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New orders beyond symmetry breaking?

e From the chiral spin states and FQH states, we learned that states
with the same symmetry can belong to different phases.
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New orders beyond symmetry breaking?

e From the chiral spin states and FQH states, we learned that states
with the same symmetry can belong to different phases.

e The order in FQH states is a kind of order that
- cannot be described by symmetry breaking
- cannot be described by long range correlations
- cannot be described by local order parameter
e Hard to publish papers by describing what the new order is not.

But how to describe the new order in terms what it is?
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The early attempts to characterize the new order

e A gapped state can have a non trivial low energy effective theory
even below the gap!
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The early attempts to characterize the new order

e A gapped state can have a non trivial low energy effective theory
even below the gap!
Topology-dependent and topologically robust ground state
degeneracy can (partially) describe the new order wen so; wen & Niu 90
Low energy effective theory is an almost trivial but highly
non-trivial theory = topological field theory witen 80
— motivate us to name the new order as topological order
Topologically stable ground states can be used as fault tolerant
quantum memory. Kitaev 97; Dennis & Kitaev & Landahl & Preskill 02

e Topologically robust non-Abelian Berry's phases of the degenerate
ground states from deforming the torus — representation S, T of
modular group which can completely (?) describe the topological
order. wen g9 AR
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e Topologically robust degeneracy even exists on sphere if we have
quasiparticles wen o1, Moore & Read 91, Nayak & Wilczek
Topologically robust Non-Abelian Berry's phases from exchanging
defects —
representation of Braid group wu, ss — non-Abelian statistics coudin &
Menikoff & Sharp 85
Can be realized in FQH states woore & Read 91, Wen, 01

. . VR
and lead to topological quantum computation. o o o
Kitaev 97, Preskill 97, Freedman 00 \—/
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e Topologically protected gapless boundary excitations:
2D bulk — 1D boundary CFT Haiperin 82, wen 90
4D bulk — 3D boundary chiral fermions (topo. insulator in 4D)
Kaplan 92
Structure of gapless boundary excitation fully characterize the
structure of bulk topological order wen %
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e Topologically robust degeneracy even exists on sphere if we have
quasiparticles wen o1, Moore & Read 91, Nayak & Wilczek
Topologically robust Non-Abelian Berry's phases from exchanging
defects —
representation of Braid group wu, ss — non-Abelian statistics coudin &
Menikoff & Sharp 85
Can be realized in FQH states woore & Read 91, Wen, 01
and lead to topological quantum computation. ./\\. o
Kitaev 97, Preskill 97, Freedman 00 ) N

e Topologically protected gapless boundary excitations:
2D bulk — 1D boundary CFT Haiperin 82, wen 90
4D bulk — 3D boundary chiral fermions (topo. insulator in 4D)
Kaplan 92
Structure of gapless boundary excitation fully characterize the
structure of bulk topological order wen %
The edge-bulk correspondence of topological order can be viewed
as the holographic principle in quantum gravity discovered a few
years later. Thorm 91, t'Hooft 93, Susskind 94 .
Is quantum gravity topological?
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A modern view of topological order?

e For gapped systems, entanglement entropy has universal constant
term: Sp = yArea — Viop,
topological entanglement entropy, kitaev & Preskill 06, Levin & Wen 06
and universal spectrum.ii & Haldane 08
(Can be probed by quantum noise kich & Levitov 08)
Topological order — long range patterns of quantum
entanglements. wen 04

What really is long range of quantum entanglements?
What really is topological order?
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What are quantum phases?
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What are quantum phases?

e Phases are defined through phase transitions.

What are phase transitions?

As we change a parameter g in Hamilto- ¢,
nian H(g), the ground state energy den- c
sity e = Eg/V or average of some other
local operators (O) may have a singularity A
at g. — the system has a phase transition
at gc.

