Unitary Fermi gas
Phase diagram and Raman spectroscopy

Laboratoire Kastler Brossel, Paris
R. Combescot, C. Lobo, A. Recati, I. Carusotto, S. Stringari, T. L Dao, A. Georges, J. Dalibard
Phase diagram of strongly interacting fermions at unitarity
With unbalanced spin populations
F. Chevy, Phys. Rev. A 74, 063628 (2006),
and cond-mat 0701350

Measurement of single particle excitations in strongly
interacting Fermi gas by stimulated Raman spectroscopy
T. L. Dao, A. Georges, J. Dalibard, C.S., I. Carusotto, cond-mat 0611206
Motivation

Attractive Fermi gas with equal spin population
\Rightarrow BCS theory, pairing at edge of Fermi surface

What is the nature and existence of superfluidity when spin population is imbalanced?
Mismatched density and/or pairing with different masses

Ex:
Superconductors in magnetic field or quark matter
Cold gases: Mit and Rice expt

$$E_{F,i} = \frac{\hbar^2 k_{F,i}^2}{2m_i} = \frac{\hbar^2}{2m_i} \left(6\pi^2 n_i\right)^{2/3}$$
Overview of Theoretical scenarios

Chandrasekhar and Clogston: stability of the paired state: $\mu_\uparrow > \mu_\downarrow$

Conversion of a particle: $\downarrow \rightarrow \uparrow$
Decrease the grand potential $H - \mu_\uparrow N_\uparrow - \mu_\downarrow N_\downarrow : \mu_\uparrow - \mu_\downarrow$
Cost of pair breaking: Δ
\Rightarrow Paired state stable for $\mu_\uparrow - \mu_\downarrow < \Delta$

And beyond?

Polarized phase: One spin species (Carlson, PRL 95, 060401 (2005))

FFLO Phase (Fulde Ferrell Larkin Ovchiniakov): pairing in $k_\uparrow - k_\downarrow \neq 0$
(C. Mora et R. Combescot, PRB 71, 214504 (2005))

Sarma phase (internal gap): pairing in $k_\uparrow - k_\downarrow = 0$
Opening of a gap in the Fermi sea of majority species. (Liu, PRL 90, 047002 (2003))
Avalanche of recent publications!

P. Pieri and G.C. Strinati cond-mat/0512354 : diagrammatic method
Extrapolation from BEC regime
W. Yi and L.-M. Duan, cond-mat/0601006 : BCS at finite temperature
M. Haque and H.T.C. Stoof, cond-mat/0601321 : BCS at T=0
T.N. de Silva and E.J. Mueller, cond-mat/0601314 : BCS at T=0
D. Sheehy, L. Radzihovsky, PRL 06
A. Bulgac, M. McNeil Forbes ’06
K. Levin et al., 06
M. Parish, Nature Physics 3 ’07

Assumptions:
1) Unitarity: universal parameter $\mu = (1 + \beta) \ EF = \xi EF$ known
2) Grand canonical description, Local density approx,
3) T=0 approach
Experimental results

MIT: 3 phases
- Fully paired superfluid core
- Intermediate mixture
- Fully polarized rim

Rice: 2 phases
- Fully paired superfluid core
- Fully polarized rim

G. Partridge et al., Cond-mat 0608455
MIT experiment
(Science Express, December 22, 2005)

Superfluidity observed in Time of flight
Loss of superfluidity for large
Spin population imbalance
Why Unitarity?

Dimensional analysis: for any *intensive* physical quantity Q (density, pressure...)

$$Q[V, \mu_\uparrow, \mu_\downarrow, m, \hbar, a] = Q_0[\mu_\uparrow, m, \hbar] f (\mu_\downarrow / \mu_\uparrow, 1/k_{F\uparrow} a)$$

q_0: value for the ideal Fermi gas;

$$\mu_\uparrow = \hbar^2 k_{F\uparrow}^2 / 2m$$

At Feshbach resonance, $a = \infty \Rightarrow Q/Q_0 = g(\mu_\downarrow / \mu_\uparrow)$ only!
Application: universal equation of state of the balanced Fermi gas

