Effects of electric static and laser fields on cold collisions of polar molecules
Roman Krems University of British Columbia

UBC group:

Zhiying Li
Timur Tscherbul
Erik Abrahamsson
Sergey Alyabishev
Chris Hemming

Collaborations:

Alexei Buchachenko - Moscow
Grzegorz Chalasinski - Warsaw Alex Dalgarno - Harvard John Doyle - Harvard
Gerrit Groenenboom - N.jimegen
Sture Nordholm - Sweden
Maria Szczesniak - Michigan

Outline

- Introduction

What's interesting about cold molecules?
Methods to produce cold molecules

- Electric-field-control of molecular collisions

How electric fields can help cool molecules
Collisions of molecules in a microwave cavity

- Threshold laws for collisions in 2D
- Outlook: Collision physics and ultra-cold molecules

Applications of cold molecules

- Tunable interactions
- Quantum computation
- High-precision spectroscopy
- Controlled chemistry

-

-

Cold molecules

- Tunable interactions

$$
V_{\mathrm{dip}}=\frac{\mathbf{d}_{1} \cdot \mathbf{d}_{2}-3\left(\mathbf{R} \cdot \mathbf{d}_{1}\right)\left(\mathbf{R} \cdot \mathbf{d}_{2}\right)}{R^{3}}
$$

- Orientation and alignment
- Controlled chemistry

How to create ultracold molecules?

How to create ultracold molecules?

Photoassociation of ultracold atoms
(Stwalley, DeMille, Bigelow, Heinzen, Masnou-Seeuws, ...)
Feshbach resonance sweep
(Jin, Ketterle, Wieman, Cornell, Heinzen, ...)
Stark deceleration of molecular beams
(Meijer, Barker, Peters, Friedrich, ...)
Skimming
(Abraham, Shafer-Ray, ...)
Free expansion
(Gupta, Friedrich, Hershbach, ...)
Buffer gas loading
(Doyle, Peters, ...)
Optical dipole force slowing
(DeMille, ...)
Mechanical slowing
(Gupta, Hershbach, ...)
Sympathetic cooling by collisions with ultracold atoms (Meijer, ...)
Billiard-ball-like collisions to stop molecules
(Chandler, ...)

Experimental methods for cooling molecules

Magnetic trap

Collisions of molecules

$V_{\mathrm{AB}}\left(\mathbf{R}, \mathbf{r}_{\mathrm{A}}, \mathbf{r}_{\mathrm{B}}\right)=(4 \pi)^{3 / 2} \sum_{\lambda_{\mathrm{A}} \lambda_{\mathrm{B}} \lambda} V_{\lambda_{\mathrm{A}} \lambda_{\mathrm{B}} \lambda}\left(R, r_{\mathrm{A}}, r_{\mathrm{B}}\right)$

$$
\times \sum_{m_{\lambda_{\mathrm{A}}} m_{\lambda_{\mathrm{B}}} m_{\lambda}}\left(\begin{array}{ccc}
\lambda_{\mathrm{A}} & \lambda_{\mathrm{B}} & \lambda \\
m_{\lambda_{\mathrm{A}}} & m_{\lambda_{\mathrm{B}}} & m_{\lambda}
\end{array}\right) Y_{\lambda_{\mathrm{A}} m_{\lambda_{\mathrm{A}}}}\left(\hat{r}_{\mathrm{A}}\right) Y_{\lambda_{\mathrm{B}} m_{\lambda_{\mathrm{B}}}}\left(\hat{r}_{\mathrm{B}}\right) Y_{\lambda m_{\lambda}}(\hat{R})
$$

Trap loss...

How do electric fields affect spin relaxation?

- Induce couplings between the rotational levels ($\Delta \mathrm{N}=\mathrm{I}$)
- Increase the energy gap between the rotational levels

R.V. Krems, A.Dalgarno, N.Balakrishnan, and G.C. Groenenboom, PRA 67, 060703(R) (2003)

Theory of collisions in external fields

$$
H_{\mathrm{mol}}=-\frac{1}{2 \mu_{m}} \frac{d^{2}}{d r^{2}}+\frac{\boldsymbol{N}^{2}(\hat{r})}{2 \mu_{m} r^{2}}+V(r)+\gamma \boldsymbol{S} \cdot \boldsymbol{N}-\boldsymbol{E} \cdot \boldsymbol{d}+2 \mu_{B} \boldsymbol{B} \cdot \boldsymbol{S}
$$

$$
-E d \cos \chi=-E d \frac{4 \pi}{3} \sum_{q} Y_{1 q}^{*}(\hat{r}) Y_{1 q}(\hat{E})
$$

$$
H=-\frac{1}{2 \mu R} \frac{d^{2}}{d R^{2}} R+\frac{\ell^{2}(\hat{R})}{2 \mu R^{2}}+V(R, r, \theta)+H_{\mathrm{mol}}
$$