The Hamiltonian H(g) is a smooth function of g. How can the
ground state energy density €, be singular at a certain g.?

e Spontaneous symmetry breaking is a mechanism to cause a
singularity in ground state energy density ¢, .
— Spontaneous symmetry breaking causes phase transition.
But symmetry breaking does not describe all the phases.
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Mathematical definition of gapped quantum phases

E E E

8 s
A more general mechanism to cause singularity of ¢, for gapped
states: gap closing. & C gapped

gapless—»

e A precise definition of gapped quantum phases:
Two gapped states, |W(0)) and |W(1)), are in the same phase iff
they are related through a local unitary (LU) evolution

(1)) = P(e o HED ) (o))
where H(g) =3, Oi(g) and O;(g) are local hermitian operators.
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LU evolution and quantum circuit of finite depth

We can rewrite the LU evolution as
(1)) = P77 o % HE))[w(0))

= (local unitary transformation)|W(0))
= (quantum circuit of finite depth)|W(0))

_ZSTHB‘\\\\\\\\\\\\\\\\

|
_laTHA#]‘HHHHHH‘[# e
LTI L]
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= (local unitary transformation)|W(0))

= (quantum circuit of finite depth)|W(0))
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e The local unitary transformations define an equivalence relation
A universality class of a quantum phase is an equivalent class of
the LU transformations

Hastings, Wen 05; Bravyi, Hastings, Michalakis 10
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Topological order is a pattern of long range entanglement

Two kinds of states if no symmetries:

e The states that are equivalent to product state under LU
transformations. All those states belong to the same class (phase)
— short-range entanglement and trivial topological order.

e The states that are not equivalent to direct-product states. Those
states form many different equivalent classes (phases)

— many patterns of long-range entanglements and many different
topological orders.

e In absence of symmetry:

Quantum phases of matter
= patterns of long-range entanglement = topological orders
= equivalence classes of the LU transformations

Examples: FQH states
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Symm. breaking orders and symm. protected topo. orders

e If the Hamiltonian H has some symmetries, its phases will
correspond to equivalent classes of symmetric LU transformations:

W) ~ P(e*ifo1 dg ’:’(g)) |W) where I:I(g) has the same symmetries
as H.
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Symm. breaking orders and symm. protected topo. orders

e If the Hamiltonian H has some symmetries, its phases will
correspond to equivalent classes of symmetric LU transformations:
. 1 o ~
W) ~ P(eﬂfo de H(g)) |W) where H(g) has the same symmetries

as H. 8 & SB—SREI‘ SB-SRE 2
SRE

SY-SRE 1 ‘ SY-SRE 2

SY-LRE 1|SY-LRE 2| SY-LRE 3
LRE | LRE 2

SB-LRE 1|SB-LRE 2| SB-LRE 3

without symmetry §; with symmetry &

e SRE states with different symmetries
— Landau's symmetry breaking orders.

e SRE states with the same symmetry can belong to different classes
— symmetry protected topological orders (symmetry protected
trivial orders). Gu & Wen 09, Pollmann & Berg, Turner & Oshikawa 09
Examples: Haldane phase and S, = 0 phase of spin-1 XXZ chain.
Band and topological insulators
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Labeling and classifying topological orders

Topological order = pattern of long range entanglement
= equivalent class of LU transformations
How to label those equivalent classes?

Xiao-Gang Wen, MIT Topological Order: Patterns of Long Range Entanglements of



Labeling and classifying topological orders

Topological order = pattern of long range entanglement
= equivalent class of LU transformations
How to label those equivalent classes?

e We can use the wave function ® to label the topological orders.

Xiao-Gang Wen, MIT Topological Order: Patterns of Long Range Entanglements of



Labeling and classifying topological orders

Topological order = pattern of long range entanglement
= equivalent class of LU transformations
How to label those equivalent classes?

e We can use the wave function ® to label the topological orders.
But this is a many-many to one labeling scheme.

Xiao-Gang Wen, MIT Topological Order: Patterns of Long Range Entanglements of



Labeling and classifying topological orders

Topological order = pattern of long range entanglement
= equivalent class of LU transformations
How to label those equivalent classes?

e We can use the wave function ® to label the topological orders.
But this is a many-many to one labeling scheme.

