plots of the spin vectors in con-
figuration snapshots from Monte Carlo simulations visualize
the nature of the low-temperature ordering in the ground-
state phase diagram of the J1-J2-K model in the J2-K plane.

simulation as shown in Fig. 2. Depending on the ⌧z-
order of the phase, characteristic ~⌧?-features (such as
a ring for the spiral phase) are shifted along the z-axis
in the common origin plot. The MC simulations clearly
confirm our mean field ground state phase diagram.

Thermal transitions.— In order to explore the phase
diagram of this model at nonzero temperatures, we have
carried out extensive MC simulations for various system
sizes and across a broad temperature regime. Fig. 3(a)
shows the phase diagram in the J2-T plane at fixed
J1 = 1,K = 0.15. We find that both the NQNO and
the SpQNO phases generically undergo multiple phase
transitions enroute to the high temperature paramag-
net, with intervening phases which have pure octupolar
or quadrupolar order. We deduce the existence of such
transitions via peaks in the specific heat versus tem-
perature, as illustrated in Fig. 3(b) for J2 = 0, which
get sharper with increasing system size. The nature of
the phases can be deduced from common origin plots of
snapshot MC configurations as shown for the NQNO,
NQ, and paramagnetic phases in Fig. 3(b). Using ex-
tensive MC simulations of this sort over a wide range
of parameters, we have compiled a detailed map of the
two phase transitions, as shown in Fig. 1 with the color
scale indicating regions where, upon lowering tempera-
ture, quadrupolar ~⌧? orders first (red, TQ � TO > 0) or
octupolar ⌧z orders first (blue, TQ � TO < 0).

Magnetic field e↵ect.— We next turn to the impact
of an applied magnetic field as a further way to dis-
tinguish FQ from AFQ order. We begin by noting
that the quadrupolar and octupolar moments of the
Pr3+ �3 doublet do not linearly couple to the magnetic
field. The leading term is a quadratic-in-field coupling
to the quadrupolar moment originating at second or-
der perturbation theory in ~h · ~J . This leads to nonzero
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FIG. 1. Ground state phase diagram for the J1-J2-K
model for fixed J1 = +1, showing various ordered quadrupo-
lar phases (NQ=Néel quadrupolar, SpQ=spiral quadrupo-
lar) as well as coexisting octupolar order (NO=Néel octupo-
lar). For J1 = �1, the phase diagram is identical but phases
get relabelled as NQ ! FQ (ferroquadrupolar) and NO!

FO (ferrooctupolar). Solid lines are T = 0 mean field phase
boundaries, points are obtained fromMonte Carlo (MC) sim-
ulations on system sizes L = 8 (1024 spins) showing excellent
agreement. Color indicates regions where we find two-stage
thermal ordering in MC; the scale shows which broken sym-
metry (quadrupolar/octupolar) has a higher transition tem-
perature. The “stars” indicate regions where we tentatively
place the PrTM2Al20 materials (with J1 < 0 for PrTi2Al20
and J1 > 0 for PrV2Al20).

of which we find the energy per site in the classical limit
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= �2(J1 � 18K⌘2)(1� ⌘2)F (�,q) + 2J1�⌘

2

+ 6J2�⌘
2 + 2J2(1� ⌘2)G(q) . (3)

Minimizing this variational energy with respect to
(q,�, ⌘), we arrive at the T = 0 phase diagram, with
phase boundaries depicted by solid lines in Fig. 1 for
the choice � = 0. Along the line K = 0, this phase
diagram is identical with previous results obtained for
Heisenberg spins on the diamond lattice, where J2/J1>
1/8 drives a Néel to incommensurate spiral transition
[49, 50]. Our new results show that K 6= 0 can in-
duce NQ/SpQ phases which coexist with Ising NO or-
der; we find qualitatively similar results for generic
� < 1 (see Supplemental Material). For J1 < 0, the
NQ/NO phases get replaced by FQ/FO phases, while
the spiral is modified by flipping ~⌧ on one sublattice.

We have checked the T = 0 phase diagram in Fig. 1
using classical Monte Carlo (MC) simulations for system
sizes up to L=8 (with 2L3=1024 spins) down to T/J1=
0.001 at a large number of depicted points. The distinct
ground states are best visualized in common origin plots
of the spin vectors of configuration snapshots in the MC
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FIG. 2. Common-origin plots of the spin vectors in con-
figuration snapshots from Monte Carlo simulations visualize
the nature of the low-temperature ordering in the ground-
state phase diagram of the J1-J2-K model in the J2-K plane.

simulation as shown in Fig. 2. Depending on the ⌧z-
order of the phase, characteristic ~⌧?-features (such as
a ring for the spiral phase) are shifted along the z-axis
in the common origin plot. The MC simulations clearly
confirm our mean field ground state phase diagram.

Thermal transitions.— In order to explore the phase
diagram of this model at nonzero temperatures, we have
carried out extensive MC simulations for various system
sizes and across a broad temperature regime. Fig. 3(a)
shows the phase diagram in the J2-T plane at fixed
J1 = 1,K = 0.15. We find that both the NQNO and
the SpQNO phases generically undergo multiple phase
transitions enroute to the high temperature paramag-
net, with intervening phases which have pure octupolar
or quadrupolar order. We deduce the existence of such
transitions via peaks in the specific heat versus tem-
perature, as illustrated in Fig. 3(b) for J2 = 0, which
get sharper with increasing system size. The nature of
the phases can be deduced from common origin plots of
snapshot MC configurations as shown for the NQNO,
NQ, and paramagnetic phases in Fig. 3(b). Using ex-
tensive MC simulations of this sort over a wide range
of parameters, we have compiled a detailed map of the
two phase transitions, as shown in Fig. 1 with the color
scale indicating regions where, upon lowering tempera-
ture, quadrupolar ~⌧? orders first (red, TQ � TO > 0) or
octupolar ⌧z orders first (blue, TQ � TO < 0).

Magnetic field e↵ect.— We next turn to the impact
of an applied magnetic field as a further way to dis-
tinguish FQ from AFQ order. We begin by noting
that the quadrupolar and octupolar moments of the
Pr3+ �3 doublet do not linearly couple to the magnetic
field. The leading term is a quadratic-in-field coupling
to the quadrupolar moment originating at second or-
der perturbation theory in ~h · ~J . This leads to nonzero
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FIG. 1. Ground state phase diagram for the J1-J2-K
model for fixed J1 = +1, showing various ordered quadrupo-
lar phases (NQ=Néel quadrupolar, SpQ=spiral quadrupo-
lar) as well as coexisting octupolar order (NO=Néel octupo-
lar). For J1 = �1, the phase diagram is identical but phases
get relabelled as NQ ! FQ (ferroquadrupolar) and NO!

FO (ferrooctupolar). Solid lines are T = 0 mean field phase
boundaries, points are obtained fromMonte Carlo (MC) sim-
ulations on system sizes L = 8 (1024 spins) showing excellent
agreement. Color indicates regions where we find two-stage
thermal ordering in MC; the scale shows which broken sym-
metry (quadrupolar/octupolar) has a higher transition tem-
perature. The “stars” indicate regions where we tentatively
place the PrTM2Al20 materials (with J1 < 0 for PrTi2Al20
and J1 > 0 for PrV2Al20).

of which we find the energy per site in the classical limit
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= �2(J1 � 18K⌘2)(1� ⌘2)F (�,q) + 2J1�⌘

2

+ 6J2�⌘
2 + 2J2(1� ⌘2)G(q) . (3)

Minimizing this variational energy with respect to
(q,�, ⌘), we arrive at the T = 0 phase diagram, with
phase boundaries depicted by solid lines in Fig. 1 for
the choice � = 0. Along the line K = 0, this phase
diagram is identical with previous results obtained for
Heisenberg spins on the diamond lattice, where J2/J1>
1/8 drives a Néel to incommensurate spiral transition
[49, 50]. Our new results show that K 6= 0 can in-
duce NQ/SpQ phases which coexist with Ising NO or-
der; we find qualitatively similar results for generic
� < 1 (see Supplemental Material). For J1 < 0, the
NQ/NO phases get replaced by FQ/FO phases, while
the spiral is modified by flipping ~⌧ on one sublattice.

We have checked the T = 0 phase diagram in Fig. 1
using classical Monte Carlo (MC) simulations for system
sizes up to L=8 (with 2L3=1024 spins) down to T/J1=
0.001 at a large number of depicted points. The distinct
ground states are best visualized in common origin plots
of the spin vectors of configuration snapshots in the MC
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FIG. 2. Common-origin plots of the spin vectors in con-
figuration snapshots from Monte Carlo simulations visualize
the nature of the low-temperature ordering in the ground-
state phase diagram of the J1-J2-K model in the J2-K plane.

simulation as shown in Fig. 2. Depending on the ⌧z-
order of the phase, characteristic ~⌧?-features (such as
a ring for the spiral phase) are shifted along the z-axis
in the common origin plot. The MC simulations clearly
confirm our mean field ground state phase diagram.

Thermal transitions.— In order to explore the phase
diagram of this model at nonzero temperatures, we have
carried out extensive MC simulations for various system
sizes and across a broad temperature regime. Fig. 3(a)
shows the phase diagram in the J2-T plane at fixed
J1 = 1,K = 0.15. We find that both the NQNO and
the SpQNO phases generically undergo multiple phase
transitions enroute to the high temperature paramag-
net, with intervening phases which have pure octupolar
or quadrupolar order. We deduce the existence of such
transitions via peaks in the specific heat versus tem-
perature, as illustrated in Fig. 3(b) for J2 = 0, which
get sharper with increasing system size. The nature of
the phases can be deduced from common origin plots of
snapshot MC configurations as shown for the NQNO,
NQ, and paramagnetic phases in Fig. 3(b). Using ex-
tensive MC simulations of this sort over a wide range
of parameters, we have compiled a detailed map of the
two phase transitions, as shown in Fig. 1 with the color
scale indicating regions where, upon lowering tempera-
ture, quadrupolar ~⌧? orders first (red, TQ � TO > 0) or
octupolar ⌧z orders first (blue, TQ � TO < 0).

Magnetic field e↵ect.— We next turn to the impact
of an applied magnetic field as a further way to dis-
tinguish FQ from AFQ order. We begin by noting
that the quadrupolar and octupolar moments of the
Pr3+ �3 doublet do not linearly couple to the magnetic
field. The leading term is a quadratic-in-field coupling
to the quadrupolar moment originating at second or-
der perturbation theory in ~h · ~J . This leads to nonzero
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FIG. 1. Ground state phase diagram for the J1-J2-K
model for fixed J1 = +1, showing various ordered quadrupo-
lar phases (NQ=Néel quadrupolar, SpQ=spiral quadrupo-
lar) as well as coexisting octupolar order (NO=Néel octupo-
lar). For J1 = �1, the phase diagram is identical but phases
get relabelled as NQ ! FQ (ferroquadrupolar) and NO!

FO (ferrooctupolar). Solid lines are T = 0 mean field phase
boundaries, points are obtained fromMonte Carlo (MC) sim-
ulations on system sizes L = 8 (1024 spins) showing excellent
agreement. Color indicates regions where we find two-stage
thermal ordering in MC; the scale shows which broken sym-
metry (quadrupolar/octupolar) has a higher transition tem-
perature. The “stars” indicate regions where we tentatively
place the PrTM2Al20 materials (with J1 < 0 for PrTi2Al20
and J1 > 0 for PrV2Al20).
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Minimizing this variational energy with respect to
(q,�, ⌘), we arrive at the T = 0 phase diagram, with
phase boundaries depicted by solid lines in Fig. 1 for
the choice � = 0. Along the line K = 0, this phase
diagram is identical with previous results obtained for
Heisenberg spins on the diamond lattice, where J2/J1>
1/8 drives a Néel to incommensurate spiral transition
[49, 50]. Our new results show that K 6= 0 can in-
duce NQ/SpQ phases which coexist with Ising NO or-
der; we find qualitatively similar results for generic
� < 1 (see Supplemental Material). For J1 < 0, the
NQ/NO phases get replaced by FQ/FO phases, while
the spiral is modified by flipping ~⌧ on one sublattice.

We have checked the T = 0 phase diagram in Fig. 1
using classical Monte Carlo (MC) simulations for system
sizes up to L=8 (with 2L3=1024 spins) down to T/J1=
0.001 at a large number of depicted points. The distinct
ground states are best visualized in common origin plots
of the spin vectors of configuration snapshots in the MC
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FIG. 2. Common-origin plots of the spin vectors in con-
figuration snapshots from Monte Carlo simulations visualize
the nature of the low-temperature ordering in the ground-
state phase diagram of the J1-J2-K model in the J2-K plane.

simulation as shown in Fig. 2. Depending on the ⌧z-
order of the phase, characteristic ~⌧?-features (such as
a ring for the spiral phase) are shifted along the z-axis
in the common origin plot. The MC simulations clearly
confirm our mean field ground state phase diagram.

Thermal transitions.— In order to explore the phase
diagram of this model at nonzero temperatures, we have
carried out extensive MC simulations for various system
sizes and across a broad temperature regime. Fig. 3(a)
shows the phase diagram in the J2-T plane at fixed
J1 = 1,K = 0.15. We find that both the NQNO and
the SpQNO phases generically undergo multiple phase
transitions enroute to the high temperature paramag-
net, with intervening phases which have pure octupolar
or quadrupolar order. We deduce the existence of such
transitions via peaks in the specific heat versus tem-
perature, as illustrated in Fig. 3(b) for J2 = 0, which
get sharper with increasing system size. The nature of
the phases can be deduced from common origin plots of
snapshot MC configurations as shown for the NQNO,
NQ, and paramagnetic phases in Fig. 3(b). Using ex-
tensive MC simulations of this sort over a wide range
of parameters, we have compiled a detailed map of the
two phase transitions, as shown in Fig. 1 with the color
scale indicating regions where, upon lowering tempera-
ture, quadrupolar ~⌧? orders first (red, TQ � TO > 0) or
octupolar ⌧z orders first (blue, TQ � TO < 0).

Magnetic field e↵ect.— We next turn to the impact
of an applied magnetic field as a further way to dis-
tinguish FQ from AFQ order. We begin by noting
that the quadrupolar and octupolar moments of the
Pr3+ �3 doublet do not linearly couple to the magnetic
field. The leading term is a quadratic-in-field coupling
to the quadrupolar moment originating at second or-
der perturbation theory in ~h · ~J . This leads to nonzero
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FIG. 1. Ground state phase diagram for the J1-J2-K
model for fixed J1 = +1, showing various ordered quadrupo-
lar phases (NQ=Néel quadrupolar, SpQ=spiral quadrupo-
lar) as well as coexisting octupolar order (NO=Néel octupo-
lar). For J1 = �1, the phase diagram is identical but phases
get relabelled as NQ ! FQ (ferroquadrupolar) and NO!