For instance: $Q = \text{density, balanced Fermi gas } (\mu_\uparrow = \mu_\downarrow)$

\[
n = \frac{1}{6\pi^2} \left(\frac{2m\mu_\uparrow}{\hbar^2} \right)^{3/2} \times \text{numerical factor}
\]

\[
\mu_\uparrow = \xi \frac{\hbar^2}{2m} \left(6\pi^2 n \right)^{2/3} = \xi E_F
\]

Determination of ξ

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Theory</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENS (^6Li)</td>
<td>BCS</td>
<td>0.59</td>
</tr>
<tr>
<td>Rice (^6Li)</td>
<td>Astrakharchik</td>
<td>0.42(1)</td>
</tr>
<tr>
<td>JILA(^{40}K)</td>
<td>Perali</td>
<td>0.455</td>
</tr>
<tr>
<td>Innsbruck (^6Li)</td>
<td>Carlson</td>
<td>0.42(1)</td>
</tr>
<tr>
<td>Duke (^6Li)</td>
<td>Haussmann</td>
<td>0.36</td>
</tr>
</tbody>
</table>
Universal phase diagram of the homogeneous unitary system

« Exact » eigenstates of the grand potential

- Single component ideal gas \(\Omega = \Omega_0 \)
- Fully paired superfluid

\(|\text{SF}\rangle_{\mu} \) eigenstate of the \textit{balanced} grand-potential

\[
\hat{\Omega}' = \hat{H} - \mu(\hat{N}_\uparrow + \hat{N}_\downarrow)
\]

\[
\hat{\Omega}'|\text{SF}\rangle_{\mu} = \Omega'|\text{SF}\rangle_{\mu} \quad \hat{\mathcal{N}}_\uparrow|\text{SF}\rangle_{\mu} = \hat{\mathcal{N}}_\downarrow|\text{SF}\rangle_{\mu} = N|\text{SF}\rangle_{\mu}
\]

\[
\hat{\Omega} = \hat{H} - \mu_\uparrow \hat{\mathcal{N}}_\uparrow - \mu_\downarrow \hat{\mathcal{N}}_\downarrow \quad \Rightarrow \hat{\Omega}|\text{SF}\rangle_{(\mu_\uparrow + \mu_\downarrow)/2} = \Omega'|\text{SF}\rangle_{(\mu_\uparrow + \mu_\downarrow)/2}
\]

\[
\hat{\Omega} = \hat{H} - \frac{\mu_\uparrow + \mu_\downarrow}{2}(\hat{\mathcal{N}}_\uparrow + \hat{\mathcal{N}}_\downarrow) - \frac{\mu_\uparrow - \mu_\downarrow}{2}(\hat{\mathcal{N}}_\uparrow - \hat{\mathcal{N}}_\downarrow)
\]
Universal phase diagram of the homogeneous unitary system (2)

\[
\begin{align*}
\Omega &= -PV \\
\text{d}P &= \sum_{\sigma=\uparrow,\downarrow} n_\sigma \text{d}\mu_\sigma
\end{align*}
\]

\[\Rightarrow \quad \text{Just need to know} \quad n(\mu)\]

\[
P = P_0 (1 + \eta)^{5/2} / (2\xi)^{3/2}
\]

\[
\begin{array}{c}
\eta = \mu_\downarrow / \mu_\uparrow \\
\eta_\alpha > \eta_c > \eta_\beta
\end{array}
\]

\[
\eta_c = (2\xi)^{3/5} - 1 \\
\approx -0.099
\]
Theoretical evidence for an intermediate phase

General properties of a mixed branch?