Under the wave function renormalization generated by the LU
transformation, verstracte, Cirac, Latorre, Rico, Wolf 05; Vidal 07;
Jordan, Orus, Vidal, Verstraete, Cirac 08; Jiang, Weng, Xiang 09; Gu, Levin, Wen 09 the wave
function flows to simpler one within the same equivalent class.

e Use the fixed-point wave function: @5, to label topological order.
®si, may give us a one-to-one labeling of topological order, and a
classification of topological order. &

g
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Classify 2D topological order

The non-chiral 2D topological orders are classified by the data

N,'J-k, F;(j,r,?;f, P,-J‘aﬁ, A", that satisfy Levin & Wen 05; Chen & Gu & Wen 10

= g Njim*Nkml*:E Nign« Np i,

2 : Um a['} itn,px cjkt,mk __ mkn,Bx ijm,ce
= knt,ne ps Ky F/sq s T Flpq de qus ¢y
t,n,p,K €
Nigi= Nj jix

= Z Z Pikj,(yﬂ(Pikj,o/ﬂ)* _ 17

a=1 p=1
= Pikj,aﬂ _ 2 : Fj_] *k,Ba Fl mj* )\'yPIm /JV’

P*irmE Ay mrit v
mA,y, v, pn

B . .
= PJPG 6lm6/'3() — g/zq;(; jp X7 for all k,l,/ with Nk,'/* > 0.
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The non-chiral 2D fermionic topological orders are (partially?)
classified by the data N, N F,:J,Tf/\ﬁf O’kag A that satisfy

Gu & Wang & Wen 10

N N
o E Njim» Nmi= = g Nign= Ni=ni
m—0 n—0
N

f f
Z jim* Nkm/* + Nj/m* leml*) = Z(N/gn* N/*ni + Nkjn* Nll:‘ni)v
n=0

ijk?

Niges N Nigo
Um a/5+ /tn.tpx,Jr -jkt,nr,+
D DD DD DD D il Tl o
t n=1 p=1 k=1
Namp*

_ (_)Sj/m a)spq= ( 2 : I_—mkn Bx, +I_—Um ae,+

Ipq,0€,— qps, o, —

e Those are tensor category theory and super tensor category theory.
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Application to 1D: no 1D topological order

e What are the phases for gapped 1D systems without any symm.?
e What are the phases for short-range correlated (SRC) states
without any symmetry? Hastings 04; Hastings, Koma 06
SRC states: ANY local operator has short range correlation.
e A SRC state can always be represented as a MPS:

Schuch, Wolf, Verstraete, Cirac 08

moee
V(my,...,my) = TrA[I] AL%]L % ALl

e A sequence of n matrix product can be simplified through the LU
transformations if n is large:

m! m’
L E&

mlm’ocB

Verstraete, Cirac, Latorre, Rico, Wolf, 2005
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e Introduce double-tensor Eaa /3b =>m m”ﬁ( E}ab)*

If Zm AEn] axﬁ(A[] )* Z Brn 03(Br[n]¢ab) - AL”] - Zm’ Umm' Br[rg]/
e One largest eigenvalue dominates:

LITT=><=1I

(oo}
Amlm’(xB

([T E™)n 50 = VI WL

e Since E4l is a completely positive map, one finds, up to a gauge
transformation, V(y;] = )\Eyk]éaa, W([yl;] = )\%[;(H](S‘gb and \, > 0.

SO Amimrap = Y AIG i/ A6 50
e The fixed point wave function is a product state.
[ | [ | ml m"
( ) ( )
[ [ I [ [T 1T [ — @
Aml m’ o
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No topological order in 1D, if there are no symmetries

e All product state are linked by LU transformations.

e All SRC MPS are linked by LU transformations.

e All SRC MPS belong to the same quantum phase, if there are no
symmetries.
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No topological order in 1D, if there are no symmetries

e All product state are linked by LU transformations.

e All SRC MPS are linked by LU transformations.

e All SRC MPS belong to the same quantum phase, if there are no
symmetries.

e But for systems with certain symmetries, we can only use the
symmetric LU transformations to define states in the same phase.
e In this case symmetric LU transformations cannot links all SRC
MPS. SCR MPS can belong to different phases.
Symmetry protected topological orders