FO (ferrooctupolar). Solid lines are T = 0 mean field phase
boundaries, points are obtained fromMonte Carlo (MC) sim-
ulations on system sizes L = 8 (1024 spins) showing excellent
agreement. Color indicates regions where we find two-stage
thermal ordering in MC; the scale shows which broken sym-
metry (quadrupolar/octupolar) has a higher transition tem-
perature. The “stars” indicate regions where we tentatively
place the PrTM2Al20 materials (with J1 < 0 for PrTi2Al20
and J1 > 0 for PrV2Al20).

of which we find the energy per site in the classical limit

Ecl

Nsite
= �2(J1 � 18K⌘2)(1� ⌘2)F (�,q) + 2J1�⌘

2

+ 6J2�⌘
2 + 2J2(1� ⌘2)G(q) . (3)

Minimizing this variational energy with respect to
(q,�, ⌘), we arrive at the T = 0 phase diagram, with
phase boundaries depicted by solid lines in Fig. 1 for
the choice � = 0. Along the line K = 0, this phase
diagram is identical with previous results obtained for
Heisenberg spins on the diamond lattice, where J2/J1>
1/8 drives a Néel to incommensurate spiral transition
[49, 50]. Our new results show that K 6= 0 can in-
duce NQ/SpQ phases which coexist with Ising NO or-
der; we find qualitatively similar results for generic
� < 1 (see Supplemental Material). For J1 < 0, the
NQ/NO phases get replaced by FQ/FO phases, while
the spiral is modified by flipping ~⌧ on one sublattice.

We have checked the T = 0 phase diagram in Fig. 1
using classical Monte Carlo (MC) simulations for system
sizes up to L=8 (with 2L3=1024 spins) down to T/J1=
0.001 at a large number of depicted points. The distinct
ground states are best visualized in common origin plots
of the spin vectors of configuration snapshots in the MC
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FIG. 2. Common-origin plots of the spin vectors in con-
figuration snapshots from Monte Carlo simulations visualize
the nature of the low-temperature ordering in the ground-
state phase diagram of the J1-J2-K model in the J2-K plane.

simulation as shown in Fig. 2. Depending on the ⌧z-
order of the phase, characteristic ~⌧?-features (such as
a ring for the spiral phase) are shifted along the z-axis
in the common origin plot. The MC simulations clearly
confirm our mean field ground state phase diagram.

Thermal transitions.— In order to explore the phase
diagram of this model at nonzero temperatures, we have
carried out extensive MC simulations for various system
sizes and across a broad temperature regime. Fig. 3(a)
shows the phase diagram in the J2-T plane at fixed
J1 = 1,K = 0.15. We find that both the NQNO and
the SpQNO phases generically undergo multiple phase
transitions enroute to the high temperature paramag-
net, with intervening phases which have pure octupolar
or quadrupolar order. We deduce the existence of such
transitions via peaks in the specific heat versus tem-
perature, as illustrated in Fig. 3(b) for J2 = 0, which
get sharper with increasing system size. The nature of
the phases can be deduced from common origin plots of
snapshot MC configurations as shown for the NQNO,
NQ, and paramagnetic phases in Fig. 3(b). Using ex-
tensive MC simulations of this sort over a wide range
of parameters, we have compiled a detailed map of the
two phase transitions, as shown in Fig. 1 with the color
scale indicating regions where, upon lowering tempera-
ture, quadrupolar ~⌧? orders first (red, TQ � TO > 0) or
octupolar ⌧z orders first (blue, TQ � TO < 0).

Magnetic field e↵ect.— We next turn to the impact
of an applied magnetic field as a further way to dis-
tinguish FQ from AFQ order. We begin by noting
that the quadrupolar and octupolar moments of the
Pr3+ �3 doublet do not linearly couple to the magnetic
field. The leading term is a quadratic-in-field coupling
to the quadrupolar moment originating at second or-
der perturbation theory in ~h · ~J . This leads to nonzero
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FIG. 3. (a) Finite-temperature phase diagram as a
function of J2 for fixed J1 = +1,K = 0.15. The phase
diagram is deduced from specific heat calculations which de-
tects the phase transitions, and from common origin plots
which show the nature of the phases. (b) Illustrative plot of
the specific heat versus temperature for J1 = +1, K = 0.15,
for fixed J2 = 0 (in the NQNO phase) for various system
sizes. Also shown are the common origin plots depicting the
evolution from paramagnetic to NQ to NQNO order.

matrix elements in the �3 doublet with intermediate
states arising from excited crystal field levels as Hh =
P
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The form of the coupling is simply understood on sym-
metry grounds; since the quadrupolar moments trans-
form like an eg doublet, the magnetic field couples
to these moments with the same symmetries. Our
model Eq. (2) has an XY symmetry, so that magnetic
fields along (100) direction or (110) direction act in an
identical manner. However, the quadratic-in-field cou-
pling to the quadrupole moment vanishes for a mag-
netic field along the (111) direction; instead, for this
direction, the dominant term is a cubic-in-field coupling
⇠ h3(ĥxĥyĥz)⌧z to the octupolar moment.

In order to illustrate the e↵ect of the dominant
coupling to the quadrupolar order, Fig. 4 shows the
(100) magnetic field dependence for the FQ and
NQNO phases which are presumed to be relevant to

FIG. 4. Response of the FQ and NQNO phases to a
[100] magnetic field. (a) Evolution of the transition tem-
perature TQ for the FQ state at zero field into a crossover line
for nonzero field along [100] direction. The crossover tem-
perature in (a) is obtained from specific heat scans as shown
in (b), where the sharp peak signaling the transition at zero
field becomes a rounded peak for nonzero h. (c) Evolution
of transition temperatures TQ and TO for the NQNO state.
In this case, the zero field transitions, signaled by the sharp
specific heat peaks in (d), survive even for h 6= 0, with the
field suppressing TO more strongly than TQ.

PrTi2Al20 and PrV2Al20, respectively. In the absence
of an applied field, there is a direct continuous tran-
sition from the paramagnet into the FQ phase, but
the (100) magnetic field converts this into a crossover,
the crossover temperature increasing with the field as
seen in Figs. 4a) and b). On the other hand, for the
NQNO phase, both the phase transitions (paramagnet
to NQ and NQ to NQNO) survive, and the transition
temperatures decrease with increasing field. For this
model, we find that the lower temperature transition
(NQ to NQNO) decreases more rapidly than the higher
temperature transition. This can be understood based
on Landau theory which will be discussed in Ref. 51
along with a detailed analysis for other field directions.

Comparison to experiment.— PrTi2Al20 exhibits a sin-
gle phase transition from the paramagnetic phase into
a broken symmetry FQ phase at Tc ⇡ 2K, as identi-
fied from the fact that the sharp transition becomes a
crossover in the presence of a magnetic field [21, 22].
As seen in Fig. 1, the phase diagram with a ferromag-
netic J1 and a small J2,K > 0 shows a (white) region
with a single transition from the paramagnet into the
FQ phase, which becomes a crossover in a nonzero (100)
field as shown above. We thus place the parameters for
the pseudospin-1/2 model for PrTi2Al20 in this region.
Contrary to a single phase transition seen in PrTi2Al20,

TQ To 

double transitions 



Comparison with Pr(Ti,V)2Al20

 Multipolar order and finite T transitions
3

FIG. 1. Ground state phase diagram for the J1-J2-K
model for fixed J1 = +1, showing various ordered quadrupo-
lar phases (NQ=Néel quadrupolar, SpQ=spiral quadrupo-
lar) as well as coexisting octupolar order (NO=Néel octupo-
lar). For J1 = �1, the phase diagram is identical but phases
get relabelled as NQ ! FQ (ferroquadrupolar) and NO!

FO (ferrooctupolar). Solid lines are T = 0 mean field phase
boundaries, points are obtained fromMonte Carlo (MC) sim-
ulations on system sizes L = 8 (1024 spins) showing excellent
agreement. Color indicates regions where we find two-stage
thermal ordering in MC; the scale shows which broken sym-
metry (quadrupolar/octupolar) has a higher transition tem-
perature. The “stars” indicate regions where we tentatively
place the PrTM2Al20 materials (with J1 < 0 for PrTi2Al20
and J1 > 0 for PrV2Al20).

of which we find the energy per site in the classical limit

Ecl

Nsite
= �2(J1 � 18K⌘2)(1� ⌘2)F (�,q) + 2J1�⌘

2

+ 6J2�⌘
2 + 2J2(1� ⌘2)G(q) . (3)

Minimizing this variational energy with respect to
(q,�, ⌘), we arrive at the T = 0 phase diagram, with
phase boundaries depicted by solid lines in Fig. 1 for
the choice � = 0. Along the line K = 0, this phase
diagram is identical with previous results obtained for
Heisenberg spins on the diamond lattice, where J2/J1>
1/8 drives a Néel to incommensurate spiral transition
[49, 50]. Our new results show that K 6= 0 can in-
duce NQ/SpQ phases which coexist with Ising NO or-
der; we find qualitatively similar results for generic
� < 1 (see Supplemental Material). For J1 < 0, the
NQ/NO phases get replaced by FQ/FO phases, while
the spiral is modified by flipping ~⌧ on one sublattice.

We have checked the T = 0 phase diagram in Fig. 1
using classical Monte Carlo (MC) simulations for system
sizes up to L=8 (with 2L3=1024 spins) down to T/J1=
0.001 at a large number of depicted points. The distinct
ground states are best visualized in common origin plots
of the spin vectors of configuration snapshots in the MC
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FIG. 2. Common-origin plots of the spin vectors in con-
figuration snapshots from Monte Carlo simulations visualize
the nature of the low-temperature ordering in the ground-
state phase diagram of the J1-J2-K model in the J2-K plane.

simulation as shown in Fig. 2. Depending on the ⌧z-
order of the phase, characteristic ~⌧?-features (such as
a ring for the spiral phase) are shifted along the z-axis
in the common origin plot. The MC simulations clearly
confirm our mean field ground state phase diagram.

Thermal transitions.— In order to explore the phase
diagram of this model at nonzero temperatures, we have
carried out extensive MC simulations for various system
sizes and across a broad temperature regime. Fig. 3(a)
shows the phase diagram in the J2-T plane at fixed
J1 = 1,K = 0.15. We find that both the NQNO and
the SpQNO phases generically undergo multiple phase
transitions enroute to the high temperature paramag-
net, with intervening phases which have pure octupolar
or quadrupolar order. We deduce the existence of such
transitions via peaks in the specific heat versus tem-
perature, as illustrated in Fig. 3(b) for J2 = 0, which
get sharper with increasing system size. The nature of
the phases can be deduced from common origin plots of
snapshot MC configurations as shown for the NQNO,
NQ, and paramagnetic phases in Fig. 3(b). Using ex-
tensive MC simulations of this sort over a wide range
of parameters, we have compiled a detailed map of the
two phase transitions, as shown in Fig. 1 with the color
scale indicating regions where, upon lowering tempera-
ture, quadrupolar ~⌧? orders first (red, TQ � TO > 0) or
octupolar ⌧z orders first (blue, TQ � TO < 0).

Magnetic field e↵ect.— We next turn to the impact
of an applied magnetic field as a further way to dis-
tinguish FQ from AFQ order. We begin by noting
that the quadrupolar and octupolar moments of the
Pr3+ �3 doublet do not linearly couple to the magnetic
field. The leading term is a quadratic-in-field coupling
to the quadrupolar moment originating at second or-
der perturbation theory in ~h · ~J . This leads to nonzero
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FIG. 3. (a) Finite-temperature phase diagram as a
function of J2 for fixed J1 = +1,K = 0.15. The phase
diagram is deduced from specific heat calculations which de-
tects the phase transitions, and from common origin plots
which show the nature of the phases. (b) Illustrative plot of
the specific heat versus temperature for J1 = +1, K = 0.15,
for fixed J2 = 0 (in the NQNO phase) for various system
sizes. Also shown are the common origin plots depicting the
evolution from paramagnetic to NQ to NQNO order.

matrix elements in the �3 doublet with intermediate
states arising from excited crystal field levels as Hh =
P
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The form of the coupling is simply understood on sym-
metry grounds; since the quadrupolar moments trans-
form like an eg doublet, the magnetic field couples
to these moments with the same symmetries. Our
model Eq. (2) has an XY symmetry, so that magnetic
fields along (100) direction or (110) direction act in an
identical manner. However, the quadratic-in-field cou-
pling to the quadrupole moment vanishes for a mag-
netic field along the (111) direction; instead, for this
direction, the dominant term is a cubic-in-field coupling
⇠ h3(ĥxĥyĥz)⌧z to the octupolar moment.

In order to illustrate the e↵ect of the dominant
coupling to the quadrupolar order, Fig. 4 shows the
(100) magnetic field dependence for the FQ and
NQNO phases which are presumed to be relevant to

FIG. 4. Response of the FQ and NQNO phases to a
[100] magnetic field. (a) Evolution of the transition tem-
perature TQ for the FQ state at zero field into a crossover line
for nonzero field along [100] direction. The crossover tem-
perature in (a) is obtained from specific heat scans as shown
in (b), where the sharp peak signaling the transition at zero
field becomes a rounded peak for nonzero h. (c) Evolution
of transition temperatures TQ and TO for the NQNO state.
In this case, the zero field transitions, signaled by the sharp
specific heat peaks in (d), survive even for h 6= 0, with the
field suppressing TO more strongly than TQ.

PrTi2Al20 and PrV2Al20, respectively. In the absence
of an applied field, there is a direct continuous tran-
sition from the paramagnet into the FQ phase, but
the (100) magnetic field converts this into a crossover,
the crossover temperature increasing with the field as
seen in Figs. 4a) and b). On the other hand, for the
NQNO phase, both the phase transitions (paramagnet
to NQ and NQ to NQNO) survive, and the transition
temperatures decrease with increasing field. For this
model, we find that the lower temperature transition
(NQ to NQNO) decreases more rapidly than the higher
temperature transition. This can be understood based
on Landau theory which will be discussed in Ref. 51
along with a detailed analysis for other field directions.

Comparison to experiment.— PrTi2Al20 exhibits a sin-
gle phase transition from the paramagnetic phase into
a broken symmetry FQ phase at Tc ⇡ 2K, as identi-
fied from the fact that the sharp transition becomes a
crossover in the presence of a magnetic field [21, 22].
As seen in Fig. 1, the phase diagram with a ferromag-
netic J1 and a small J2,K > 0 shows a (white) region
with a single transition from the paramagnet into the
FQ phase, which becomes a crossover in a nonzero (100)
field as shown above. We thus place the parameters for
the pseudospin-1/2 model for PrTi2Al20 in this region.
Contrary to a single phase transition seen in PrTi2Al20,
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purity sample, which includes [100] and [110] crystalline
domains. Indeed, the high-purity sample shows no splitting,
as will be shown later in Fig. 24(a), and the AFQ order
collapses at around 5T for B k ½100". The critical fields of
the AFQ order for B k ½110" and [111] are much higher than
that for [100], which will be discussed in the next subsection,
as PrRh2Zn20 exhibits similar anisotropy.16,17) Note that the
increase in TQ in magnetic fields is similar to that of the AFQ
order in PrPb3,32,33,50) which can be understood by taking
account of the gain in the interaction energies of the field-
induced multipoles68) and=or the suppression of multipolar
fluctuations due to magnetic fields.69,70) The properties of
the quadrupole order including the critical magnetic-field
strengths for the three principal axes are summarized in
Table III.

Firm evidence for the AFQ order has been obtained by
ultrasonic measurements.17) For example, hardening of the
!3-type elastic modulus, C!3 , at the onset of TQ indicates
quenching of the quadrupole moment due to ordering. Here,
the elastic modulus C!3

ðTÞ is analyzed by the following
expression:

C!3
ðTÞ ¼ & NPrg

2
!3

!quadðTÞ
1 & g0!3

!quadðTÞ
þ C0ðTÞ; ð3Þ

where NPr ¼ 2:751 ( 1027m−3 is the density of Pr ions at
room temperature, C0ðTÞ is the background stiffness, and
!quadðTÞ is the irreducible quadrupolar susceptibility. !quadðTÞ
is evaluated by the effective Hamiltonian,

Heff ¼ HCEF & g!3
O!3

"!3
& g0!3

O!3
hO!3

i; ð4Þ

where the second term is the quadrupole-strain coupling in
the !3 mode and the third term represents the intersite
interaction between the quadrupoles adopted by the molecu-
lar-field approximation with a thermal average of hO!3i. The
analysis of the elastic constant indicates the AFQ interaction
of g0!3

¼ & 0:13K as shown in Table III. It is useful to
apply Levy’s criterion, D ) jg0!3

C0=NPrg2!3
j, to evaluate

the importance of the intersite quadrupolar interaction as
compared with the cooperative Jahn-Teller effect. The
obtained value of D ¼ 181 * 1 together with the negative
value of the quadrupolar interaction g0!3

is a clear indication
of the AFQ order.