Step 1: calculate the energy E of a single impurity atom immersed in a Fermi sea ($E = \mu_\downarrow$, with $n_\downarrow = 0^+$)

Step 2: $dP/d\mu_\sigma = n > 0$

$\eta_\beta < \eta_c$: the new branch is stable

$\eta_\beta > \eta_c$: the new branch is unstable
Variational upper bound for the N+1 body problem

\[\hat{H} = \sum_{k\sigma} \varepsilon_k \hat{a}_{k\sigma}^{\dagger} \hat{a}_{k\sigma} + \frac{g_b}{\Omega} \sum_{k,k',q} \hat{a}_{k' - q, \uparrow}^{\dagger} \hat{a}_{k+q, \downarrow}^{\dagger} \hat{a}_{k, \downarrow} \hat{a}_{k, \uparrow} \]

\[\varepsilon_k = \frac{\hbar^2 k^2}{2m} \quad \frac{1}{g_b} = \frac{m}{4\pi \hbar^2 a} - \frac{1}{\Omega} \sum_k \frac{1}{2\varepsilon_k} \]

One impurity: restrict the effect of interactions to the formation of a single particle-hole pair.

\[|\Psi\rangle = \varphi_0 |0\rangle + \sum_{k,q} \varphi_{k,q} |k, q\rangle \]

\[|0\rangle = \]

\[|kq\rangle = \]

\[\text{q-k} \]
Comparison with Monte-Carlo simulations (C. Lobo et al. PRL. 97, 200403 (2006))

Minimization of H with respect to φ_0 and φ_{kq}

$$E = \frac{1}{V} \sum_{q<k_F} \frac{m}{4\pi\hbar^2a} - \frac{1}{V} \sum_{k<k_F} \frac{1}{2\varepsilon_k} + \sum_{k>k_F} \left(\frac{1}{E-(\varepsilon_k+\varepsilon_{q-k}-\varepsilon_q)} - \frac{1}{2\varepsilon_k} \right) \frac{1}{2\varepsilon_k}$$

$$\varepsilon_k = \frac{\hbar^2 k^2}{2m}$$

For $a=\infty$, $E=-0.606\ E_F$, $\eta_\beta < -0.606 < \eta_c \sim -0.1$

Monte Carlo simulations: $\eta_\beta = -0.58(1)$
BCS theory: $\eta_\beta = 0$

Why such a good agreement?

Weak excitation of the pairs, even at unitarity

$$\sum_{k,q} |\varphi_{k,q}|^2 = 0.2$$
Three phase mixture in a trap: MIT
Interpretation of MIT’s experiment

Local density approximation in harmonic trap $V(r) \sim r^2$

\[\mu_\uparrow(r) = \mu_\uparrow^0 - V(r) \]
\[\mu_\downarrow(r) = \mu_\downarrow^0 - V(r) \]

R_\uparrow : outer radius of the majority component \hspace{1cm} $\mu_\uparrow(R_\uparrow) = 0$
R_β : outer radius of the minority component \hspace{1cm} $\mu_\downarrow(R_\beta) / \mu_\uparrow(R_\beta) = \eta_\beta$
R_α : radius of the superfluid core \hspace{1cm} $\mu_\downarrow(R_\alpha) / \mu_\uparrow(R_\alpha) = \eta_\alpha$

\[\frac{R_\alpha}{R_\uparrow} = \sqrt{\frac{(R_\beta / R_\uparrow)^2 - q}{1 - q}} \hspace{1cm} q = \frac{\eta_\alpha - \eta_\beta}{1 - \eta_\beta} \]
Comparison with experimental data

Superfluid radius

$q=0.32$
Improved bounds for η_α and η_β

$q = 0.32$
$\eta_\alpha > -0.10$
$\eta_\beta < -0.60$

$-0.62 < \eta_\beta < -0.60$
$-0.10 < \eta_\alpha < -0.088$

$\eta = \frac{\mu_\downarrow}{\mu_\uparrow}$

BCS:
$\eta_\alpha = 0.1$
$\eta_\beta = 0$

Convexity of P:
real equation of state below
Experiment by Rice’s group: fully compatible with 2 phase scenario (no intermediate phase+LDA). No adjustable parameters.

For $P=0.7$, $q \approx 0.16$ differs from MIT and contradicts theoretical bounds: $q > 0.31$ set by $\eta_\alpha > -0.1$ and $\eta_\beta < 0.60$
Summary: part 1

What have we demonstrated?

3 homogeneous phases in the phase diagram of imbalanced unitary Fermi gases
LDA valid agreement with MIT

But a host of unanswered questions!