Coupled equations

$$
\begin{aligned}
& {\left[\frac{d^{2}}{d R^{2}}+2 \mu E_{\mathrm{tot}}-\frac{\ell(\ell+1)}{R^{2}}\right] F_{N M_{N} S M_{S} \ell M_{\ell}}(R) } \\
= & 2 \mu \sum_{N^{\prime}, M_{N}^{\prime}, S^{\prime}, M_{S}^{\prime}, \ell^{\prime}, M_{\ell}^{\prime}}\left\langle N M_{N} S M_{S} \ell M_{\ell}\right| V(R, r, \theta)+H_{\mathrm{mol}}\left|N^{\prime} M_{N}^{\prime} S^{\prime} M_{S}^{\prime} \ell^{\prime} M_{\ell}^{\prime}\right\rangle F_{N^{\prime} M_{N}^{\prime} S^{\prime} M_{S}^{\prime} \ell^{\prime} M_{\ell}^{\prime}}(R)
\end{aligned}
$$

Controlling Electronic Spin Relaxation of Cold Molecules with Electric Fields

T. V. Tscherbul and R. V. Krems

Department of Chemistry, University of British Columbia, Vancouver, B.C. V6T IZ1, Canada
(Received 3 June 2006; published 22 August 2006)

Spin relaxation is suppressed

Enhancement of spin relaxation

- First-order Stark effect

T.V. Tscherbul and R.V. Krems, PRL 97, 08320I (2006)

Enhancement of spin relaxation (a 3D view)

$\mathrm{Na}\left({ }^{2} S\right)+\mathrm{CaH}\left({ }^{2} \Sigma\right) \rightarrow \mathrm{NaH}+\mathrm{Ca}$

Trap loss...

Microwave traps for polar molecules

D. DeMille et al.: Microwave traps for cold polar molecules

Fig. 2. Energies of dressed states vs. applied microwave electric field strength. State labels are zero-field basis states $\left|\psi_{J m n}\right\rangle$,

Energy levels of a diatomic molecule in a microwave field

Energy levels of a diatomic molecules in a microwave field

Energy levels of a diatomic molecules in a microwave field

Collisions of molecules in a microwave cavity

Molecular Hamiltonian: $H_{\mathrm{mol}}=B \boldsymbol{N}^{2}$
Field Hamiltonian: $H_{\mathrm{f}}=\hbar \omega\left(a a^{\dagger}-\bar{n}\right)$
Molecule - Field Hamiltonian: $H_{\text {mol, } \mathrm{f}}=-\mu \sqrt{\frac{\hbar \omega}{2 \epsilon_{0} V}} \cos \theta\left(a+a^{\dagger}\right)$
Basis set: $\left|N M_{N}\right\rangle|n\rangle$
The matrix elements of of the molecule - field Hamiltonian:

$$
\begin{aligned}
\langle n|\left\langle N M_{N}\right| H_{\mathrm{mol}, \mathrm{f}}\left|N^{\prime} M_{N}^{\prime}\right\rangle\left|n^{\prime}\right\rangle \sim\langle & \left.N M_{N}|\cos \theta| N^{\prime} M_{N}^{\prime}\right\rangle \times \\
& \times\left(\delta_{n, n^{\prime}+1}+\delta_{n, n^{\prime}-1}\right)
\end{aligned}
$$

$\left\langle N M_{N}\right| \cos \theta\left|N^{\prime} M_{N}^{\prime}\right\rangle \sim \delta_{M_{N}, M_{N}^{\prime}}\left(\delta_{N, N^{\prime}+1}+\delta_{N, N^{\prime}-1}\right)$

Energy levels of a diatomic molecules in a microwave field

Superposition states of molecules in a microwave field

$$
\left.\left.\begin{array}{rl}
\Psi \text { "ground" }=a \mid N & =0, n=\bar{N}\rangle \\
& +b \mid N
\end{array}=1, n=\bar{N}-1\right\rangle+c|N=1, n=\bar{N}+1\rangle\right)
$$

\bar{N} is the average number of photons

Off-resonant light: $w=0.01 B$.

$\mu \epsilon_{0}=0.1 B$	$\mu \epsilon_{0}=0.3 B$	$\mu \epsilon_{0}=0.5 B$
$a=0.9994$	$a=0.9637$	$a=0.7497$
$b=0.0143$	$a=0.0397$	$a=0.0178$
$c=0.0145$	$c=0.0471$	$c=0.0441$
$d=0.0207$	$a=0.182$	$a=0.445$
$e=0.0209$	$a=0.184$	$a=0.448$

Collisionally induced transitions between field-dressed states

Change of a shape resonance in the presence of microwave radiation

Threshold laws for collisions in 2D

Threshold laws for collisions in 2D
In 3D, we have Wigner's threshold laws for elastic scattering:

$$
\text { collision cross section } \sim v^{2 l+2 l^{\prime}}
$$

In 2D, there is no l. The Hamiltonian is

$$
H=-\frac{1}{2 \mu \rho} \frac{d}{d \rho} \rho \frac{d}{d \rho}+\frac{\boldsymbol{l}_{z}^{2}}{2 \mu \rho^{2}}+H_{\mathrm{as}}+V(\rho)
$$

The role of l is played by m, the projection quantum number.