Very recently, the AFQ phase was investigated by neutron
diffraction measurements of single-crystalline samples. Field-
induced magnetic reflections were observed at q ¼ ð1=2;
1=2; 1=2Þ and its equivalents under magnetic fields applied
along the ½"110" axis. The q dependence of the intensity
suggests that AF-type field-induced magnetic dipoles are
oriented approximately along the [111] direction perpendic-
ular to the magnetic field.71) The results are consistent with
the primary order parameter being the !3-type quadrupole.
This is the first direct observation of the AFQ ordered
structure under Td symmetry. On the other hand, the
quadrupoles do not form a simple two-sublattice in the
AFQ ordered phase. Details on the quadrupole alignments
and the AFQ order parameters will be reported elsewhere.

4.2 PrRh2Zn20 (AFQ)
PrRh2Zn20 exhibits a structural transition between Ts of

170 and 470K.59) Nevertheless, the local symmetry at the Pr
sites remains as cubic T symmetry. Indeed, the doublet
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Fig. 10. (Color online) B–T phase diagram of PrIr2Zn20 for B k ½100"
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Table III. Properties of the quadrupole orders of Pr 1-2-20. g0!3
is the

intersite quadrupolar interaction for the !3-type mode evaluated by ultrasonic
measurements. In PrTi2Al20, the phase boundary becomes a crossover as it is
the FQ order. (+) A high-field phase exists for PrV2Al20 above 11T along the
[100] axis.65) (++) The value was estimated from the transverse mode of
CTðTÞ ¼ ðC11 & C12 þ C44Þ=3 along the [111] axis by neglecting the C44

mode with the !5 symmetry, where only the [111] axis is accessible because
of the shape of a single-crystalline sample.

Compound
TQ

(K)
B½100"
c ð0Þ
(T)

B½110"
c ð0Þ
(T)

B½111"
c ð0Þ
(T)

g0!3

(K)
Refs.

PrIr2Zn20 0.11 (AFQ) 5 10 11.5 −0.13 16, 17
PrRh2Zn20 0.06 (AFQ) 3 11.7 12.9 −2.33 19, 59
PrV2Al20 0.6 (AFQ) 11+ >9 11 21, 66
PrTi2Al20 2.0 (FQ) — — — 0.156++ 21, 62

B=0

8

4

0

S 
(J

/K
 m

ol
)

0.50.40.30.20.10

T (K)

15

10

5

0

C
 (J

/K
 m

ol
)

PrIr2Zn20
 

TQ=0.11 K

Rln2 

0.24

0.22

0.20

0.18

M
/B

 (µ
B/P

r T
)

0.40.20

6 T
5 T

4 T
3 T

8 T

10 T

B || [100]
TQ(B=0)B=

Fig. 9. (Color online) Temperature dependence of the specific heat of
PrIr2Zn20 in B k ½100".16) The inset shows the magnetization data for various
fields, which are vertically offset for clarity.

J. Phys. Soc. Jpn. 85, 082002 (2016) Invited Review Papers T. Onimaru and H. Kusunose

082002-7 ©2016 The Physical Society of Japan

J. Phys. Soc. Jpn. Downloaded from journals.jps.jp by Korea Advanced Institute of Science and Technology (KAIST) on 03/07/17

purity sample, which includes [100] and [110] crystalline
domains. Indeed, the high-purity sample shows no splitting,
as will be shown later in Fig. 24(a), and the AFQ order
collapses at around 5T for B k ½100". The critical fields of
the AFQ order for B k ½110" and [111] are much higher than
that for [100], which will be discussed in the next subsection,
as PrRh2Zn20 exhibits similar anisotropy.16,17) Note that the
increase in TQ in magnetic fields is similar to that of the AFQ
order in PrPb3,32,33,50) which can be understood by taking
account of the gain in the interaction energies of the field-
induced multipoles68) and=or the suppression of multipolar
fluctuations due to magnetic fields.69,70) The properties of
the quadrupole order including the critical magnetic-field
strengths for the three principal axes are summarized in
Table III.

Firm evidence for the AFQ order has been obtained by
ultrasonic measurements.17) For example, hardening of the
!3-type elastic modulus, C!3 , at the onset of TQ indicates
quenching of the quadrupole moment due to ordering. Here,
the elastic modulus C!3

ðTÞ is analyzed by the following
expression:

C!3
ðTÞ ¼ & NPrg

2
!3

!quadðTÞ
1 & g0!3

!quadðTÞ
þ C0ðTÞ; ð3Þ

where NPr ¼ 2:751 ( 1027m−3 is the density of Pr ions at
room temperature, C0ðTÞ is the background stiffness, and
!quadðTÞ is the irreducible quadrupolar susceptibility. !quadðTÞ
is evaluated by the effective Hamiltonian,

Heff ¼ HCEF & g!3
O!3

"!3
& g0!3

O!3
hO!3

i; ð4Þ

where the second term is the quadrupole-strain coupling in
the !3 mode and the third term represents the intersite
interaction between the quadrupoles adopted by the molecu-
lar-field approximation with a thermal average of hO!3i. The
analysis of the elastic constant indicates the AFQ interaction
of g0!3

¼ & 0:13K as shown in Table III. It is useful to
apply Levy’s criterion, D ) jg0!3

C0=NPrg2!3
j, to evaluate

the importance of the intersite quadrupolar interaction as
compared with the cooperative Jahn-Teller effect. The
obtained value of D ¼ 181 * 1 together with the negative
value of the quadrupolar interaction g0!3

is a clear indication
of the AFQ order.

Very recently, the AFQ phase was investigated by neutron
diffraction measurements of single-crystalline samples. Field-
induced magnetic reflections were observed at q ¼ ð1=2;
1=2; 1=2Þ and its equivalents under magnetic fields applied
along the ½"110" axis. The q dependence of the intensity
suggests that AF-type field-induced magnetic dipoles are
oriented approximately along the [111] direction perpendic-
ular to the magnetic field.71) The results are consistent with
the primary order parameter being the !3-type quadrupole.
This is the first direct observation of the AFQ ordered
structure under Td symmetry. On the other hand, the
quadrupoles do not form a simple two-sublattice in the
AFQ ordered phase. Details on the quadrupole alignments
and the AFQ order parameters will be reported elsewhere.

4.2 PrRh2Zn20 (AFQ)
PrRh2Zn20 exhibits a structural transition between Ts of

170 and 470K.59) Nevertheless, the local symmetry at the Pr
sites remains as cubic T symmetry. Indeed, the doublet
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Table III. Properties of the quadrupole orders of Pr 1-2-20. g0!3
is the

intersite quadrupolar interaction for the !3-type mode evaluated by ultrasonic
measurements. In PrTi2Al20, the phase boundary becomes a crossover as it is
the FQ order. (+) A high-field phase exists for PrV2Al20 above 11T along the
[100] axis.65) (++) The value was estimated from the transverse mode of
CTðTÞ ¼ ðC11 & C12 þ C44Þ=3 along the [111] axis by neglecting the C44

mode with the !5 symmetry, where only the [111] axis is accessible because
of the shape of a single-crystalline sample.

Compound
TQ

(K)
B½100"
c ð0Þ
(T)

B½110"
c ð0Þ
(T)

B½111"
c ð0Þ
(T)

g0!3

(K)
Refs.

PrIr2Zn20 0.11 (AFQ) 5 10 11.5 −0.13 16, 17
PrRh2Zn20 0.06 (AFQ) 3 11.7 12.9 −2.33 19, 59
PrV2Al20 0.6 (AFQ) 11+ >9 11 21, 66
PrTi2Al20 2.0 (FQ) — — — 0.156++ 21, 62
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ground state !23 has been confirmed by INS experiments,18)

and hence PrRh2Zn20 also provides a similar playground to
PrIr2Zn20.

Figure 11 shows the magnetic specific heat divided by
temperature, CmðTÞ=T,59 ) in which the peak at TQ ¼ 0:06K
indicates the onset of quadrupole order. In Fig. 11, the
magnetic entropy SðTÞ, evaluated by the integration of
CmðTÞ=T, is also shown by the blue solid line. The value
of S is R ln 2 at around 2K. On cooling, SðTÞ decreases
monotonically, and it reaches about 0:1R ln 2 at TQ. This
entropy release above TQ also suggests a quadrupolar Kondo
effect, similar to that of PrIr2Zn20. Moreover, the elastic
softening of the transverse modulus C!3 stops abruptly at TQ,
suggesting quenching of the quadrupole moment.19 ) The
intersite quadrupolar interaction was also estimated to be
compatible with the AFQ order. Nevertheless, in spite of the
fact that TQ of PrRh2Zn20 is about half that of PrIr2Zn20, the
absolute value of g0!3

is one order of magnitude larger than
that estimated for PrIr2Zn20 as shown in Table III. It remains
unclear why g0!3

is not compatible with TQ.
As will be shown below, the anisotropy of the AFQ

boundary in the B–T phase diagram for fields along the three
principal directions has a considerable role in the magnetic
intersite interaction as well as the quadrupolar interaction.
The B–T phase diagram is shown in Fig. 12(a), which was
determined by specific heat measurement.59 ) The anisotropy
of the enhanced TQ with increasing magnetic field, "T½B%

Q , is
given by "T½111%

Q > "T½110%
Q > "T½100%

Q , indicating that the
AFQ for B k ½111% is more stable than that for B k ½100%.
Using the CEF parameters determined in the paramagnetic
state (see Table II), the splitting of the !3 doublet by magnetic
fields, "½B%, shows the anisotropy "½111% < "½110% < "½100%.
Since the quadrupole order vanishes when the splitting "½B%

exceeds TQðB ¼ 0Þ, the present CEF model can explain the
tendency of the anisotropy of the AFQ boundary in the B–T
phase diagram. This CEF level scheme also reproduces the
observed anisotropy in the isothermal magnetization at 1.8K,
where M½100% exceeds M½110% and M½111% above 2T.

Figure 12(b) shows the B–T phase diagrams obtained by
MF calculation (dashed lines),59 ) in which the CEF parame-

ters W ¼ & 1:1K and x ¼ 0:46 and the quadrupolar inter-
action K!3

¼ & 0:0037K were used. The calculation based
on the CEF model qualitatively reproduces the anisotropic
boundary of the AFQ phase. However, the initial slope of
TQ as a function of B is not well reproduced. This drawback
is remedied by introducing the AF magnetic intersite
interaction K1 ¼ & 0:4K in addition to the quadrupolar
interaction. The resultant phase diagram is indicated by the
solid lines in Fig. 12(b). Now, TQ for B k ½100%, [110], and
[111] increases with increasing magnetic field up to B ¼ 1, 3,
and 5T, and the AFQ phase at T ¼ 0 closes at critical fields
of B ¼ 2:3, 4.0, and 6.3 T, respectively. In this way, the
mean-field calculation based on the CEF model semi-
quantitatively reproduces both the anisotropic boundary of
the AFQ phase and the initial slope of TQ under magnetic
fields. On the other hand, the calculated critical fields of the
AFQ ordered phase are much lower than the experimental
data. The quantitative disagreement is due to the simple two-
sublattice model, where only the isotropic magnetic and
quadrupole interactions were taken into consideration.
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ground state !23 has been confirmed by INS experiments,18)

and hence PrRh2Zn20 also provides a similar playground to
PrIr2Zn20.

Figure 11 shows the magnetic specific heat divided by
temperature, CmðTÞ=T,59 ) in which the peak at TQ ¼ 0:06K
indicates the onset of quadrupole order. In Fig. 11, the
magnetic entropy SðTÞ, evaluated by the integration of
CmðTÞ=T, is also shown by the blue solid line. The value
of S is R ln 2 at around 2K. On cooling, SðTÞ decreases
monotonically, and it reaches about 0:1R ln 2 at TQ. This
entropy release above TQ also suggests a quadrupolar Kondo
effect, similar to that of PrIr2Zn20. Moreover, the elastic
softening of the transverse modulus C!3 stops abruptly at TQ,
suggesting quenching of the quadrupole moment.19 ) The
intersite quadrupolar interaction was also estimated to be
compatible with the AFQ order. Nevertheless, in spite of the
fact that TQ of PrRh2Zn20 is about half that of PrIr2Zn20, the
absolute value of g0!3

is one order of magnitude larger than
that estimated for PrIr2Zn20 as shown in Table III. It remains
unclear why g0!3

is not compatible with TQ.
As will be shown below, the anisotropy of the AFQ

boundary in the B–T phase diagram for fields along the three
principal directions has a considerable role in the magnetic
intersite interaction as well as the quadrupolar interaction.
The B–T phase diagram is shown in Fig. 12(a), which was
determined by specific heat measurement.59 ) The anisotropy
of the enhanced TQ with increasing magnetic field, "T½B%

Q , is
given by "T½111%

Q > "T½110%
Q > "T½100%

Q , indicating that the
AFQ for B k ½111% is more stable than that for B k ½100%.
Using the CEF parameters determined in the paramagnetic
state (see Table II), the splitting of the !3 doublet by magnetic
fields, "½B%, shows the anisotropy "½111% < "½110% < "½100%.
Since the quadrupole order vanishes when the splitting "½B%

exceeds TQðB ¼ 0Þ, the present CEF model can explain the
tendency of the anisotropy of the AFQ boundary in the B–T
phase diagram. This CEF level scheme also reproduces the
observed anisotropy in the isothermal magnetization at 1.8K,
where M½100% exceeds M½110% and M½111% above 2T.

Figure 12(b) shows the B–T phase diagrams obtained by
MF calculation (dashed lines),59 ) in which the CEF parame-

ters W ¼ & 1:1K and x ¼ 0:46 and the quadrupolar inter-
action K!3

¼ & 0:0037K were used. The calculation based
on the CEF model qualitatively reproduces the anisotropic
boundary of the AFQ phase. However, the initial slope of
TQ as a function of B is not well reproduced. This drawback
is remedied by introducing the AF magnetic intersite
interaction K1 ¼ & 0:4K in addition to the quadrupolar
interaction. The resultant phase diagram is indicated by the
solid lines in Fig. 12(b). Now, TQ for B k ½100%, [110], and
[111] increases with increasing magnetic field up to B ¼ 1, 3,
and 5T, and the AFQ phase at T ¼ 0 closes at critical fields
of B ¼ 2:3, 4.0, and 6.3 T, respectively. In this way, the
mean-field calculation based on the CEF model semi-
quantitatively reproduces both the anisotropic boundary of
the AFQ phase and the initial slope of TQ under magnetic
fields. On the other hand, the calculated critical fields of the
AFQ ordered phase are much lower than the experimental
data. The quantitative disagreement is due to the simple two-
sublattice model, where only the isotropic magnetic and
quadrupole interactions were taken into consideration.
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purity sample, which includes [100] and [110] crystalline
domains. Indeed, the high-purity sample shows no splitting,
as will be shown later in Fig. 24(a), and the AFQ order
collapses at around 5T for B k ½100". The critical fields of
the AFQ order for B k ½110" and [111] are much higher than
that for [100], which will be discussed in the next subsection,
as PrRh2Zn20 exhibits similar anisotropy.16,17) Note that the
increase in TQ in magnetic fields is similar to that of the AFQ
order in PrPb3,32,33,50) which can be understood by taking
account of the gain in the interaction energies of the field-
induced multipoles68) and=or the suppression of multipolar
fluctuations due to magnetic fields.69,70) The properties of
the quadrupole order including the critical magnetic-field
strengths for the three principal axes are summarized in
Table III.

