Bose gas in Flatland Berezinskii-Kosterlitz-Thouless Physics in an Atomic Gas

Zoran Hadzibabic*

Peter Kruger, Marc Cheneau, Baptiste Battelier, and Jean Dalibard

Ecole Normale Superieure, Paris *now at: University of Cambridge

Outline of the talk

Bose gases in 2D

Berezinskii-Kosterlitz-Thouless transition Homogeneous vs. trapped & ideal vs. interacting gas

Critical point of an interacting 2D gas BEC vs. BKT

Vortices and quasi-long-range coherence

Long-range order in reduced dimensionality more vulnerable to fluctuations, disorder...

c.f. classical transport:

1D - impossible

3D - easy

2D - marginal

BEC, coherence, and superfluidity in 2D

Homogeneous 2D Bose fluid in the thermodynamic limit

No BEC in an ideal gas No true long-range order in an interacting gas at finite *T (Mermin-Wagner-Hohenberg theorem)* **But still a superfluid transition at finite** *T*

Bishop and Reppy (1978), superfluidity in liquid He films :

Berezinskii & Kosterlitz – Thouless (1971-73)

Phase transition without spontaneous symmetry breaking

0	superfluid		T _c	normal	T
Г	algebraic decay of g_1		exponential decay of g_1		
	$g_1(r) \propto rac{1}{r^lpha}$	nsuperflu	$\lambda^2 = 4$	$(\lambda - \text{thermal was})$	velength)
	$\alpha = \frac{1}{n_{\rm S}\lambda^2} \qquad g_1(z)$	$ec{r}-ec{r}')$ =	$=\langle\psi^{*}(ec{r})\psi(ec{r}) angle$	$ec{r}') angle$	
		Unbi	nding of		
	Bound vortex- antivortex pairs	vorte	ex pairs	Proliferat free vor	ion of tices

(Ideal gas) In a harmonic trap...

Homogeneous system:

- 3D: BEC occurs when the phase space density reaches $n\lambda^3 = 2.6$
- 2D: no BEC for any phase space density $n\lambda^2$

Does harmonic trapping make 2D boring? What about interactions?

The effect of (weak) interactions on BEC

3D harmonic trap:

Repulsive interactions slightly decrease the central density, for given N and TFor an ideal gas, the central density at condensation point is:

$$N = 1.2 \left(\frac{k_B T}{\hbar \omega}\right)^3 \iff n(0)\lambda^3 = 2.6 \qquad \text{(semi-classical)}$$

Just put in a bit more atoms to obtain the needed n(0)

2D harmonic trap:

The same procedure completely fails:

$$N = 1.6 \left(\frac{k_B T}{\hbar \omega}\right)^2 \longleftrightarrow n(0)\lambda^2 = \infty$$

where $n(r) = \int \rho(r, p) \frac{d^2 p}{h^2}$ $\rho(r, p) = \left[e^{\beta(\frac{p^2}{2m} + \frac{m\omega^2 r^2}{2})} - 1\right]^{-1}$

The effect of (weak) interactions on BEC

Treat the interactions at the mean field level: $V_{\text{eff}}(r) = \frac{m\omega^2 r^2}{2} + 2gn_{\text{mf}}(r)$

where the mean field density is obtained from the self-consistent equation

$$n_{\rm mf}(r) = \int \rho_{\rm mf}(r,p) \frac{d^2 p}{h^2} \qquad \rho_{\rm mf}(r,p) = \left[e^{\beta(\frac{p^2}{2m} + V_{\rm eff}(r))} - 1 \right]^{-1}$$

Two remarkable results

- One can accommodate an arbitrarily large atom number. Badhuri et al
- The effective frequency deduced from $V_{eff}(r) \simeq m \omega_{eff}^2 r^2/2$ tends to zero when $\mu \rightarrow 2gn_{mf}(0)$ Holzmann et al.

Similar to a 2D gas in a flat potential... ...BEC suppressed, expect BKT (?)