How are the Wigner's threshold laws modified, if we confine the system in 2D?

Let's look at low-energy scattering:
In 3D, the Schrödinger's equation is
$\left[-\frac{1}{2 \mu R^{2}} \frac{d}{d R} R^{2} \frac{d}{d R}+\frac{l(l+1)}{2 \mu R^{2}}-2 \mu V(R)\right] \psi(k, R)=-k^{2} \psi(k, R)$
Consider first the solution to this equation with $V=0$ and $k=0$:

$$
\left[-\frac{1}{2 \mu R^{2}} \frac{d}{d R} R^{2} \frac{d}{d R}+\frac{l(l+1)}{2 \mu R^{2}}\right] \psi(k, R)=0
$$

Let's look for the solution in the form $\psi(R, k=0)=\operatorname{const} R^{s}$ The derivative:

$$
\frac{1}{2 \mu R^{2}} \frac{d}{d R} R^{2} \frac{d}{d R} R^{s}=s(s+1) R^{s}
$$

Hence, $s(s+1)=l(l+1)$ or $s=l$ and $s=-(l+1)$.

A general solution at $k=0$ is therefore

$$
\psi(k=0, R)=A_{1} R^{l}+A_{2} R^{-(l+1)}
$$

Now, for $k \neq 0$, we have a Bessel equation and the general solution

$$
\psi(k, R)=A j_{l}(k R)+B \eta_{l}(k R)
$$

which can be re-written at small k as

$$
\psi(k, R)=(k R)^{l}+\tan \delta_{l}(k R)^{-(l+1)}
$$

For smooth and continuous matching to $k=0$, we must require

$$
\tan \delta_{l} \sim k^{2 l+1}
$$

which gives after some manipulation:

$$
\text { elastic scattering cross section } \sim k^{4 l}
$$

Repeating this derivation for 2D, we get

$$
\text { cross secion } \sim \frac{1}{k \ln ^{2} k}, \quad \text { when } m=0
$$

Using the formalism of Wigner, it is also possible to get the offdiagonal cross sections:

$$
\text { cross secion for } m=0 \rightarrow m^{\prime} \text { transitions } \sim k^{2|m|-1} \frac{1}{\ln ^{2} k}
$$ and

cross secion for $m>0 \rightarrow m^{\prime}>0$ transitions $\sim k^{2|m|+2\left|m^{\prime}\right|-1}$

Threshold collision laws

Transition	3 D	2 D
s-wave elastic	$\sigma=$ const	$\sigma \sim \frac{1}{k \ln ^{2} k}$
s-wave to non- s-wave	$\sigma \sim k^{2 l^{\prime}}$	$\sigma \sim k^{2\|m\|-1} \frac{1}{\ln ^{2} k}$
non- s-wave to non- s-wave	$\sigma \sim k^{2 l+2 l^{\prime}}$	$\sigma \sim k^{2\|m\|+2\left\|m^{\prime}\right\|-1}$

Why is this interesting?

Consider ultracold collisions of molecules in 2D.

Angular momentum transfer of molecules - such as spin relaxation - must be accompanied by changes of m, if the magnetic field axis is directed perpendicularly to the plane of confinement

If the magnetic field axis is tilted, collisions do not have to conserve the total angular momentum projection

Inelastic angular momentum transfer - such as spin relaxation will then be much more efficient if the axis of the external field is not perpendicular to the plane of confinement.

Enhanced collisional spin relaxation

Conclusions

- Electric fields may suppress collisional loss from a magnetic trap
- Evaporative cooling in a microwave trap might be difficult (??)
- Microwave fields modify interactions of cold molecules
- Elastic and Inelastic Two-Body Collisions are modified in 2D

Outlook: Collision Physics and Ultracold Molecules

Experiments with cold molecules may

- confirm or disprove Wigner's threshold laws
\rightarrow more insight into long-range interactions
- elucidate rates for chemical reactions at ultracold Ts
\rightarrow ultracold chemistry \rightarrow lots of applications
- demonstrate the possibility of controlling chemical reactions
\rightarrow controlled chemistry \rightarrow lots of applications
- make coherent control of bimolecular reactions possible
\rightarrow controlled chemistry
- provide new testground for statistical theories of molecules
\rightarrow new reaction rate theories

References

Z. Li and R. V. Krems, PRA 75, 032709 (2007).
R. V. Krems, PRL 96, 123202 (2006).
T. V. Tscherbul and R. V. Krems, PRL 97, 083201 (2006).
T. V. Tscherbul and R. V. Krems, JCP 125, 194311 (2006).
R. V. Krems, PRL 93, 013201 (2004).

Reviews

R. V. Krems, Nature Physics 3, 77 (2007).
R. V. Krems, Int. Rev. Phys. Chem. 24, 99 (2005).
J. Doyle, B. Friedrich, R. V. Krems, and F. Masnou-Seeuws, Eur. Phys. J. D 31, 149 (2004).