Nature of the MIT/Rice's discrepancy (surface tension ?)
Microscopic nature of the intermediate phase?
Superfluid nature of the intermediate phase?

Dynamical properties, collective modes?
Extension to the BEC-BCS crossover (in progress)
Response to RF excitation (MIT experiment, Schunck et al. cond-mat/0702066)
Part 2. Measuring one-particle excitations
In Fermi gases using Raman spectroscopy

T-L Dao, A. Georges, J. Dalibard, C. Salomon, I. Carusotto, Cond-mat/0611206

In Fermi liquid theory: low energy excitations are build out of quasiparticles
Dispersion relation on a given point of the Fermi surface:

\[\xi_k \sim v_F(k_F) + (k - k_F) + \ldots \]

Lifetime: \(\Gamma_k^{-1} \)

Fermi surface: excitation energy vanishes: \(\xi_{k_F} = 0 \)

Normal phase in Cuprate SC show strong deviations, anisotropic behavior.

Probe directly one particle correlator:

\[\langle \psi^\dagger(r, t) \psi(r', t') \rangle \]

Bragg spectroscopy or noise corr.:

\[\langle \psi^\dagger(r, t) \psi(r, t) \psi^\dagger(r', t') \psi(r', t') \rangle \]

Stimulated Raman spectroscopy: widely used for Bose systems

Very interesting for fermions:
Probing Fermi surface of strongly interacting fermions (Time of Flight not adequate)
Momentum-resolved quasiparticles excitations
Two-photon Raman excitation

Interacting fermions: \(|\alpha >, |\alpha' >\)
For instance \(^6\text{Li} \) near F. Resonance

Third state empty: \(|\beta >\)
No interaction with \(|\alpha >, |\alpha' >\)

Similar to ARPES in cond. Matter.

\[
R(q, \Omega) \sim \int_{-\infty}^{+\infty} dt \int dr dr' e^{i[\Omega t - q \cdot (r - r')] \times g_{\beta}(r, r'; t) \left\langle \psi_{\alpha}^\dagger (r, t) \psi_{\alpha} (r', 0) \right\rangle
\]

Selectivity in \(q = k_1 - k_2 \)
Selectivity in energy
Interacting Fermions in homogeneous 2D square Lattice

Raman resonance condition \(\varepsilon_{k+q,\beta} - \xi_k = \Omega \)

Threshold in \(\Omega: \quad (\omega_1 - \omega_2)_T = \varepsilon^0_\beta - \mu \sim \varepsilon^0_\beta - \varepsilon^0_\alpha \)

\(\Omega \) close to threshold for \(q = -k_F \)

Shell surrounding Fermi Surface

d of width \(\sqrt{2M\Delta\Omega} \sim \sqrt{2Mv_F(k_F)(q+k_F)} \)

Non interacting fermions

\[
\xi_k = -2t_\alpha (\cos k_x + \cos k_y) - \mu
\]

Model pseudo-gap with d-wave symmetry

\[
\Delta_k = \Delta_0 (\cos k_x - \cos k_y)
\]

\(\Delta_0 = 0.1t_\alpha \)
\(N_\alpha = 0.45 \)
\(\Gamma_0 = 0.05t_\alpha \)
\(\Gamma_1 = 0.4t_\alpha \)
Rate $R(q, \Omega)$ and spectral function $A(k, \Omega)$

For fixed value of q, chosen near Nodal line or Anti-nodal Scan Raman detuning
In Harmonic Trap

LDA: $\mu(R) = \mu_0 - M \omega_0^2 R^2 / 2$

Non-interacting fermions Model d-wave pseudogap state
New experimental setup

Enlarged glass cell
New laser sources: 120 mW diodes operating at 75 degree C
New Zeeman slower
More stable Ioffe-Pritchard trap
120 Watt far detuned optical trap (Fiber laser)
Access for 3D optical lattice
3 10^{10} 7Li atoms in MOT
expected increase of x10 in 6Li number
Ongoing: Transfer into magnetic trap
Thank you for your attention!