Firm evidence for the AFQ order has been obtained by
ultrasonic measurements.17) For example, hardening of the
!3-type elastic modulus, C!3 , at the onset of TQ indicates
quenching of the quadrupole moment due to ordering. Here,
the elastic modulus C!3

ðTÞ is analyzed by the following
expression:

C!3
ðTÞ ¼ & NPrg

2
!3

!quadðTÞ
1 & g0!3

!quadðTÞ
þ C0ðTÞ; ð3Þ

where NPr ¼ 2:751 ( 1027m−3 is the density of Pr ions at
room temperature, C0ðTÞ is the background stiffness, and
!quadðTÞ is the irreducible quadrupolar susceptibility. !quadðTÞ
is evaluated by the effective Hamiltonian,

Heff ¼ HCEF & g!3
O!3

"!3
& g0!3

O!3
hO!3

i; ð4Þ

where the second term is the quadrupole-strain coupling in
the !3 mode and the third term represents the intersite
interaction between the quadrupoles adopted by the molecu-
lar-field approximation with a thermal average of hO!3i. The
analysis of the elastic constant indicates the AFQ interaction
of g0!3

¼ & 0:13K as shown in Table III. It is useful to
apply Levy’s criterion, D ) jg0!3

C0=NPrg2!3
j, to evaluate

the importance of the intersite quadrupolar interaction as
compared with the cooperative Jahn-Teller effect. The
obtained value of D ¼ 181 * 1 together with the negative
value of the quadrupolar interaction g0!3

is a clear indication
of the AFQ order.

Very recently, the AFQ phase was investigated by neutron
diffraction measurements of single-crystalline samples. Field-
induced magnetic reflections were observed at q ¼ ð1=2;
1=2; 1=2Þ and its equivalents under magnetic fields applied
along the ½"110" axis. The q dependence of the intensity
suggests that AF-type field-induced magnetic dipoles are
oriented approximately along the [111] direction perpendic-
ular to the magnetic field.71) The results are consistent with
the primary order parameter being the !3-type quadrupole.
This is the first direct observation of the AFQ ordered
structure under Td symmetry. On the other hand, the
quadrupoles do not form a simple two-sublattice in the
AFQ ordered phase. Details on the quadrupole alignments
and the AFQ order parameters will be reported elsewhere.

4.2 PrRh2Zn20 (AFQ)
PrRh2Zn20 exhibits a structural transition between Ts of

170 and 470K.59) Nevertheless, the local symmetry at the Pr
sites remains as cubic T symmetry. Indeed, the doublet
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Table III. Properties of the quadrupole orders of Pr 1-2-20. g0!3
is the

intersite quadrupolar interaction for the !3-type mode evaluated by ultrasonic
measurements. In PrTi2Al20, the phase boundary becomes a crossover as it is
the FQ order. (+) A high-field phase exists for PrV2Al20 above 11T along the
[100] axis.65) (++) The value was estimated from the transverse mode of
CTðTÞ ¼ ðC11 & C12 þ C44Þ=3 along the [111] axis by neglecting the C44

mode with the !5 symmetry, where only the [111] axis is accessible because
of the shape of a single-crystalline sample.
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(K)
B½100"
c ð0Þ
(T)

B½110"
c ð0Þ
(T)

B½111"
c ð0Þ
(T)

g0!3

(K)
Refs.

PrIr2Zn20 0.11 (AFQ) 5 10 11.5 −0.13 16, 17
PrRh2Zn20 0.06 (AFQ) 3 11.7 12.9 −2.33 19, 59
PrV2Al20 0.6 (AFQ) 11+ >9 11 21, 66
PrTi2Al20 2.0 (FQ) — — — 0.156++ 21, 62
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Rh: Large intersite interaction ~-2K  
but small TQ?
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for PrTi2Al20, suggesting that the transition is not well-defined under field. This type

of crossover is not allowed for an antiferro type, but for a ferroquadrupolar order as in

PrPtBi,5) because only the symmetry in a ferroquadrupolar state can be the same as

the one in a para state under field. Therefore, the multipolar transitions in PrTi2Al20

and PrV2Al20 are most likely a ferro- and antiferro-quadrupolar ordering, respectively.

Further evidence for quadrupolar order comes from H-T phase diagrams of both

PrTi2Al20 and PrV2Al20 under fields along [100], [110] and [111], as shown in Figs. 3(c)

and (d). The transition temperature TO(H) is determined as the peak T of CP (T ).

In both systems, TO(H) increases with increasing field in the low field regime, except

for H ∥ [111] in PrTi2Al20. This increase of the boundary with field is characteristic

to quadrupolar order, and is the effects of dipole moments induced by magnetic field,

which assist the quadrupolar ordering.14, 15)

Now, we consider the paramagnetic phase above TO to discuss the Kondo effect.
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metry (⇥), the pseudospin moments are transformed as
following.

⇥ :

I :

S4z :

C31 :

⌧z
µ

! �⌧z
µ
,

⌧A
µ

$ ⌧B
µ
,

⌧±
µ

! �⌧⌥
µ

⌧±
µ

! ei✓⌧±
µ

(3)

with ✓ = 2⇡/3. Based on above transformation, the
order parameters �, m, for FQ, FO and �̃, m̃ for AFQ,
AFO are transformed as following.

⇥ :

I :

S4z :

C31 :

m!�m, m̃!�m̃

�̃!��̃, m̃!�m̃,

�!��⇤, m!�m, �̃!��̃⇤, m̃!�m̃

�!ei✓�, �̃!ei✓�̃

(4)

Now we derive all the symmetry allowed terms in the
Landau expansion, up to fourth in the order parameters
�, m, �̃ and m̃. Followed by above transformation, we
consider two separate situation : case 1 – the system
with FQ, FO orders, case 2 – the system with AFQ,
AFO orders. In both cases, the quadratic and fourth
orders in the order parameters can be written in terms
of |�| and m (or |�̃| and m̃). For instance, the free
energy expansion with FQ and FO ordering is

F (2)
�,m

=r�|�|
2+rmm2,

F (4)
�,m

=u�|�|
4+umm4+u�m|�2

|m2. (5)

Similarly for AFQ and AFO orders, one can write down
the same form with parameters |�̃| and m̃. The main
di↵erence between FQ case and AFQ case is the pres-
ence and absence of cubic term with quadrupolar order
parameters � or �̃. The cubic term with � is allowed for
FQ, FO case as,

F (3)
�,m

=v�i(�
3
� �⇤3)=2v�|�|

3 sin 3✓�. (6)

The second term is by writing �= |�|ei✓� . However, the
cubic term in �̃ is missing in the case of AFQ order,
thus one should take into account sixth order term /

(�̃6 + �̃⇤6) to consider the anisotropy of AFQ order.
For both cases of FQ, FO or AFQ, AFO, |�|2m2

term in F (4)
�,m

(or |�̃|2m̃2 term) leads to coexisting phase
between quadrupolar order and octupolar order. For
instance, we consider the Landau phase diagram of

F�,m = F (2)
�,m

+F (4)
�,m

+F (3)
�,m

as functions of v� and u�m

with rm > 0. Under the transformation ✓ into ✓ + ⇡,
the sign of v� is changed thus only consider the case of
v� > 0. Fig.1 shows add explanation and edit fig
with better resolution

FIG. 1. Landau Phase Diagram of F�,m with FQ and FO
order parameters, � and m:

Magnetic field e↵ect — We now consider the impact
of an applied magnetic field and consider the modifica-
tion of the Landau free energy. The quadrupolar and
octupolar moments do not linearly couple to the mag-
netic field. The leading term is quadratic-in-field cou-
pling which the magnetic field indirectly couples to the
quadrupolar moment via second order perturbation the-
ory in B ·J . As we studied before in Ref.[], it leads

to Hfield = �B2(
p
3
2 (B̂2

x
� B̂2

y
)⌧x+ 1

2 (3B̂
2
z
� 1)⌧y) where

� =
⇣
�

14
3�(�4)

+ 2
�(�5)

⌘
with �(↵) the energy scale of

excited states splitted by crystal fields. Here, we define
h = hx+ ihy = |h|ei✓h as Hfield = h⇤⌧++h⌧�. Then
the transformations of h under symmetries are identical
to the ones of FQ order parameter �. Thus, magnetic
fields with (100) and (110) directions correspond to h
with ✓h = �⇡/6 and �⇡/2 respectively. It is notable
that magnetic fields with (111) direction do not couple
to quadrupolar moments but couple to octupolar mo-

ment with cubic order like /

⇣
B̂xB̂yB̂z

⌘
⌧z.

For FQ case, the order parameter � is linearly coupled

to h, /
⇣
h�⇤+h⇤�

⌘
, which leads to a crossover in the

presence of field. Furthermore, the cubic term of FQ

order F (3)
�,m

induces the crossover temperature to depend
on field direction, resulting in anisotropy in magnetic
field between (100) and (110) directions.

In the case of AFQ, however, AFQ order couples

to the field in quadratic order as, / i
⇣
h�̃2

�h⇤�̃⇤2
⌘
=

2|h||�̃|2 sin(✓h + 2✓
�̃
) which leads to the linear order in

h. Including this term, one can write down the Landau

symmetry analysis with antiferroquadrupolar order parameter ϕ 
and octupolar order parameter m
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A series of Pr(TM)2X20 (with TM=Ti,V,Rh,Ir and X=Al,Zn) Kondo materials exhibits exotic
behavior such as quadrupolar order, superconductivity and non-Fermi liquid behavior. In particular,
non-Kramers Pr3+ 4f2 moments show interesting magnetic field dependence with multipolar order-
ings. In this paper, we study magnetic field e↵ect of multipolar orderings based on a simple Landau
theory, taking into account both quadrupolar and octupolar moments of non-Kramers doublet in
Pr3+. We show that ferro- and antiferro- multipolar orderings give rise to fundamental di↵erence
in field e↵ect, providing understanding of experimental results on a series of Pr(TM)2X20 materials.

At low temperature, a series of these materials
show quadrupolar ordering; Ferroquadrupolar order at
TQ ⇠ 2 K (PrTi2Al20), antiferroquadrupolar order at
TQ ⇠ 0.75K (PrV2Al20), 0.11K (PrIr2Zn20) and 0.06K
(PrRh2Zn20) respectively. In particular, there exist ad-
ditional phase transition at T⇤

⇠ 0.65K observed in
PrV2Al20. The types of antiferroquadrupolar orders
and the nature of additional transition are still un-
clear and it requires further experiments. ((1/2,1/2,1/2)
order for IrZn case ref: PHYSICAL REVIEW B 95,
155106 (2017))

Multipolar ordering of 4f2 Pr3+ ion — Pr(TM)2X20

(with TM=Ti,V,Rh,Ir and X=Al,Zn) are cage com-
pounds with the space group Fd3̄m. In particular, the
Pr3+ 4f2 ions form a diamond lattice structure where
each ion lives at the center of the Frank Kasper cage
formed by 16 neighboring X ions with the local point
group Td. (PrRh2Zn20 has the local point group T due
to the structural transition.) Interplay of crystal field
e↵ect and strong spin orbit coupling leads to the split-
tings of multiplets with total angular momentum J = 4
and the ground state is described by �3 doublet. (�23

doublet for PrRh2Zn20.);

|�(1)
3 i =

1

2

r
7

6
|4i �

1

2

r
5

3
|0i+

1

2

r
7

6
|�4i

|�(2)
3 i =

1
p
2
|2i+

1
p
2
|�2i . (1)

In these compounds, the first excited triplet �4 or �5 is
separated from the ground state doublet by � ⇡ 30 ⇠

70. This allows the low energy physics with broken
symmetry phases is well described by �3 or �23 dou-
blets, where the transition temperature T . 5K. Using
these doublets, one can define pseudospin-1/2 basis as

we discussed before in Ref.[]; |"i ⌘ 1
p
2
(|�(1)

3 i+ i |�(2)
3 i)

and |#i⌘
1
p
2
(i |�(1)

3 i+|�(2)
3 i). The corresponding pseu-

dospin operators in terms of Stevens operators are O22=

p
3
2 (J2

x
�J2

y
), O20 =

1
2 (3J

2
z
�J2), and Txyz =

p
15
6 JxJyJz

(overline denoting a symmetrized product), as ⌧x =
�

1
4O22, ⌧y = �

1
4O20, and ⌧z = 1

3
p
5
Txyz. It is impor-

tant to note that the low energy physics is described by
quadratic and cubic orders of J , which correspond to
quadrupolar moment ⌧x, ⌧y and octupolar moment ⌧z
respectively.

As mentioned above, a series of Pr(TM)2X20 Kondo
compounds exhibit di↵erent types of ferro- or antiferro-
multipolar ordering at low temperature. Since the or-
dering temperatures in these compounds are generally
much lower than the energy gap �, one can only fo-
cus on quadrupolar moments ⌧x, ⌧y and octupolar mo-
ment ⌧z that are described by the ground state doublet.
Without considering complicated antiferro- multipolar
orderings stabilized with finite ordering wavevectors, we
study the two simplest scenario, ferro- or antiferro-mul-
tipolar orderings without enlarging magnetic unit cell.
Then one can introduce their order parameters as fol-
lowing.

�⌘h⌧+
µ
i

m⌘h⌧µ
z
i
$

�̃⌘h⌧+
A
i�h⌧+

B
i

m̃⌘h⌧A
z
i�h⌧B

z
i

(2)

Here, � and �⇤ indicate the ferro- quadrupolar
(FQ) order parameters in a complex space with
h⌧±

µ
i = h⌧x

µ
i±ih⌧y

µ
i and m indicates the order parameter

of ferro- octupolar (FO) order with (h⌧⌫
A
i = h⌧⌫

B
i,

⌫ 2 {x, y, z} and at sublattices A and B.) Similarly,
�̃, �̃⇤ and m̃ are the order parameters defined for
antiferro- quadrupolar (AFQ) antiferro- octupolar
(AFO) orderings.

Landau theory of multipolar orders with Q = 0— The
point group symmetries of Pr3+ ions include S4z (⇡/2
rotation along z axis and inversion), C31 (2⇡/3 rota-
tion along (111) direction) and I (inversion). Under
these point group symmetries and time reversal sym-

ferro- case antiferro- case 
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metry (⇥), the pseudospin moments are transformed as
following.

⇥ :

I :

S4z :

C31 :

⌧z
µ

! �⌧z
µ
,

⌧A
µ

$ ⌧B
µ
,

⌧±
µ

! �⌧⌥
µ

⌧±
µ

! ei✓⌧±
µ

(3)

with ✓ = 2⇡/3. Based on above transformation, the
order parameters �, m, for FQ, FO and �̃, m̃ for AFQ,
AFO are transformed as following.