8

W33

SB-SRE 1 ‘ SB-SRE 2
SRE

SY-SRE 1 ‘ SY-SRE 2

SY-I) wm 3
LRE 1 LRE 2
SB-L @w

without symmetry §,; with symmetry &,
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Quantum phases with translation and on-site symmetry

e A translation invariant (T1) SRC state can always be represented
as an Uniform M PS.Perez—Garcia, Wolf, Sanz, Verstraete, Cirac 08
e A SRC uniform MPS can always be deformed into a “dimer MPS"

W|th|n the Space Of SRC Uniform MPS Schuch & Perez-Garcia & Cirac 10; Chen & Gu
& Wen 10 ml m"

NI RN RSy N § G Y O

Aml m o
e If the original MPS has a on-site symmetry: u(g), g € G,

Ug)Amim = Z um’m’,k’k’(g)Mil(g)Ak’k’ M(g)
k! kr

where u(g) is a representation of G,
a(g) is an 1D representation of G,
M(g) is a projective representation of G.
e Different quantum phases are classified by the pair [M(g), a(g)],
the different projective rep. and different 1D rep.
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One can show that the representation u always factorize

u~a(g)M(g
o2)M(g g)
O‘@)J L {»ﬁ«} {é E}
Al mrap MKg) M(g) M(g) M(g)

e So the fixed-point state transform as

o S O B ol
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One can show that the representation u always factorize

u~a(g)M(g
o2)M(g g)
O‘@)J L {»ﬁ«} {é E}
Al mrap MKg) M(g) M(g) M(g)

e So the fixed-point state transform as

o S O B ol

e Consider another fixed-point state that transforms differently

L O O O == ==

Such a state can be linked to the first fixed-point state via a
symmetric LU transformation, iff M(g) and N(g) are the same
types of projective rep. and a = f3.

When o = 3 = 1, both states are product of “singlet” dimers.
How can the two states belong to two different phases?

Xiao-Gang Wen, MIT
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Projective representation

The total phase is unphysical — projective representation
e Matrices u(g) form a projective representation of group G if

u(gr)u(ge) = w(gr, &)u(gigr), g1.& € G.
o [u(gr)u(gr)]u(gs) = ulgr)[u(gr)u(gs)] gives rise to the condition
w(g2, g3)w (g1, 8283) = w(g1, &2)w (8182, &3)-

e Adding a phase factor v/(g) = B(g)u(g) will lead to a different

factor system w'(g1,82) = %w(&agﬂ'

We regard w'(g1,82) ~ w(g1,g2)-
Equivalent classes of the factor systems w(g1,22) = H?(G,C)
types of projective representations.
e u1(g) = w1 € H?(G,C), ux(g) — wa € H*(G,C), then
u(g) @ ua(g) — w1 +wa. — H?(G,C) is an Abelian group
e Half-integer spins = projective representation of SO(3)
Integer spins = linear representation of SO(3).
— H?[SO(3),C] = Z>



Projective representation and symm. LU trans.

Try to link the following two states via symm. LU trans.

o U ¥ N O s e e
R WO D s = el

e Expand the on-site space of the first state from \/(E',]V, ® V,E,],l to

(Vi + Vi) © (Vis + Vi)
=V eVl v e vl - vIL e v+ VL e Vi,
e When o = /3, try to rotation the dimer using symm. LU trans.:
[i-0lvha ) € Vs @ V! = ol iy € Vil e VY
e During the rotation, the following state appears .
[Yih)ha-1) + [5G + [ o) + [WE )
Each term correspond to projective rep. 0,wp — wy, wy — wim, 0

The state form a representation of G only when wy; = wy.
e The two states are linked via symm. LU trans.. iff o, wy = 5, wy.
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Symmetry protected topological orders in 1D

For 1D spin systems with only translation and an on-site
symmetry G which is realized by a linear representation, all the
phases of gapped states that do not break the two symmetries are
classified by a pair (w, a), where w € H*(G,C) label different
types of projective representations of G and « label different 1D
representations of G.
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Symmetry protected topological orders in 1D

