Polar Molecules in electronic vibrational ground state

- **Towards Ultra-Cold Ground-state Polar Molecules in the Lab**
 - Experiment: (ii) closed annular loop; Delboeuf, Draves, Appleton, Weidemüller, Brillouin.
 - Techniques not being developed for:
 - Cooling & trapping (cooler cold field CO2)
 - Preparation via :
 - Photodissociation (LIF, INS, IR, ...)
 - E.g. 2-modules RECl in M=Phase
 - Rotor gas cooling, laser desorption, (CO2, laser, IR, ...)
 - AND Gasoline: Optical tracking, Optical Lattice, Measurements, ...

Lattice Spin Models I: Spin-1/2

- AM, G. K. Brennen, P. Zoller.
- Simplified model in CMB: dense washout complex systems
- Two spin range order via exchange interaction
- Direct contact in cooling spin-operators with similar phases
- Symmetry preserving directed exchanges; related to symmetric properties under the confinement interaction
- Derived properties of the model:
 - Spin operators are highly symmetric in spin and space coordinates.
 - Invariant of the model structure under exchange
- Challenges: Full potential strongly relies on these models
- Can be built and their properties can be predicted

Physical Ingredients

- Reduction with molecular quantum states
- Optical lattice (see: spin-1/2 model)
- Conduction electrons, light-polarized plasmonic states
- Spin-1/2 – intermediate range of interatomic molecular potentials
- Antiferromagnetic interactions from spin projections: +1 \(\rightarrow -1 \) +/ –
- Strong spin-orbit rotational symmetry: +/ –

Lattice Spin Models II: Spin-1

- G. K. Brennen, AM, P. Zoller.
- Extension of model from Spin-1/2 to integer spin models
 - e.g. Realization of 2D generalized halide Molecule

Spin-Patterns via Microwave-fields

- BO-parametric for two molecules with hyperfine structure interaction via dipole-dipole interaction
 - B: \(B = B_0 + B_0 R \) \(\propto \gamma_2 \)
 - Ground-state: weak Van der Waals 1
 - Excited-state: strong dipole 2
- Interaction via spin resonance

1D Generalized Halide Model

- Realization of 1D Generalized Halide Model: \(\text{H}_2^+ \), \(\text{D}_2^+, \text{C}_2^+ \)
 - Molecular Properties: Electronically, vibrationally, Raman, IR, VIB
 - Optimization of 4 RH fields \(\text{H}_2^+, \text{D}_2^+, \text{C}_2^+ \)
 - Interactions on nearest neighbor link

Verification

- Spin structure factor

Quantum Phase Transition

- Effective 2D interaction by integrating out transverse motion

Tailoring potentials with DC and AC fields

Design of inter-particle interactions

- 1-particle: single molecule
 - Optical 2D mapping
 - Rigid rotor in DC: electric field induces permanent dipole moment in rotational ground state
 - \(\text{Halide:} \text{Neurotronic, Enervational, VIB} \)
 - Orbital interaction with \(\text{D}_2^+ \) in rotating field

Stability via transverse confinement

- Effective interaction (DC case):
 - \(V_C = V_C \left(\frac{\mathbf{p}_1 \cdot \mathbf{p}_2}{\mathbf{r}_1 \cdot \mathbf{r}_2} \right) \)

Spin-rotation coupling

- Gauge coupling of spin-rotation with coordinate space
 - \(R \left(\theta \right) \left(\mathcal{R}_\theta \right) \)
 - Rigid rotor in AC: angular momentum
 - U(1) x SO(3) x SO(3)

Rigidity of the 1D chain

- Effective 1D interaction: by integrating out transverse motion

2D-disking of spin region

- Potential engineering with several e.g.
 - Effective 2D interaction: by integrating out transverse motion
 - \(R \left(\theta \right) \left(\mathcal{R}_\theta \right) \)
 - Rigid rotor in AC: angular momentum