⇥ :

I :

S4z :

C31 :

m!�m, m̃!�m̃

�̃!��̃, m̃!�m̃,

�!��⇤, m!�m, �̃!��̃⇤, m̃!�m̃

�!ei✓�, �̃!ei✓�̃

(4)

Now we derive all the symmetry allowed terms in the
Landau expansion, up to fourth in the order parameters
�, m, �̃ and m̃. Followed by above transformation, we
consider two separate situation : case 1 – the system
with FQ, FO orders, case 2 – the system with AFQ,
AFO orders. In both cases, the quadratic and fourth
orders in the order parameters can be written in terms
of |�| and m (or |�̃| and m̃). For instance, the free
energy expansion with FQ and FO ordering is

F (2)
�,m

=r�|�|
2+rmm2,

F (4)
�,m

=u�|�|
4+umm4+u�m|�2

|m2. (5)

Similarly for AFQ and AFO orders, one can write down
the same form with parameters |�̃| and m̃. The main
di↵erence between FQ case and AFQ case is the pres-
ence and absence of cubic term with quadrupolar order
parameters � or �̃. The cubic term with � is allowed for
FQ, FO case as,

F (3)
�,m

=v�i(�
3
� �⇤3)=2v�|�|

3 sin 3✓�. (6)

The second term is by writing �= |�|ei✓� . However, the
cubic term in �̃ is missing in the case of AFQ order,
thus one should take into account sixth order term /

(�̃6 + �̃⇤6) to consider the anisotropy of AFQ order.
For both cases of FQ, FO or AFQ, AFO, |�|2m2

term in F (4)
�,m

(or |�̃|2m̃2 term) leads to coexisting phase
between quadrupolar order and octupolar order. For
instance, we consider the Landau phase diagram of

F�,m = F (2)
�,m

+F (4)
�,m

+F (3)
�,m

as functions of v� and u�m

with rm > 0. Under the transformation ✓ into ✓ + ⇡,
the sign of v� is changed thus only consider the case of
v� > 0. Fig.1 shows add explanation and edit fig
with better resolution

FIG. 1. Landau Phase Diagram of F�,m with FQ and FO
order parameters, � and m:

Magnetic field e↵ect — We now consider the impact
of an applied magnetic field and consider the modifica-
tion of the Landau free energy. The quadrupolar and
octupolar moments do not linearly couple to the mag-
netic field. The leading term is quadratic-in-field cou-
pling which the magnetic field indirectly couples to the
quadrupolar moment via second order perturbation the-
ory in B ·J . As we studied before in Ref.[], it leads

to Hfield = �B2(
p
3
2 (B̂2

x
� B̂2

y
)⌧x+ 1

2 (3B̂
2
z
� 1)⌧y) where

� =
⇣
�

14
3�(�4)

+ 2
�(�5)

⌘
with �(↵) the energy scale of

excited states splitted by crystal fields. Here, we define
h = hx+ ihy = |h|ei✓h as Hfield = h⇤⌧++h⌧�. Then
the transformations of h under symmetries are identical
to the ones of FQ order parameter �. Thus, magnetic
fields with (100) and (110) directions correspond to h
with ✓h = �⇡/6 and �⇡/2 respectively. It is notable
that magnetic fields with (111) direction do not couple
to quadrupolar moments but couple to octupolar mo-

ment with cubic order like /

⇣
B̂xB̂yB̂z

⌘
⌧z.

For FQ case, the order parameter � is linearly coupled

to h, /
⇣
h�⇤+h⇤�

⌘
, which leads to a crossover in the

presence of field. Furthermore, the cubic term of FQ

order F (3)
�,m

induces the crossover temperature to depend
on field direction, resulting in anisotropy in magnetic
field between (100) and (110) directions.

In the case of AFQ, however, AFQ order couples

to the field in quadratic order as, / i
⇣
h�̃2

�h⇤�̃⇤2
⌘
=

2|h||�̃|2 sin(✓h + 2✓
�̃
) which leads to the linear order in

h. Including this term, one can write down the Landau
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metry (⇥), the pseudospin moments are transformed as
following.

⇥ :

I :

S4z :

C31 :

⌧z
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µ
,

⌧A
µ

$ ⌧B
µ
,

⌧±
µ
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µ
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(3)

with ✓ = 2⇡/3. Based on above transformation, the
order parameters �, m, for FQ, FO and �̃, m̃ for AFQ,
AFO are transformed as following.

⇥ :

I :
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C31 :

m!�m, m̃!�m̃
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(4)

Now we derive all the symmetry allowed terms in the
Landau expansion, up to fourth in the order parameters
�, m, �̃ and m̃. Followed by above transformation, we
consider two separate situation : case 1 – the system
with FQ, FO orders, case 2 – the system with AFQ,
AFO orders. In both cases, the quadratic and fourth
orders in the order parameters can be written in terms
of |�| and m (or |�̃| and m̃). For instance, the free
energy expansion with FQ and FO ordering is

F (2)
�,m

=r�|�|
2+rmm2,

F (4)
�,m

=u�|�|
4+umm4+u�m|�2

|m2. (5)

Similarly for AFQ and AFO orders, one can write down
the same form with parameters |�̃| and m̃. The main
di↵erence between FQ case and AFQ case is the pres-
ence and absence of cubic term with quadrupolar order
parameters � or �̃. The cubic term with � is allowed for
FQ, FO case as,

F (3)
�,m

=v�i(�
3
� �⇤3)=2v�|�|

3 sin 3✓�. (6)

The second term is by writing �= |�|ei✓� . However, the
cubic term in �̃ is missing in the case of AFQ order,
thus one should take into account sixth order term /

(�̃6 + �̃⇤6) to consider the anisotropy of AFQ order.
For both cases of FQ, FO or AFQ, AFO, |�|2m2

term in F (4)
�,m

(or |�̃|2m̃2 term) leads to coexisting phase
between quadrupolar order and octupolar order. For
instance, we consider the Landau phase diagram of

F�,m = F (2)
�,m

+F (4)
�,m

+F (3)
�,m

as functions of v� and u�m

with rm > 0. Under the transformation ✓ into ✓ + ⇡,
the sign of v� is changed thus only consider the case of
v� > 0. Fig.1 shows add explanation and edit fig
with better resolution

FIG. 1. Landau Phase Diagram of F�,m with FQ and FO
order parameters, � and m:

Magnetic field e↵ect — We now consider the impact
of an applied magnetic field and consider the modifica-
tion of the Landau free energy. The quadrupolar and
octupolar moments do not linearly couple to the mag-
netic field. The leading term is quadratic-in-field cou-
pling which the magnetic field indirectly couples to the
quadrupolar moment via second order perturbation the-
ory in B ·J . As we studied before in Ref.[], it leads

to Hfield = �B2(
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with �(↵) the energy scale of

excited states splitted by crystal fields. Here, we define
h = hx+ ihy = |h|ei✓h as Hfield = h⇤⌧++h⌧�. Then
the transformations of h under symmetries are identical
to the ones of FQ order parameter �. Thus, magnetic
fields with (100) and (110) directions correspond to h
with ✓h = �⇡/6 and �⇡/2 respectively. It is notable
that magnetic fields with (111) direction do not couple
to quadrupolar moments but couple to octupolar mo-

ment with cubic order like /

⇣
B̂xB̂yB̂z

⌘
⌧z.

For FQ case, the order parameter � is linearly coupled

to h, /
⇣
h�⇤+h⇤�

⌘
, which leads to a crossover in the

presence of field. Furthermore, the cubic term of FQ

order F (3)
�,m

induces the crossover temperature to depend
on field direction, resulting in anisotropy in magnetic
field between (100) and (110) directions.

In the case of AFQ, however, AFQ order couples

to the field in quadratic order as, / i
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h�̃2
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⌘
=

2|h||�̃|2 sin(✓h + 2✓
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) which leads to the linear order in

h. Including this term, one can write down the Landau
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metry (⇥), the pseudospin moments are transformed as
following.
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with ✓ = 2⇡/3. Based on above transformation, the
order parameters �, m, for FQ, FO and �̃, m̃ for AFQ,
AFO are transformed as following.
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Now we derive all the symmetry allowed terms in the
Landau expansion, up to fourth in the order parameters
�, m, �̃ and m̃. Followed by above transformation, we
consider two separate situation : case 1 – the system
with FQ, FO orders, case 2 – the system with AFQ,
AFO orders. In both cases, the quadratic and fourth
orders in the order parameters can be written in terms
of |�| and m (or |�̃| and m̃). For instance, the free
energy expansion with FQ and FO ordering is

F (2)
�,m

=r�|�|
2+rmm2,
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4+umm4+u�m|�2

|m2. (5)

Similarly for AFQ and AFO orders, one can write down
the same form with parameters |�̃| and m̃. The main
di↵erence between FQ case and AFQ case is the pres-
ence and absence of cubic term with quadrupolar order
parameters � or �̃. The cubic term with � is allowed for
FQ, FO case as,
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FIG. 1. Landau Phase Diagram of F�,m with FQ and FO
order parameters, � and m:

Magnetic field e↵ect — We now consider the impact
of an applied magnetic field and consider the modifica-
tion of the Landau free energy. The quadrupolar and
octupolar moments do not linearly couple to the mag-
netic field. The leading term is quadratic-in-field cou-
pling which the magnetic field indirectly couples to the
quadrupolar moment via second order perturbation the-
ory in B ·J . As we studied before in Ref.[], it leads
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excited states splitted by crystal fields. Here, we define
h = hx+ ihy = |h|ei✓h as Hfield = h⇤⌧++h⌧�. Then
the transformations of h under symmetries are identical
to the ones of FQ order parameter �. Thus, magnetic
fields with (100) and (110) directions correspond to h
with ✓h = �⇡/6 and �⇡/2 respectively. It is notable
that magnetic fields with (111) direction do not couple
to quadrupolar moments but couple to octupolar mo-

ment with cubic order like /

⇣
B̂xB̂yB̂z

⌘
⌧z.

For FQ case, the order parameter � is linearly coupled

to h, /
⇣
h�⇤+h⇤�

⌘
, which leads to a crossover in the

presence of field. Furthermore, the cubic term of FQ

order F (3)
�,m

induces the crossover temperature to depend
on field direction, resulting in anisotropy in magnetic
field between (100) and (110) directions.

In the case of AFQ, however, AFQ order couples

to the field in quadratic order as, / i
⇣
h�̃2

�h⇤�̃⇤2
⌘
=

2|h||�̃|2 sin(✓h + 2✓
�̃
) which leads to the linear order in

h. Including this term, one can write down the Landau

ferroquadrupole

anti-ferroquadrupole

3

FIG. 2. Landau Phase Diagram of F�̃,m̃,h: The AFQ order

parameter �̃ is non zero in the entire region of phase diagram
and it only shows the AFO order parameter m̃. With a finite
!�̃, the critical fields h for the onset of AFO exhibit direction
dependence between field along (100) (✓h = �⇡/6) and (110)
(✓h = �⇡/2).

free energy of AFQ, AFO orders with a field h (up to
linear order in fields);

F
�̃,m̃,h

= F (2)

�̃,m̃
+ F (4)

�̃,m̃
+w

�̃
|�̃|6 cos 6✓

�̃
(7)

+|�̃|2m̃2
⇣
uh|h| sin(✓h+2✓

�̃
)
⌘

+|�̃|2
⇣
rh|h| sin (✓h+2✓

�̃
)
⌘

Here, F (2)

�̃,m̃
and F (4)

�̃,m̃
are defined in Eq.(5). In

the absence of magnetic field, the sixth order term
w

�̃
|�̃|6 cos 6✓

�̃
locks the value of ✓

�̃
in the AFQ ordered

phase. Near the critical temperature of quadrupolar
ordering TQ, the sixth order term is negligibly small,
thus the transition temperature TQ may be not much
sensitive to the field direction and the angle ✓

�̃
satis-

fies (✓h + 2✓
�̃
) = ⇡/2 or 3⇡/2 depending on the sign of

rh. However, when the quadrupolar order is firstly de-
veloped at higher temperature and then the octupolar
order is developed at lower temperature, it may give
rise to a significant anisotropy in fields in terms of the
critical temperature of octupolar ordering TO. Let’s
imagine the situation of double transitions of AFQ and
AFO orderings; AFQ at TQ and AFO order at TO with
TQ>TO. At T<TQ with zero field, it favors ✓

�̃
to satisfy

anisotropy of AFQ order term, !
�̃
|�̃|6 cos 6✓

�̃
.

F�,m=r�|�|
2+rmm2+u�|�|

4+umm4+u�m|�2
|m2

+v�i(�
3
��⇤3)+v�mi(�3

��⇤3)m2. (8)

F
�̃,m̃

=r
�̃
|�̃|2+rm̃m̃2+u

�̃
|�̃|4+um̃m̃4+u

�̃m̃
|�̃2

|m̃2

+w
�̃
(�̃6+�̃⇤6)+w

�̃m̃
|�̃|4m̃2+w

m̃,�̃
|�̃|4m̃4 (9)

Landau theory of Spiral multipolar orders —
Motivated by constructing the simplest model to cap-

ture the phenomenology of PrTM2Al20, we will set
J1<0 for PrTi2Al20 which favors FQ order, and J1>0
for PrV2Al20 favoring NQ order. In both cases, we fix
J2>0 andK>0, and study the phases and their proper-
ties as we vary J2/|J1| and K/|J1|. At the classical level
of the analysis done here, we note that the model with
J1 < 0 maps onto the model with J1 > 0 by changing
~⌧ ! �~⌧ on one sublattice; with this understanding, we
will mainly focus on fixed J1 = +1, but present results
which are applicable for both systems.
Ground state phase diagram.— For J1 > 0, con-

sider an ansatz ~⌧+
A/B

=
p
1�⌘2 exp(iq · r ± �

2 ) for

unit length spins on A/B sublattices, with ⌧z
A/B

=

±⌘. Here q,� specify a spiral of ~⌧? which is a
generic SpQ order with magnitude

p
1� ⌘2. The

limit Q = 0 corresponds to the NQ state. This co-
exists with NO order of strength ⌘. Let us define
F ⌘cos� cos qx

4 cos qy

4 cos qz

4�sin� sin qx

4 sin qy

4 sin qz

4 and
G⌘cos qx

2 cos qy

2 + cos qy

2 cos qz

2 + cos qz

2 cos qx

2 , in terms
of which we find the energy per site in the classical limit

Ecl

Nsite
= �2(J1 � 18K⌘2)(1� ⌘2)F (�,q) + 2J1�⌘

2

+ 6J2�⌘
2 + 2J2(1� ⌘2)G(q) . (10)

Minimizing this variational energy with respect to
(q,�, ⌘), we arrive at the T = 0 phase diagram, with
phase boundaries depicted by solid lines in Fig. ??
for the choice � = 0. Along the line K = 0, this
phase diagram is identical with previous results ob-
tained for Heisenberg spins on the diamond lattice,
where J2/J1 > 1/8 drives a Néel to incommensurate
spiral transition [? ? ]. Our new results show that
K 6= 0 can induce NQ/SpQ phases which coexist with
Ising NO order; we find qualitatively similar results for
generic � < 1 (see Supplemental Material). For J1 < 0,
the NQ/NO phases get replaced by FQ/FO phases,
while the spiral is modified by flipping ~⌧ on one sub-
lattice.

We have checked the T = 0 phase diagram in Fig. ??
using classical Monte Carlo (MC) simulations for system
sizes up to L=8 (with 2L3=1024 spins) down to T/J1=
0.001 at a large number of depicted points. The distinct
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metry (⇥), the pseudospin moments are transformed as
following.

⇥ :

I :

S4z :

C31 :

⌧z
µ

! �⌧z
µ
,

⌧A
µ

$ ⌧B
µ
,

⌧±
µ

! �⌧⌥
µ

⌧±
µ

! ei✓⌧±
µ

(3)

with ✓ = 2⇡/3. Based on above transformation, the
order parameters �, m, for FQ, FO and �̃, m̃ for AFQ,
AFO are transformed as following.