For 1D spin systems with only translation and an on-site
symmetry G which is realized by a linear representation, all the
phases of gapped states that do not break the two symmetries are
classified by a pair (w, a), where w € H*(G,C) label different
types of projective representations of G and « label different 1D
representations of G.

e H?[SO(3),C] = Z3 and SO(3) has no 1D rep. — SO(3) spin
rotation and translation symmetric integer spin chain has two and
only two quantum phases that do not break the two symmetries.

e H?[SU(2),C] = Z1 and SU(2) has no 1D rep. — SU(2) and
translation symmetric integer+half-integer spin chain has only one
quantum phases that do not break the two symmetries.

e H*(Z,,C) = Z; and Z, has n 1D rep. — Z, and translation
symmetric g-dit chain has n and only n quantum phases that do
not break the two symmetries.
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A G !
u u u u
O 00O OO0 -0 o M
O 06 eee see see o
u: linear representation of G

« :1D linear representation of G
w, —w: projective representations of G

e The boundary states form w or —w projective representations of G
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Gapless states |

Generalizing Lieb-Schultz-Mattis theorem

For an 1D spin system with translation and an on-site symmetry
G which is realized by a non-trivial projective representation, the
system must gapless if it does break the two symmetries.

Y Y Y Y

ot be 4 bbb e o

Wi+1 — Wi =79
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Gapless states |

Generalizing Lieb-Schultz-Mattis theorem

For an 1D spin system with translation and an on-site symmetry
G which is realized by a non-trivial projective representation, the
system must gapless if it does break the two symmetries.

Y Y Y Y

ot be 4 bbb e o

Wi+1 — Wi =79

e SO(3) spin rotation and translation symmetric half-integer spin
chain is gapless if it does not break the two symmetries.
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Gapless states |l

Hastings 03
In general, a symmetric state of L-sites satisfies

u(g) ® ... ® u(g)loL) = ar(g)loL)
Localization of 1D representation
For 1D spin systems of L sites with translation and an on-site
symmetry G which is realized by a linear representation, a gapped
state that do not break the two symmetries must transform as

u(g) @ ... u(g)|dL) = [cg)]"|pL) for all large L.
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Gapless states |l

Hastings 03
In general, a symmetric state of L-sites satisfies
u(g) ® ... ® u(g)loL) = ar(g)loL)

Localization of 1D representation
For 1D spin systems of L sites with translation and an on-site
symmetry G which is realized by a linear representation, a gapped
state that do not break the two symmetries must transform as
u(g) @ ... u(g)|dL) = [cg)]"|pL) for all large L.

e a 1D state of conserved bosons with fractional bosons per site must
be gapless, if the state does not break the translation symmetry.
Only integer m boson per site — on-site 1D rep. a(6) = '™,
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A simple result in higher dimensions

For d-dimensional spin systems with only translation and an
on-site symmetry G which is realized linearly, the object

(o, w1, wo, ...,wq) label distinct gapped quantum phases that do
not break the two symmetries. Here o labels the different 1D
representations of G and w; € H?*(G, C) label the different types of
projective representations of G.

(w1 =0,1;wp = 0,1) label four distinct

states in integer spin systems with trans-

lation and SO(3) spin rotation symme- vV V@
tries- o o @ o oo o&o (3
( ) (wlaw2) (an): o & o o o e
(b) (w1,w2) = (0,1), TTTYYY
(c) (w1, w2) = (1,0), I I I 'IHIHI’
(d) (wl,wg) = (1, 1). . . . o ofe oo

(c) (d
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Topological order and entanglement — a rich world

e We classify all 1D symmetric quantum phases using symmetric LU
transformation, MPS, and projective representation.

e One can also partially classify 2D quantum phases using LU
transformation, string-nets, and TPS.
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Topological order and entangle

e We classify all 1D symmetric quantum phases using symmetric LU
transformation, MPS, and projective representation.

e One can also partially classify 2D quantum phases using LU
transformation, string-nets, and TPS.
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