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Applications of cold molecules  

• Tunable interactions

• Quantum computation

• High-precision spectroscopy

• Controlled chemistry

A. Micheli, G. K. Brennen, and P. Zoller, Nature Phys. 2, 341 (2006)

The dipole-dipole interaction



Cold molecules

• Tunable interactions

• Orientation and alignment • Controlled chemistry
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Experimental methods for cooling molecules

molecules. For the experiments reported here, only ammo-
nia molecules in the low-field seeking levels of the upper
component of this inversion doublet are used. The molecu-
lar beam passes through a skimmer and enters a so-called
Stark decelerator, mounted in a second vacuum chamber.
The 35 cm long decelerator consists of an array of 64
equidistant electric field stages. When the ammonia mol-
ecules in low-field seeking levels enter a region of high
electric field (up to 90 kV=cm), they will gain Stark en-
ergy. This gain in Stark energy (‘‘potential’’ energy) is
compensated by a loss in kinetic energy. If the electric
field is greatly reduced before the molecules have left this
region, they will not regain the lost kinetic energy. This
process is repeated by letting the molecules pass through
the array of electric field stages, which are switched syn-
chronously with the arrival of the package of decelerating
molecules. The process in the Stark decelerator, the
equivalent of a charged particle linear accelerator, can be
viewed as slicing a bunch of molecules with both a narrow
spatial distribution and a narrow velocity distribution (de-
termined by the settings of the decelerator) out of the
original beam, and decelerating these to arbitrarily low
absolute velocities. In this process the phase-space density
remains constant [7], and one can thus translate the high
phase-space densities from the moving frame of the mo-
lecular beam to the laboratory frame. A detailed descrip-
tion of the molecular beam machine and of the deceleration
of ammonia using time-varying electric fields is given
elsewhere [15].

In the experiments reported here, the Stark decelerator is
operated such that a 1 mm long bunch of ammonia mole-
cules with an average forward velocity of 91:8 m=s and
with a longitudinal velocity spread of about 6:5 m=s exits
the decelerator. The calculated longitudinal phase-space
distribution of this initially prepared molecular beam is
shown in Fig. 2 at t ! 0 ms. This is the distribution relative
to the position in phase space of the ‘‘synchronous mole-
cule’’ [15], at the moment that the decelerator is switched
off. At this moment, the synchronous molecule is located
on the molecular beam axis (z axis) 0.6 mm upstream from
the center of the last electric field stage of the decelerator,
and is moving with a velocity of vz ! 91:8 m=s along the z
axis. The entrance of the buncher is located some 15 cm
downstream from the exit of the decelerator. A 5 cm long

hexapole is installed between the decelerator and the
buncher. The hexapole is switched on for a few tens of
!s once the package of ammonia molecules is completely
inside it; the effective length of the hexapole is thus only a
few mm. The hexapole focuses molecules in low-field
seeking states in the transverse direction, but it leaves their
forward velocity unchanged. In flying from the exit of the
decelerator to the buncher, the package of ammonia mol-
ecules spreads out along the molecular beam axis. This
results in the elongated and tilted distribution in longitu-
dinal phase-space as shown in Fig. 2 for t ! 1:743 ms, the
time that the buncher is switched on.

The buncher consists of an array of five electric field
stages, with a center-to-center distance along the molecular
beam axis of 11 mm. Each stage consists of two parallel
cylindrical metal rods with a diameter of 6 mm, centered at
a distance of 10 mm. One of the rods is connected to a
positive and the other to a negative switchable high-voltage
power supply. Alternating stages are connected to each
other. As the electric field close to the electrodes is higher
than that on the molecular beam axis, molecules in low-
field seeking states will experience a force focusing them
towards this axis. This focusing occurs only in the plane
perpendicular to the electrodes. By alternately orienting
the electric field stages horizontally and vertically, mole-
cules are focused in either transverse direction.

When the synchronous molecule is exactly in between
the first and second electric field stages of the buncher, the

decelerator buncher laser
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FIG. 2. Expanded view of the end of the decelerator, the
buncher, and the detection region. The calculated longitudinal
phase-space distribution of the ammonia molecules is given at
the exit of the Stark decelerator (t ! 0 ms), at the entrance (t !
1:743 ms) and exit (t ! 2:100 ms) of the buncher, and in the
laser detection region (t ! 2:652 ms), relative to the position in
phase space of the synchronous molecule.

FIG. 1. Scheme of the experimental setup. A pulsed beam of
ammonia molecules is decelerated and passes through a buncher.
The arrival time distribution of the package of molecules at the
laser interaction zone is recorded using a UV-laser based ioniza-
tion detection scheme.
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Magnetic trap
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Trap loss...



How do electric fields affect spin relaxation?