⇥ :

I :

S4z :

C31 :

m!�m, m̃!�m̃

�̃!��̃, m̃!�m̃,

�!��⇤, m!�m, �̃!��̃⇤, m̃!�m̃

�!ei✓�, �̃!ei✓�̃

(4)

Now we derive all the symmetry allowed terms in the
Landau expansion, up to fourth in the order parameters
�, m, �̃ and m̃. Followed by above transformation, we
consider two separate situation : case 1 – the system
with FQ, FO orders, case 2 – the system with AFQ,
AFO orders. In both cases, the quadratic and fourth
orders in the order parameters can be written in terms
of |�| and m (or |�̃| and m̃). For instance, the free
energy expansion with FQ and FO ordering is

F (2)
�,m

=r�|�|
2+rmm2,

F (4)
�,m

=u�|�|
4+umm4+u�m|�2

|m2. (5)

Similarly for AFQ and AFO orders, one can write down
the same form with parameters |�̃| and m̃. The main
di↵erence between FQ case and AFQ case is the pres-
ence and absence of cubic term with quadrupolar order
parameters � or �̃. The cubic term with � is allowed for
FQ, FO case as,

F (3)
�,m

=v�i(�
3
� �⇤3)=2v�|�|

3 sin 3✓�. (6)

The second term is by writing �= |�|ei✓� . However, the
cubic term in �̃ is missing in the case of AFQ order,
thus one should take into account sixth order term /

(�̃6 + �̃⇤6) to consider the anisotropy of AFQ order.
For both cases of FQ, FO or AFQ, AFO, |�|2m2

term in F (4)
�,m

(or |�̃|2m̃2 term) leads to coexisting phase
between quadrupolar order and octupolar order. For
instance, we consider the Landau phase diagram of

F�,m = F (2)
�,m

+F (4)
�,m

+F (3)
�,m

as functions of v� and u�m

with rm > 0. Under the transformation ✓ into ✓ + ⇡,
the sign of v� is changed thus only consider the case of
v� > 0. Fig.1 shows add explanation and edit fig
with better resolution

FIG. 1. Landau Phase Diagram of F�,m with FQ and FO
order parameters, � and m:

Magnetic field e↵ect — We now consider the impact
of an applied magnetic field and consider the modifica-
tion of the Landau free energy. The quadrupolar and
octupolar moments do not linearly couple to the mag-
netic field. The leading term is quadratic-in-field cou-
pling which the magnetic field indirectly couples to the
quadrupolar moment via second order perturbation the-
ory in B ·J . As we studied before in Ref.[], it leads

to Hfield = �B2(
p
3
2 (B̂2

x
� B̂2

y
)⌧x+ 1

2 (3B̂
2
z
� 1)⌧y) where

� =
⇣
�

14
3�(�4)

+ 2
�(�5)

⌘
with �(↵) the energy scale of

excited states splitted by crystal fields. Here, we define
h = hx+ ihy = |h|ei✓h as Hfield = h⇤⌧++h⌧�. Then
the transformations of h under symmetries are identical
to the ones of FQ order parameter �. Thus, magnetic
fields with (100) and (110) directions correspond to h
with ✓h = �⇡/6 and �⇡/2 respectively. It is notable
that magnetic fields with (111) direction do not couple
to quadrupolar moments but couple to octupolar mo-

ment with cubic order like /

⇣
B̂xB̂yB̂z

⌘
⌧z.

For FQ case, the order parameter � is linearly coupled

to h, /
⇣
h�⇤+h⇤�

⌘
, which leads to a crossover in the

presence of field. Furthermore, the cubic term of FQ

order F (3)
�,m

induces the crossover temperature to depend
on field direction, resulting in anisotropy in magnetic
field between (100) and (110) directions.

In the case of AFQ, however, AFQ order couples

to the field in quadratic order as, / i
⇣
h�̃2

�h⇤�̃⇤2
⌘
=

2|h||�̃|2 sin(✓h + 2✓
�̃
) which leads to the linear order in

h. Including this term, one can write down the Landau

Focus on double transitions

couple quadrupolar-octuplar moments

Phase locking of quadrupolar 
order ɸ = 𝛕x + i 𝛕y

Quadrupole moments coupled to field B2

anti-ferroquadrupole

3

FIG. 2. Landau Phase Diagram of F�̃,m̃,h: The AFQ order

parameter �̃ is non zero in the entire region of phase diagram
and it only shows the AFO order parameter m̃. With a finite
!�̃, the critical fields h for the onset of AFO exhibit direction
dependence between field along (100) (✓h = �⇡/6) and (110)
(✓h = �⇡/2).

free energy of AFQ, AFO orders with a field h (up to
linear order in fields);

F
�̃,m̃,h

= F (2)

�̃,m̃
+ F (4)

�̃,m̃
+w

�̃
|�̃|6 cos 6✓

�̃
(7)

+|�̃|2m̃2
⇣
uh|h| sin(✓h+2✓

�̃
)
⌘

+|�̃|2
⇣
rh|h| sin (✓h+2✓

�̃
)
⌘

Here, F (2)

�̃,m̃
and F (4)

�̃,m̃
are defined in Eq.(5). In

the absence of magnetic field, the sixth order term
w

�̃
|�̃|6 cos 6✓

�̃
locks the value of ✓

�̃
in the AFQ ordered

phase. Near the critical temperature of quadrupolar
ordering TQ, the sixth order term is negligibly small,
thus the transition temperature TQ may be not much
sensitive to the field direction and the angle ✓

�̃
satis-

fies (✓h + 2✓
�̃
) = ⇡/2 or 3⇡/2 depending on the sign of

rh. However, when the quadrupolar order is firstly de-
veloped at higher temperature and then the octupolar
order is developed at lower temperature, it may give
rise to a significant anisotropy in fields in terms of the
critical temperature of octupolar ordering TO. Let’s
imagine the situation of double transitions of AFQ and
AFO orderings; AFQ at TQ and AFO order at TO with
TQ>TO. At T<TQ with zero field, it favors ✓

�̃
to satisfy

anisotropy of AFQ order term, !
�̃
|�̃|6 cos 6✓

�̃
.

F�,m=r�|�|
2+rmm2+u�|�|

4+umm4+u�m|�2
|m2

+v�i(�
3
��⇤3)+v�mi(�3

��⇤3)m2. (8)

F
�̃,m̃

=r
�̃
|�̃|2+rm̃m̃2+u

�̃
|�̃|4+um̃m̃4+u

�̃m̃
|�̃2

|m̃2

+w
�̃
(�̃6+�̃⇤6)+w

�̃m̃
|�̃|4m̃2+w

m̃,�̃
|�̃|4m̃4 (9)

Landau theory of Spiral multipolar orders —
Motivated by constructing the simplest model to cap-

ture the phenomenology of PrTM2Al20, we will set
J1<0 for PrTi2Al20 which favors FQ order, and J1>0
for PrV2Al20 favoring NQ order. In both cases, we fix
J2>0 andK>0, and study the phases and their proper-
ties as we vary J2/|J1| and K/|J1|. At the classical level
of the analysis done here, we note that the model with
J1 < 0 maps onto the model with J1 > 0 by changing
~⌧ ! �~⌧ on one sublattice; with this understanding, we
will mainly focus on fixed J1 = +1, but present results
which are applicable for both systems.
Ground state phase diagram.— For J1 > 0, con-

sider an ansatz ~⌧+
A/B

=
p
1�⌘2 exp(iq · r ± �

2 ) for

unit length spins on A/B sublattices, with ⌧z
A/B

=

±⌘. Here q,� specify a spiral of ~⌧? which is a
generic SpQ order with magnitude

p
1� ⌘2. The

limit Q = 0 corresponds to the NQ state. This co-
exists with NO order of strength ⌘. Let us define
F ⌘cos� cos qx

4 cos qy

4 cos qz

4�sin� sin qx

4 sin qy

4 sin qz

4 and
G⌘cos qx

2 cos qy

2 + cos qy

2 cos qz

2 + cos qz

2 cos qx

2 , in terms
of which we find the energy per site in the classical limit

Ecl

Nsite
= �2(J1 � 18K⌘2)(1� ⌘2)F (�,q) + 2J1�⌘

2

+ 6J2�⌘
2 + 2J2(1� ⌘2)G(q) . (10)

Minimizing this variational energy with respect to
(q,�, ⌘), we arrive at the T = 0 phase diagram, with
phase boundaries depicted by solid lines in Fig. ??
for the choice � = 0. Along the line K = 0, this
phase diagram is identical with previous results ob-
tained for Heisenberg spins on the diamond lattice,
where J2/J1 > 1/8 drives a Néel to incommensurate
spiral transition [? ? ]. Our new results show that
K 6= 0 can induce NQ/SpQ phases which coexist with
Ising NO order; we find qualitatively similar results for
generic � < 1 (see Supplemental Material). For J1 < 0,
the NQ/NO phases get replaced by FQ/FO phases,
while the spiral is modified by flipping ~⌧ on one sub-
lattice.

We have checked the T = 0 phase diagram in Fig. ??
using classical Monte Carlo (MC) simulations for system
sizes up to L=8 (with 2L3=1024 spins) down to T/J1=
0.001 at a large number of depicted points. The distinct

|�|2|h|
⇣
r̃h + rh sin(✓h + 2✓�)

⌘
with magnetic field B

2

metry (⇥), the pseudospin moments are transformed as
following.

⇥ :

I :

S4z :

C31 :

⌧z
µ

! �⌧z
µ
,

⌧A
µ

$ ⌧B
µ
,

⌧±
µ

! �⌧⌥
µ

⌧±
µ

! ei✓⌧±
µ

(3)

with ✓ = 2⇡/3. Based on above transformation, the
order parameters �, m, for FQ, FO and �̃, m̃ for AFQ,
AFO are transformed as following.

⇥ :

I :

S4z :

C31 :

m!�m, m̃!�m̃

�̃!��̃, m̃!�m̃,

�!��⇤, m!�m, �̃!��̃⇤, m̃!�m̃

�!ei✓�, �̃!ei✓�̃

(4)

Now we derive all the symmetry allowed terms in the
Landau expansion, up to fourth in the order parameters
�, m, �̃ and m̃. Followed by above transformation, we
consider two separate situation : case 1 – the system
with FQ, FO orders, case 2 – the system with AFQ,
AFO orders. In both cases, the quadratic and fourth
orders in the order parameters can be written in terms
of |�| and m (or |�̃| and m̃). For instance, the free
energy expansion with FQ and FO ordering is

F (2)
�,m

=r�|�|
2+rmm2,

F (4)
�,m

=u�|�|
4+umm4+u�m|�2

|m2. (5)

Similarly for AFQ and AFO orders, one can write down
the same form with parameters |�̃| and m̃. The main
di↵erence between FQ case and AFQ case is the pres-
ence and absence of cubic term with quadrupolar order
parameters � or �̃. The cubic term with � is allowed for
FQ, FO case as,

F (3)
�,m

=v�i(�
3
� �⇤3)=2v�|�|

3 sin 3✓�. (6)

The second term is by writing �= |�|ei✓� . However, the
cubic term in �̃ is missing in the case of AFQ order,
thus one should take into account sixth order term /

(�̃6 + �̃⇤6) to consider the anisotropy of AFQ order.
For both cases of FQ, FO or AFQ, AFO, |�|2m2

term in F (4)
�,m

(or |�̃|2m̃2 term) leads to coexisting phase
between quadrupolar order and octupolar order. For
instance, we consider the Landau phase diagram of

F�,m = F (2)
�,m

+F (4)
�,m

+F (3)
�,m

as functions of v� and u�m

with rm > 0. Under the transformation ✓ into ✓ + ⇡,
the sign of v� is changed thus only consider the case of
v� > 0. Fig.1 shows add explanation and edit fig
with better resolution

FIG. 1. Landau Phase Diagram of F�,m with FQ and FO
order parameters, � and m:

Magnetic field e↵ect — We now consider the impact
of an applied magnetic field and consider the modifica-
tion of the Landau free energy. The quadrupolar and
octupolar moments do not linearly couple to the mag-
netic field. The leading term is quadratic-in-field cou-
pling which the magnetic field indirectly couples to the
quadrupolar moment via second order perturbation the-
ory in B ·J . As we studied before in Ref.[], it leads

to Hfield = �B2(
p
3
2 (B̂2

x
� B̂2

y
)⌧x+ 1

2 (3B̂
2
z
� 1)⌧y) where

� =
⇣
�

14
3�(�4)

+ 2
�(�5)

⌘
with �(↵) the energy scale of

excited states splitted by crystal fields. Here, we define
h = hx+ ihy = |h|ei✓h as Hfield = h⇤⌧++h⌧�. Then
the transformations of h under symmetries are identical
to the ones of FQ order parameter �. Thus, magnetic
fields with (100) and (110) directions correspond to h
with ✓h = �⇡/6 and �⇡/2 respectively. It is notable
that magnetic fields with (111) direction do not couple
to quadrupolar moments but couple to octupolar mo-

ment with cubic order like /

⇣
B̂xB̂yB̂z

⌘
⌧z.

For FQ case, the order parameter � is linearly coupled

to h, /
⇣
h�⇤+h⇤�

⌘
, which leads to a crossover in the

presence of field. Furthermore, the cubic term of FQ

order F (3)
�,m

induces the crossover temperature to depend
on field direction, resulting in anisotropy in magnetic
field between (100) and (110) directions.

In the case of AFQ, however, AFQ order couples

to the field in quadratic order as, / i
⇣
h�̃2

�h⇤�̃⇤2
⌘
=

2|h||�̃|2 sin(✓h + 2✓
�̃
) which leads to the linear order in

h. Including this term, one can write down the Landau

|B2||ɸ2|
competition! 
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metry (⇥), the pseudospin moments are transformed as
following.

⇥ :

I :

S4z :

C31 :

⌧z
µ

! �⌧z
µ
,

⌧A
µ

$ ⌧B
µ
,

⌧±
µ

! �⌧⌥
µ

⌧±
µ

! ei✓⌧±
µ

(3)

with ✓ = 2⇡/3. Based on above transformation, the
order parameters �, m, for FQ, FO and �̃, m̃ for AFQ,
AFO are transformed as following.

⇥ :

I :

S4z :

C31 :

m!�m, m̃!�m̃

�̃!��̃, m̃!�m̃,

�!��⇤, m!�m, �̃!��̃⇤, m̃!�m̃

�!ei✓�, �̃!ei✓�̃

(4)

Now we derive all the symmetry allowed terms in the
Landau expansion, up to fourth in the order parameters
�, m, �̃ and m̃. Followed by above transformation, we
consider two separate situation : case 1 – the system
with FQ, FO orders, case 2 – the system with AFQ,
AFO orders. In both cases, the quadratic and fourth
orders in the order parameters can be written in terms
of |�| and m (or |�̃| and m̃). For instance, the free
energy expansion with FQ and FO ordering is

F (2)
�,m

=r�|�|
2+rmm2,

F (4)
�,m

=u�|�|
4+umm4+u�m|�2

|m2. (5)

Similarly for AFQ and AFO orders, one can write down
the same form with parameters |�̃| and m̃. The main
di↵erence between FQ case and AFQ case is the pres-
ence and absence of cubic term with quadrupolar order
parameters � or �̃. The cubic term with � is allowed for
FQ, FO case as,

F (3)
�,m

=v�i(�
3
� �⇤3)=2v�|�|

3 sin 3✓�. (6)

The second term is by writing �= |�|ei✓� . However, the
cubic term in �̃ is missing in the case of AFQ order,
thus one should take into account sixth order term /

(�̃6 + �̃⇤6) to consider the anisotropy of AFQ order.
For both cases of FQ, FO or AFQ, AFO, |�|2m2

term in F (4)
�,m

(or |�̃|2m̃2 term) leads to coexisting phase
between quadrupolar order and octupolar order. For
instance, we consider the Landau phase diagram of

F�,m = F (2)
�,m

+F (4)
�,m

+F (3)
�,m

as functions of v� and u�m

with rm > 0. Under the transformation ✓ into ✓ + ⇡,
the sign of v� is changed thus only consider the case of
v� > 0. Fig.1 shows add explanation and edit fig
with better resolution

FIG. 1. Landau Phase Diagram of F�,m with FQ and FO
order parameters, � and m:

Magnetic field e↵ect — We now consider the impact
of an applied magnetic field and consider the modifica-
tion of the Landau free energy. The quadrupolar and
octupolar moments do not linearly couple to the mag-
netic field. The leading term is quadratic-in-field cou-
pling which the magnetic field indirectly couples to the
quadrupolar moment via second order perturbation the-
ory in B ·J . As we studied before in Ref.[], it leads

to Hfield = �B2(
p
3
2 (B̂2

x
� B̂2

y
)⌧x+ 1

2 (3B̂
2
z
� 1)⌧y) where

� =
⇣
�

14
3�(�4)

+ 2
�(�5)

⌘
with �(↵) the energy scale of

excited states splitted by crystal fields. Here, we define
h = hx+ ihy = |h|ei✓h as Hfield = h⇤⌧++h⌧�. Then
the transformations of h under symmetries are identical
to the ones of FQ order parameter �. Thus, magnetic
fields with (100) and (110) directions correspond to h
with ✓h = �⇡/6 and �⇡/2 respectively. It is notable
that magnetic fields with (111) direction do not couple
to quadrupolar moments but couple to octupolar mo-

ment with cubic order like /

⇣
B̂xB̂yB̂z

⌘
⌧z.

For FQ case, the order parameter � is linearly coupled

to h, /
⇣
h�⇤+h⇤�

⌘
, which leads to a crossover in the

presence of field. Furthermore, the cubic term of FQ

order F (3)
�,m

induces the crossover temperature to depend
on field direction, resulting in anisotropy in magnetic
field between (100) and (110) directions.

In the case of AFQ, however, AFQ order couples

to the field in quadratic order as, / i
⇣
h�̃2

�h⇤�̃⇤2
⌘
=

2|h||�̃|2 sin(✓h + 2✓
�̃
) which leads to the linear order in

h. Including this term, one can write down the Landau

3

FIG. 2. Landau Phase Diagram of F�̃,m̃,h: The AFQ order

parameter �̃ is non zero in the entire region of phase diagram
and it only shows the AFO order parameter m̃. With a finite
!�̃, the critical fields h for the onset of AFO exhibit direction
dependence between field along (100) (✓h = �⇡/6) and (110)
(✓h = �⇡/2).

free energy of AFQ, AFO orders with a field h (up to
linear order in fields);

F
�̃,m̃,h

= F (2)

�̃,m̃
+ F (4)

�̃,m̃
+w

�̃
|�̃|6 cos 6✓

�̃
(7)

+|�̃|2m̃2
⇣
uh|h| sin(✓h+2✓

�̃
)
⌘

+|�̃|2
⇣
rh|h| sin (✓h+2✓

�̃
)
⌘

Here, F (2)

�̃,m̃
and F (4)

�̃,m̃
are defined in Eq.(5). In

the absence of magnetic field, the sixth order term
w

�̃
|�̃|6 cos 6✓

�̃
locks the value of ✓

�̃
in the AFQ ordered

phase. Near the critical temperature of quadrupolar
ordering TQ, the sixth order term is negligibly small,
thus the transition temperature TQ may be not much
sensitive to the field direction and the angle ✓

�̃
satis-

fies (✓h + 2✓
�̃
) = ⇡/2 or 3⇡/2 depending on the sign of

rh. However, when the quadrupolar order is firstly de-
veloped at higher temperature and then the octupolar
order is developed at lower temperature, it may give
rise to a significant anisotropy in fields in terms of the
critical temperature of octupolar ordering TO. Let’s
imagine the situation of double transitions of AFQ and
AFO orderings; AFQ at TQ and AFO order at TO with
TQ>TO. At T<TQ with zero field, it favors ✓

�̃
to satisfy

anisotropy of AFQ order term, !
�̃
|�̃|6 cos 6✓

�̃
.

F�,m=r�|�|
2+rmm2+u�|�|

4+umm4+u�m|�2
|m2

+v�i(�
3
��⇤3)+v�mi(�3

��⇤3)m2. (8)

F
�̃,m̃

=r
�̃
|�̃|2+rm̃m̃2+u

�̃
|�̃|4+um̃m̃4+u

�̃m̃
|�̃2

|m̃2

+w
�̃
(�̃6+�̃⇤6)+w

�̃m̃
|�̃|4m̃2+w

m̃,�̃
|�̃|4m̃4 (9)

Landau theory of Spiral multipolar orders —
Motivated by constructing the simplest model to cap-

ture the phenomenology of PrTM2Al20, we will set
J1<0 for PrTi2Al20 which favors FQ order, and J1>0
for PrV2Al20 favoring NQ order. In both cases, we fix
J2>0 andK>0, and study the phases and their proper-
ties as we vary J2/|J1| and K/|J1|. At the classical level
of the analysis done here, we note that the model with
J1 < 0 maps onto the model with J1 > 0 by changing
~⌧ ! �~⌧ on one sublattice; with this understanding, we
will mainly focus on fixed J1 = +1, but present results
which are applicable for both systems.
Ground state phase diagram.— For J1 > 0, con-

sider an ansatz ~⌧+
A/B

=
p
1�⌘2 exp(iq · r ± �

2 ) for

unit length spins on A/B sublattices, with ⌧z
A/B

=

±⌘. Here q,� specify a spiral of ~⌧? which is a
generic SpQ order with magnitude

p
1� ⌘2. The

limit Q = 0 corresponds to the NQ state. This co-
exists with NO order of strength ⌘. Let us define
F ⌘cos� cos qx

4 cos qy

4 cos qz

4�sin� sin qx

4 sin qy

4 sin qz

4 and
G⌘cos qx

2 cos qy

2 + cos qy

2 cos qz

2 + cos qz

2 cos qx

2 , in terms
of which we find the energy per site in the classical limit

Ecl

Nsite
= �2(J1 � 18K⌘2)(1� ⌘2)F (�,q) + 2J1�⌘

2

+ 6J2�⌘
2 + 2J2(1� ⌘2)G(q) . (10)

Minimizing this variational energy with respect to
(q,�, ⌘), we arrive at the T = 0 phase diagram, with
phase boundaries depicted by solid lines in Fig. ??
for the choice � = 0. Along the line K = 0, this
phase diagram is identical with previous results ob-
tained for Heisenberg spins on the diamond lattice,
where J2/J1 > 1/8 drives a Néel to incommensurate
spiral transition [? ? ]. Our new results show that
K 6= 0 can induce NQ/SpQ phases which coexist with
Ising NO order; we find qualitatively similar results for
generic � < 1 (see Supplemental Material). For J1 < 0,
the NQ/NO phases get replaced by FQ/FO phases,
while the spiral is modified by flipping ~⌧ on one sub-
lattice.

We have checked the T = 0 phase diagram in Fig. ??
using classical Monte Carlo (MC) simulations for system
sizes up to L=8 (with 2L3=1024 spins) down to T/J1=
0.001 at a large number of depicted points. The distinct

|�|2|h|
⇣
r̃h + rh sin(✓h + 2✓�)

⌘
|B2||ɸ2|

T

B
2

B//(100)

Field effect based on Landau theory

B//(110) or // (111)

Quadrupole
PMPM

Quadrupole 
+ Octupole

Quadrupole 
+ Octupole

Quadrupole

octupolar order transition temperature TO is very sensitive to B direction
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Fig. 3. (color online) Temperature dependence of the specific heat CP under various fields applied

along [100] for (a) PrTi2Al20 and (b) PrV2Al20. For PrV2Al20, values of CP under fields are shifted

upwards for clarity. H-T phase diagrams for (c) PrTi2Al20 and (d) PrV2Al20. ✷, ✸ and ⃝ indicate

the peak positions of CP under H ∥ [100], [110] and [111], respectively. Solid lines are guides to the

eye.

for PrTi2Al20, suggesting that the transition is not well-defined under field. This type

of crossover is not allowed for an antiferro type, but for a ferroquadrupolar order as in

PrPtBi,5) because only the symmetry in a ferroquadrupolar state can be the same as

the one in a para state under field. Therefore, the multipolar transitions in PrTi2Al20

and PrV2Al20 are most likely a ferro- and antiferro-quadrupolar ordering, respectively.

Further evidence for quadrupolar order comes from H-T phase diagrams of both

PrTi2Al20 and PrV2Al20 under fields along [100], [110] and [111], as shown in Figs. 3(c)

and (d). The transition temperature TO(H) is determined as the peak T of CP (T ).

In both systems, TO(H) increases with increasing field in the low field regime, except

for H ∥ [111] in PrTi2Al20. This increase of the boundary with field is characteristic

to quadrupolar order, and is the effects of dipole moments induced by magnetic field,

which assist the quadrupolar ordering.14, 15)

Now, we consider the paramagnetic phase above TO to discuss the Kondo effect.
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Pr(Rh,Ir)2(Al,Zn)20
strong SOC

Quadratic band touching at k=0 point : Near Fermi level or not?

GB Sim, A. Mishra, G-Y Cho and SBL  In preparation

Luttinger Hamiltonian with J=3/2 

Quadratic band touching 
with cubic symmetry 

Luttinger Hamiltonian with J=3/2

+ cubic symmetry

H0(k) =  †
k

⇣
c0k

2
� µ+

5X

i=1

ci di(k)�i
⌘
 k

Gamma matrices for J=3/2

t2g & eg  in k 

CONTENTS

I. Until BDG following Gil 1

II. From BDG 5
A. Cubical Fermi surface (Real) 6
B. Spherical Fermi surface (Real) 8

I. UNTIL BDG FOLLOWING GIL

We follow Murakami’s notation and repeated indicies should be summed everywhere.
We start from Hamiltonain,

H(k) = H0(k) +Hint(k) (1)

where

H0(k) =  
†
k
(c0k

2 + c1

X

i=1,2,3

di(k)�i + c2d4(k)�4 + c3d5(k)�5) k =  
†
k
h0(k) k and (2)

Hint(k) = u( †
 )2 +

X

a=1,2,3

v( †
�a )

2 + w1( 
†
k
�4 k’)( 

†
-k
�4 -k’) + w2( 

†
�5 )

2
. (3)

(Exact statement from Igor’s) Further local interactions in-evitably contain powers of momenta and are thus suppressed for
small µ. We neglect the long-range part of the Coulomb interactions here which, although not screened, is assumed suppressed
by either a large dielectric constant and/or a small effective electron mass. [Moon],[Igor],... QBT papers]

Please note that c1 = c2 = c3 corresponds to full spherical symmetry of H0(k) and c1 6= c2 = c3 implies a splitting into T2g

and Eg subsets. Eg subset splitt again when there occurs kondo coupling between itinerant electrons and quadrupole moments.

d1 =
p

3kykz, (4)

d2 =
p

3kxkz, (5)
d3 =

p

3kxky, (6)

d4 =

p
3

2
(k2x � k

2
y), (7)

d5 =
1

2
(3k2z � k

2) (8)

�1 = �
z
⌦ �

y =
S
y
S
z + S

z
S
y

p
3

(9)

�2 = �
z
⌦ �

x =
S
z
S
x + S

x
S
z

p
3

(10)

�3 = �
y
⌦ 1 =

S
x
S
y + S

y
S
x

p
3

(11)

�4 = �
x
⌦ 1 =

S
x2 + S

z2

p
3

(12)

�5 = �
z
⌦ �

z = S
z2

�
5

4
(13)

(14)

We define �ab as follow,

�ab ⌘ i�a�b. (15)
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+ cubic symmetry

H0(k) =  †
k

⇣
c0k

2
� µ+

5X

i=1

ci di(k)�i
⌘
 k

t2g & eg  in k 

Hint(k) = u( † ) +
5X

i=1

vi ( 
†�i )

2

+

+ interaction 

Fierz Identity �i ⌘ h
X

k

 T
�k�13�i ki

exactly decoupled into s and d 
wave pairing channels



 Multipolar order and Superconductivity

Pr(Rh,Ir)2(Al,Zn)20
strong SOC + cubic symmetry

Hint(k) = u( † ) +
5X

i=1

vi ( 
†�i )

2

Fierz Identity

�i ⌘ h
X

k

 T
�k�13�i ki

exactly decoupled into s and d 
wave pairing channels

4

C
A
N 

†�A
 
⇤
 
T�A

 (53)
= C

A
N 

⇤
i �

A
ij 

⇤
j k�

A
kl l (54)

= C
A
N (�1)A ⇤

i ((�
A)T )ij 

⇤
j k�

A
kl l (55)

= C
A
N (�1)A(�1) ⇤

j�
A
ji 

⇤
i  k�

A
kl l (56)

= C
A
N (�1)A(�1) †�A

 
⇤
 
T�A

 (57)

where �A
ij = (�1)A((�A)T )ij . So it is clear that right hand side of below equality should be summed over anti-symmetric

�A.

( †
N )2 =

6X

A=1

C
A
NTN 

†�A
 
⇤
 
T�A

 (58)

Overall we can decompose Hint as follow,

Hint(k) = u( †
 )2 +

X

a=1,2,3

v( †
�a )

2 + w1( 
†
k
�4 k’)( 

†
-k
�4 -k’) + w2( 

†
�5 )

2 (59)

= (
u

4
+

3v

4
+

w1

4
+

w2

4
)( †

�13 
⇤)( T

�13 )

+(
u

4
�

v

4
�

w1

4
�

w2

4
)( †

i�13�1 
⇤)( T

i�13�1 )

+(
u

4
�

v

4
�

w1

4
�

w2

4
)( †

�13�2 
⇤)( T

�13�2 )

+(
u

4
�

v

4
�

w1

4
�

w2

4
)( †

i�13�3 
⇤)( T

i�13�3 )

+(
u

4
�

3v

4
+

w1

4
�

w2

4
)( †

�13�4 
⇤)( T

�13�4 )

+(
u

4
�

3v

4
�

w1

4
+

w2

4
)( †

�13�5 
⇤)( T

�13�5 ) (60)

= (
u

4
+

3v

4
+

w1

4
+

w2

4
)( †(�13)

†
 
⇤)( T

�13 )

+(
u

4
�

v

4
�

w1

4
�

w2

4
)( †(�13�1)

†
 
⇤)( T

�13�1 )

+(
u

4
�

v

4
�

w1

4
�

w2

4
)( †(�13�2)

†
 
⇤)( T

�13�2 )

+(
u

4
�

v

4
�

w1

4
�

w2

4
)( †(�13�3)

†
 
⇤)( T

�13�3 )

+(
u

4
�

3v

4
+

w1

4
�

w2

4
)( †

-k
(�13�4)

†
 
⇤
k
)( T

k’
�13�4 -k’)

+(
u

4
�

3v

4
�

w1

4
+

w2

4
)( †(�13�5)

†
 
⇤)( T

�13�5 ) (61)

which is consistent with [Igor]’s derivation (v = w1 = w2) and [Gil]’s derivation (w1 = w2). (62)

! (
u

4
+

3v

4
+

w1

4
+

w2

4
)( †(�13)

⇤
 
⇤
40 +  

T (�13)
T
 4

⇤
0)

+(
u

4
�

v

4
�

w1

4
�

w2

4
)( †(�13�1)

⇤
 
⇤
41 +  

T (�13�1)
T
 4

⇤
1)

+(
u

4
�

v

4
�

w1

4
�

w2

4
)( †(�13�2)

⇤
 
⇤
42 +  

T (�13�2)
T
 4

⇤
2)

+(
u

4
�

v

4
�

w1

4
�

w2

4
)( †(�13�3)

⇤
 
⇤
43 +  

T (�13�3)
T
 4

⇤
3)

+(
u

4
�

3v

4
+

w1

4
�

w2

4
)( †

k
(�13�4)

⇤
 
⇤
-k
44 +  

T
-k’
(�13�4)

T
 k’4

⇤
4)

+(
u

4
�

3v

4
�

w1

4
+

w2

4
)( †(�13�5)

⇤
 
⇤
45 +  

T (�13�5)
T
 4

⇤
5). (63)
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A. Cubical Fermi surface (Real)

First we set {c0 = 0, c1 = 0, c2 = 1, c3 = 1, u = 0, v = 0, w1 = 1, w2 = �1}. First note that Fermi surface has exact Oh

symmetry because of equal footing of c2 and c3 within eg subspace. And plugging in {u = 0, v = 0, w1 = 1, w2 = �1} leads
to vanishing pairing terms related to 40,41,42,43. In short, kinetic part and interaction part will become as follow.

h0(k) = d4(k)�4 + d5(k)�5 ⌘ e1(k)�4 + e2(k)�5 (75)

4(k) =
1

2
44(�13�4)

⇤
�

1

2
45(�13�5)

⇤ (76)

By looking into form of 4(k), we can deduce that no mixing will occur and impose 44 and 45 to be real for any step below
here.