• Induce couplings between the rotational levels (N = 1)

• Increase the energy gap between the rotational levels

R. V. Krems,  A.Dalgarno, N.Balakrishnan, and G.C. Groenenboom, PRA 67, 060703(R) (2003)



Theory of collisions in external fields

Coupled equations



Spin relaxation is suppressed



• First-order Stark effect

Enhancement of spin relaxation

T. V.  Tscherbul and R.V.  Krems, PRL 97, 083201 (2006)



Enhancement of spin relaxation (a 3D view)
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Trap loss...
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Fig. 2. Energies of dressed states vs. applied microwave electric field strength. State labels are zero-field basis states |ψJmn〉,
as discussed in the main text. Only the subspace connected to |ψ000〉 is shown. For this figure we have chosen a typical working
value of the microwave frequency, !ω = 1.57Be. (a) Linear polarization ε = ẑ. In this calculation, Jmax = 5 and nmax = 20.
For clarity, only one dressed state for each initial value of J < Jmax is shown in the main diagram. (The inset shows the full
Hilbert space included in the calculation; the pattern of levels is repeated for states with photon number n′ = n ± 2k, where
k is any integer.) Note the large avoided crossings with the state that originates as |ψ000〉 at zero field; the crossing of states
labeled |ψ000〉 and |ψ4 0−14〉 is also avoided, but the separation is too small to see in this diagram. (b) Circular polarization
ε = (x̂− iŷ)/

√
2. In this calculation, Jmax = 10 and nmax = 10. All states of the coupled subspace in the plotted energy region

are shown. Note the monotonic behavior and lack of avoided crossings for the |ψ000〉 state.

field, e.g. with ε = (x̂ − iŷ)/
√

2. In this case, absorption
(emission) of k photons is necessarily accompanied by a
change in angular momentum projection ∆m = −k(k).
The critical difference from the case of linear polarization
is that for the |J = 0, m = 0〉 state of interest, net absorp-
tion or emission of k photons requires coupling to a state
with angular momentum J ′ ≥ m′ = k, which is, for any
field strength, separated in energy from the |J = 0, m = 0〉
state by E(J ′) − E(J = 0) > 2Bek. Thus, for a red de-
tuned microwave trap (with !ω < 2Be), there are sim-
ply no resonant multiphoton transitions possible from the
|J = 0, m = 0〉 state. This dramatically simplifies the be-
havior of ∆E as a function of E0, compared to the case
of linear polarization. The manifold of coupled states that
comprise the relevant Hilbert space for the case of circular
polarization is shown in Figure 1b.

The molecular part of the off-diagonal matrix elements
used for explicit calculations of the circular-polarization
case are

〈J ′, m′|n · ε∗ |J, m〉 = 〈J, m|n · ε |J ′, m′〉 =
1√
2
〈J ′, m′| sin θeiϕ |J, m〉

=
1√
2

∫
Y m′∗

J′ sin θeiϕY m
J dΩ

=
{√

J − m − 1
√

J − m√
2J − 1

√
2J + 1

δJ′,J−1

+
√

J + m + 1
√

J + m + 2√
2J + 1

√
2J + 3

δJ′,J+1

}
δm′,m+1. (6)

Typical results of the calculation are shown in Figure 2b.
For moderately large fields such that µE0 ! Be, we find the
desired (and originally expected) behavior ∆E ≈ −αE0,
where the proportionality factor α is roughly constant over
a wide range of E0, is of order α ∼ µ/2, and is maximal
when the detuning ∆ is minimized.

3 Realistic design parameters for a microwave
trap

The requirement for a circularly-polarized field, along with
a desire to maintain an open geometry for optical and
other access to the trap region, has led us to consider
Fabry-Perot type resonators for the microwave trap. Such
resonators are common in the mm-wave [29] through opti-
cal regions [30], but rather less so in the microwave regime.
Nevertheless, cavities with characteristics very similar to
those required have been demonstrated [31,32]; we closely
follow the treatment of reference [31] in our discussion
here. Our goal is to outline a basic, realistic design for
such a resonator, and discuss the volume, depth, and other
characteristics of the resulting trap potential.

We consider a symmetric, spherical-mirror Fabry-
Perot cavity. We assume a confocal geometry, where the
mirrors have spacing L and radius of curvature R = L, and
define the z-axis along the symmetry axis of the resonator,
with z = 0 midway between the mirrors. We consider the
lowest-order transverse mode (TEM00) in this cavity, for
which the resonant condition is L = (q + 1/2)λ/2, where
q is the integer number of half-wavelengths along the cav-
ity axis; we choose q odd to produce an antinode of the

Microwave traps for polar molecules

DeMille, Glenn, and Petricka, Eur. J. Phys. D 31, 375 (2004) 
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Collisions of molecules in a microwave cavity

Molecular Hamiltonian: Hmol = BN2

Field Hamiltonian: Hf = ~ω(aa† − n̄)

Molecule - Field Hamiltonian: Hmol,f = −µ
√

~ω
2ε0V

cos θ
(
a + a†

)
Basis set: |NMN〉|n〉

The matrix elements of of the molecule - �eld Hamiltonian:

〈n|〈NMN |Hmol,f|N ′M ′
N〉|n′〉 ∼ 〈NMN | cos θ|N ′M ′

N〉 ×
×

(
δn,n′+1 + δn,n′−1

)
〈NMN | cos θ|N ′M ′

N〉 ∼ δMN ,M ′
N

(
δN,N ′+1 + δN,N ′−1

)
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Superposition states of molecules in a microwave �eld

Ψ“ground” = a|N = 0, n = N̄〉
+b|N = 1, n = N̄ − 1〉 + c|N = 1, n = N̄ + 1〉
+d|N = 0, n = N̄ − 2〉 + e|N = 0, n = N̄ + 2〉

N̄ is the average number of photons

O�-resonant light: w = 0.01B.

µε0 = 0.1B µε0 = 0.3B µε0 = 0.5B
a = 0.9994 a = 0.9637 a = 0.7497
b = 0.0143 a = 0.0397 a = 0.0178
c = 0.0145 c = 0.0471 c = 0.0441
d = 0.0207 a = 0.182 a = 0.445
e = 0.0209 a = 0.184 a = 0.448
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Threshold laws for collisions in 2D



Threshold laws for collisions in 2D

In 3D, we have Wigner's threshold laws for elastic scattering:

collision cross section ∼ v2l+2l′

In 2D, there is no l. The Hamiltonian is

H = − 1

2µρ

d

dρ
ρ
d

dρ
+

l2z
2µρ2

+Has + V (ρ),

The role of l is played by m, the projection quantum number.

How are the Wigner's threshold laws modi�ed, if we con�ne the

system in 2D?



Let's look at low-energy scattering:

In 3D, the Schrödinger's equation is[
− 1

2µR2

d

dR
R2 d

dR
+
l(l + 1)

2µR2
− 2µV (R)

]
ψ(k,R) = −k2ψ(k,R)

Consider �rst the solution to this equation with V = 0 and k = 0:[
− 1

2µR2

d

dR
R2 d

dR
+
l(l + 1)

2µR2

]
ψ(k,R) = 0

Let's look for the solution in the form ψ(R, k = 0) = constRs

The derivative:

1

2µR2

d

dR
R2 d

dR
Rs = s(s + 1)Rs

Hence, s(s + 1) = l(l + 1) or s = l and s = −(l + 1).



A general solution at k = 0 is therefore

ψ(k = 0, R) = A1R
l + A2R

−(l+1)

Now, for k 6= 0, we have a Bessel equation and the general solution

ψ(k,R) = Ajl(kR) +Bηl(kR)

which can be re-written at small k as

ψ(k,R) = (kR)l + tan δl(kR)−(l+1)

For smooth and continuous matching to k = 0, we must require

tan δl ∼ k2l+1

which gives after some manipulation:

elastic scattering cross section ∼ k4l



Repeating this derivation for 2D, we get

cross secion ∼ 1

k ln2 k
, when m = 0

Using the formalism of Wigner, it is also possible to get the o�-

diagonal cross sections:

cross secion for m = 0 → m′ transitions ∼ k2|m|−1 1

ln2 k

and

cross secion for m > 0 → m′ > 0 transitions ∼ k2|m|+2|m′|−1



Threshold collision laws

Transition 3D 2D

s-wave elastic σ = const σ ∼ 1
k ln2 k

s-wave to non-s-wave σ ∼ k2l′ σ ∼ k2|m|−1 1
ln2 k

non-s-wave to non-s-wave σ ∼ k2l+2l′ σ ∼ k2|m|+2|m′|−1

Why is this interesting?



Consider ultracold collisions of molecules in 2D.

Angular momentum transfer of molecules - such as spin relaxation

- must be accompanied by changes of m, if the magnetic �eld axis

is directed perpendicularly to the plane of con�nement

If the magnetic �eld axis is tilted, collisions do not have to conserve

the total angular momentum projection

Inelastic angular momentum transfer - such as spin relaxation -

will then be much more e�cient if the axis of the external �eld is

not perpendicular to the plane of con�nement.



B
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Suppressed collisional spin relaxation

Enhanced collisional spin relaxation



Conclusions

• Electric �elds may suppress collisional loss from a magnetic trap

• Evaporative cooling in a microwave trap might be di�cult (??)

• Microwave �elds modify interactions of cold molecules

• Elastic and Inelastic Two-Body Collisions are modi�ed in 2D



Outlook: Collision Physics and Ultracold Molecules

Experiments with cold molecules may

• con�rm or disprove Wigner's threshold laws

→ more insight into long-range interactions

• elucidate rates for chemical reactions at ultracold Ts

→ ultracold chemistry → lots of applications

• demonstrate the possibility of controlling chemical reactions

→ controlled chemistry → lots of applications

• make coherent control of bimolecular reactions possible

→ controlled chemistry

• provide new testground for statistical theories of molecules

→ new reaction rate theories
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