While, BDG Hamiltonian is written as

H(k) =

0

BBBBBBBBBB@

e2 0 e1 0 0 i�4
2 0 �

i�5
2

0 �e2 0 e1 �
i�4
2 0 �

i�5
2 0

e1 0 �e2 0 0 i�5
2 0 i�4

2
0 e1 0 e2 i�5

2 0 �
i�4
2 0

0 1
2 i (�4) ⇤ 0 �

1
2 i (�5) ⇤ �e2 0 �e1 0

�
1
2 i (�4) ⇤ 0 �

1
2 i (�5) ⇤ 0 0 e2 0 �e1

0 1
2 i (�5) ⇤ 0 1

2 i (�4) ⇤ �e1 0 e2 0
1
2 i (�5) ⇤ 0 �

1
2 i (�4) ⇤ 0 0 �e1 0 �e2

1

CCCCCCCCCCA

. (77)

Using Bogoliubov transformation, it is digonalized as follow.

H(k) = U

0

BBBBBBBBB@

E1 0 0 0 0 0 0 0
0 E1 0 0 0 0 0 0
0 0 �E1 0 0 0 0 0
0 0 0 �E1 0 0 0 0
0 0 0 0 E2 0 0 0
0 0 0 0 0 E2 0 0
0 0 0 0 0 0 �E2 0
0 0 0 0 0 0 0 �E2

1

CCCCCCCCCA

U
†
⌘ UE(k)U † (78)

For real 44 and 45,
E1=� 1

2

q
�2

4 +�
2
5 + 4

�
e12 + e22

�
� 4�5e1 � 4�4e2 < 0

E2=� 1
2

q
�2

4 +�
2
5 + 4

�
e12 + e22

�
+ 4�5e1 + 4�4e2 < 0

(Sign of E1 and E2 doesn’t change whethere real or not.)
(Have gotten analytic form for complex too)

Full Hamiltonian is given by

1

2

X

k

↵
†
k
E(k)↵k (79)

where ↵k = U
† k.

Then we proceed to construct self-consistent equation.
Regarding how the order parameters were written above,
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BdG Hamiltonian 
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Full decoupled form :

(
u
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+
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+

v3
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+
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+
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4
,
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+
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4
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�
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4
,
u
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+

v2

4
�

v3
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II. FROM BDG

Mean field decoupled superconducting H can be written as

1

2

X

k

 †
k
H(k) k (65)

in terms of Nambu spinor,  k = ( T
k
, 

†
-k
)T , neglecting constant terms,

�(404
⇤
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u
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3v
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4 + w2
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Boguliubov-de Gennes Hamiltonian, H(k), is written as

✓
h0(k) 4(k)
4

†(k) �h
T
0 (�k)

◆
(66)

where

h0(k) = c0k
2 + c1

X

i=1,2,3

di(k)�i + c2d4(k)�4 + c3d5(k)�5, (67)

whose energy eigenvalues are ✏(k)± = c0k
2
±

q
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, (68)

Each order parameter 4a is written as,
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As a starting point, we fine tune c0, c1, c2, c3, u, v, w1, w2 and diagonalize BDG Hamiltonian with chemical potential µ=0.
Within some fine tuned models, we expect to get a result that can be described by just looking into interaction part Eq.68.
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Quadrupolar fluctuation drives d-wave superconductivity 
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z � J2) ⌧z ⇠ JxJyJz

Quadrupole moments Octupole moments

multiple spin interactions

No magnetic dipoles! 

3

FIG. 1. Ground state phase diagram for the J1-J2-K
model for fixed J1 = +1, showing various ordered quadrupo-
lar phases (NQ=Néel quadrupolar, SpQ=spiral quadrupo-
lar) as well as coexisting octupolar order (NO=Néel octupo-
lar). For J1 = �1, the phase diagram is identical but phases
get relabelled as NQ ! FQ (ferroquadrupolar) and NO!

FO (ferrooctupolar). Solid lines are T = 0 mean field phase
boundaries, points are obtained fromMonte Carlo (MC) sim-
ulations on system sizes L = 8 (1024 spins) showing excellent
agreement. Color indicates regions where we find two-stage
thermal ordering in MC; the scale shows which broken sym-
metry (quadrupolar/octupolar) has a higher transition tem-
perature. The “stars” indicate regions where we tentatively
place the PrTM2Al20 materials (with J1 < 0 for PrTi2Al20
and J1 > 0 for PrV2Al20).

of which we find the energy per site in the classical limit

Ecl

Nsite
= �2(J1 � 18K⌘2)(1� ⌘2)F (�,q) + 2J1�⌘

2

+ 6J2�⌘
2 + 2J2(1� ⌘2)G(q) . (3)

Minimizing this variational energy with respect to
(q,�, ⌘), we arrive at the T = 0 phase diagram, with
phase boundaries depicted by solid lines in Fig. 1 for
the choice � = 0. Along the line K = 0, this phase
diagram is identical with previous results obtained for
Heisenberg spins on the diamond lattice, where J2/J1>
1/8 drives a Néel to incommensurate spiral transition
[49, 50]. Our new results show that K 6= 0 can in-
duce NQ/SpQ phases which coexist with Ising NO or-
der; we find qualitatively similar results for generic
� < 1 (see Supplemental Material). For J1 < 0, the
NQ/NO phases get replaced by FQ/FO phases, while
the spiral is modified by flipping ~⌧ on one sublattice.

We have checked the T = 0 phase diagram in Fig. 1
using classical Monte Carlo (MC) simulations for system
sizes up to L=8 (with 2L3=1024 spins) down to T/J1=
0.001 at a large number of depicted points. The distinct
ground states are best visualized in common origin plots
of the spin vectors of configuration snapshots in the MC

0.2
0.1
0.0 0.00 0.05 0.10 0.15 0.20 0.25Nearest Neighbor Interaction J₂

4-Spin I
nteracti

on K

FIG. 2. Common-origin plots of the spin vectors in con-
figuration snapshots from Monte Carlo simulations visualize
the nature of the low-temperature ordering in the ground-
state phase diagram of the J1-J2-K model in the J2-K plane.

simulation as shown in Fig. 2. Depending on the ⌧z-
order of the phase, characteristic ~⌧?-features (such as
a ring for the spiral phase) are shifted along the z-axis
in the common origin plot. The MC simulations clearly
confirm our mean field ground state phase diagram.

Thermal transitions.— In order to explore the phase
diagram of this model at nonzero temperatures, we have
carried out extensive MC simulations for various system
sizes and across a broad temperature regime. Fig. 3(a)
shows the phase diagram in the J2-T plane at fixed
J1 = 1,K = 0.15. We find that both the NQNO and
the SpQNO phases generically undergo multiple phase
transitions enroute to the high temperature paramag-
net, with intervening phases which have pure octupolar
or quadrupolar order. We deduce the existence of such
transitions via peaks in the specific heat versus tem-
perature, as illustrated in Fig. 3(b) for J2 = 0, which
get sharper with increasing system size. The nature of
the phases can be deduced from common origin plots of
snapshot MC configurations as shown for the NQNO,
NQ, and paramagnetic phases in Fig. 3(b). Using ex-
tensive MC simulations of this sort over a wide range
of parameters, we have compiled a detailed map of the
two phase transitions, as shown in Fig. 1 with the color
scale indicating regions where, upon lowering tempera-
ture, quadrupolar ~⌧? orders first (red, TQ � TO > 0) or
octupolar ⌧z orders first (blue, TQ � TO < 0).

Magnetic field e↵ect.— We next turn to the impact
of an applied magnetic field as a further way to dis-
tinguish FQ from AFQ order. We begin by noting
that the quadrupolar and octupolar moments of the
Pr3+ �3 doublet do not linearly couple to the magnetic
field. The leading term is a quadratic-in-field coupling
to the quadrupolar moment originating at second or-
der perturbation theory in ~h · ~J . This leads to nonzero

Frustration & Multiple spin interactions 
 —> double transitions of quadrupole - octuple orderings 
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Pr3+ localized moments
Double transition & Magnetic field effect
Quadrupole moments
Octupole moments

�
m B // (100) 

B // (110) 
B // (111)

✓h=�⇡/6

✓h=�⇡/2

2

metry (⇥), the pseudospin moments are transformed as
following.

⇥ :

I :

S4z :

C31 :

⌧z
µ

! �⌧z
µ
,

⌧A
µ

$ ⌧B
µ
,

⌧±
µ

! �⌧⌥
µ

⌧±
µ

! ei✓⌧±
µ

(3)

with ✓ = 2⇡/3. Based on above transformation, the
order parameters �, m, for FQ, FO and �̃, m̃ for AFQ,
AFO are transformed as following.

⇥ :

I :

S4z :

C31 :

m!�m, m̃!�m̃

�̃!��̃, m̃!�m̃,

�!��⇤, m!�m, �̃!��̃⇤, m̃!�m̃

�!ei✓�, �̃!ei✓�̃

(4)

Now we derive all the symmetry allowed terms in the
Landau expansion, up to fourth in the order parameters
�, m, �̃ and m̃. Followed by above transformation, we
consider two separate situation : case 1 – the system
with FQ, FO orders, case 2 – the system with AFQ,
AFO orders. In both cases, the quadratic and fourth
orders in the order parameters can be written in terms
of |�| and m (or |�̃| and m̃). For instance, the free
energy expansion with FQ and FO ordering is

F (2)
�,m

=r�|�|
2+rmm2,

F (4)
�,m

=u�|�|
4+umm4+u�m|�2

|m2. (5)

Similarly for AFQ and AFO orders, one can write down
the same form with parameters |�̃| and m̃. The main
di↵erence between FQ case and AFQ case is the pres-
ence and absence of cubic term with quadrupolar order
parameters � or �̃. The cubic term with � is allowed for
FQ, FO case as,

F (3)
�,m

=v�i(�
3
� �⇤3)=2v�|�|

3 sin 3✓�. (6)

The second term is by writing �= |�|ei✓� . However, the
cubic term in �̃ is missing in the case of AFQ order,
thus one should take into account sixth order term /

(�̃6 + �̃⇤6) to consider the anisotropy of AFQ order.
For both cases of FQ, FO or AFQ, AFO, |�|2m2

term in F (4)
�,m

(or |�̃|2m̃2 term) leads to coexisting phase
between quadrupolar order and octupolar order. For
instance, we consider the Landau phase diagram of

F�,m = F (2)
�,m

+F (4)
�,m

+F (3)
�,m

as functions of v� and u�m

with rm > 0. Under the transformation ✓ into ✓ + ⇡,
the sign of v� is changed thus only consider the case of
v� > 0. Fig.1 shows add explanation and edit fig
with better resolution

FIG. 1. Landau Phase Diagram of F�,m with FQ and FO
order parameters, � and m:

Magnetic field e↵ect — We now consider the impact
of an applied magnetic field and consider the modifica-
tion of the Landau free energy. The quadrupolar and
octupolar moments do not linearly couple to the mag-
netic field. The leading term is quadratic-in-field cou-
pling which the magnetic field indirectly couples to the
quadrupolar moment via second order perturbation the-
ory in B ·J . As we studied before in Ref.[], it leads

to Hfield = �B2(
p
3
2 (B̂2

x
� B̂2

y
)⌧x+ 1

2 (3B̂
2
z
� 1)⌧y) where

� =
⇣
�

14
3�(�4)

+ 2
�(�5)

⌘
with �(↵) the energy scale of

excited states splitted by crystal fields. Here, we define
h = hx+ ihy = |h|ei✓h as Hfield = h⇤⌧++h⌧�. Then
the transformations of h under symmetries are identical
to the ones of FQ order parameter �. Thus, magnetic
fields with (100) and (110) directions correspond to h
with ✓h = �⇡/6 and �⇡/2 respectively. It is notable
that magnetic fields with (111) direction do not couple
to quadrupolar moments but couple to octupolar mo-

ment with cubic order like /

⇣
B̂xB̂yB̂z

⌘
⌧z.

For FQ case, the order parameter � is linearly coupled

to h, /
⇣
h�⇤+h⇤�

⌘
, which leads to a crossover in the

presence of field. Furthermore, the cubic term of FQ

order F (3)
�,m

induces the crossover temperature to depend
on field direction, resulting in anisotropy in magnetic
field between (100) and (110) directions.

In the case of AFQ, however, AFQ order couples

to the field in quadratic order as, / i
⇣
h�̃2

�h⇤�̃⇤2
⌘
=

2|h||�̃|2 sin(✓h + 2✓
�̃
) which leads to the linear order in

h. Including this term, one can write down the Landau

Landau theory analysis 

w�|�|6 cos 6✓�

|�|2|h|
⇣
r̃h + rh sin(✓h + 2✓�)

⌘ T

B
2

B//(100)

Field effect based on Landau theory

B//(110) or // (111)

Quadrupole
PMPM

Quadrupole 
+ Octupole

Quadrupole 
+ Octupole

Quadrupole

Quadrupolar and octupolar double transition in fields  
 —> Field direction matters! anisotropic (100) vs (110) or (111)

SBL, A. Paramekanti, F. Freyer, J. Attig, S. Trebst and Y.B Kim  To appear in ArXiv soon 
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Superconductivity 

Molecular orbital picture and Luttinger semimetal

Kondo coupling : Quadrupolar moment 

Quadratic band touching 
with cubic symmetry 

Luttinger Hamiltonian with J=3/2
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Summary

multipolar order : double transitions

Pr(TM)2(Al,Zn)20

superconductivity

anisotropy in fields

: multipolar fluctuation

  d-wave pairingNon Fermi Liquid?

Superconductivity!
Quadrupolar order? Fermi Liquid
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