How to make an ultracold 2D Bose gas

3D BEC + 1D optical lattice

2 independent 2D clouds (no tunnelling)

 10^5 atoms/plane plane thickness: 0.2 μ m, separation: 3 μ m

Why 2 planes?

Crucial info in the *phase* of Ψ , and

$$g_1(x,y) = \langle \psi^*(x,y)\,\psi(0)\rangle$$

accessible in an interference experiment

2.

Critical point of an interacting 2D Bose gas

P. Krüger, Z. H. and J. Dalibard, cond-mat/0703200

Phase transition in a 2D atomic gas

Fix the temperature *T* Vary the atom number *N*

Bimodal distribution for $N > N_C$

Similar signature to 3D BEC

Dense core follows the Thomas-Fermi law in time-of-flight expansion, characteristic of superfluid hydrodynamics

Critical atom number vs. T

5.3 times larger than the ideal gas BEC prediction!

Can it be the Kosterlitz-Thouless critical point?

 $n_{\text{superfluid}}\lambda^2 = 4$ is universal and elegant, but not the whole story

Total critical density depends on microscopics (long standing problem!)

Fisher & Hohenberg + Prokof'ev et al.:

For

$$n_{\text{total}}\lambda^2 = \ln \left(\frac{C}{\bar{g}}\right) \qquad \begin{array}{l} C = 380 \pm 3 \\ \bar{g} = \frac{mg}{\hbar^2} & \text{dimensionless} \\ \text{interaction strength} \end{array}$$
our setup: $\bar{g} = 0.13 \quad \longrightarrow \quad n_{\text{total}}\lambda^2 \simeq 8.0$
Extract from the experiment: $n_c\lambda^2 = 8.6 \pm 0.8$

(in the center of the cloud)

Critical atom number vs. T

BKT + LDA + experimentally observed Gaussian profiles: $N_{c, KT} = 4.9 N_{c, ideal}$

Equation of state?

Bimodal distribution fitted well by Gaussian + Thomas-Fermi

...but why?

3.

Coherence of an interacting 2D Bose gas

Z. H., P. Krüger, M. Cheneau, B. Battelier, S. Stock, and J. Dalibard

Phys. Rev. Lett. **95**, 190403 (2005) Nature **441**, 1118 (2006) cond-mat/0703200

+ Schweikhard, Tung and Cornell, cond-mat/0704.0289

Theory: Shlyapnikov-Gangardt-Petrov, Holtzman *et al.*, Kagan *et al.*, Stoof *et al.*, Mullin *et al.*, Simula-Blackie, Hutchinson *et al.* Polkovnikov-Altman-Demler

Interference of two 2D gases

 k_z

The interfering part coincides with the central part of the bimodal distribution

Bimodality and interferences

Within our accuracy, onsets of bimodality and interference coincide

Local vs. long-range coherence

Phonons ("spin waves") → smooth phase variations cold hot Vortices → sharp dislocations

Free vortices in 2D clouds

Fraction of images showing at least one dislocation in the central region:

(Similar results at NIST)

Long-range coherence

Embedded in: $g_1(\vec{r}) = \langle \psi^*(\vec{r}) \psi(0) \rangle$

The interference signal between $\psi_a(x, y)$ and $\psi_b(x, y)$ gives:

 $\langle \kappa(x,y)\kappa(0)\rangle = \langle \psi_a^*(x,y)\psi_b(x,y)\psi_a(0)\psi_b^*(0)\rangle$ = $\langle \psi_a^*(x,y)\psi_a(0)\rangle \langle \psi_b(x,y)\psi_b^*(0)\rangle = |g_1(x,y)|^2$

Long-range coherence

Vortices vs. Correlations vs. Temperature

The onset of vortex proliferation coincides with the loss of quasi-LRO

Z. Hadzibabic *et al.*, Nature **441**, 1118 (2006) see also Schweikhard, Tung and Cornell, cond-mat/0704.0289 for KT in a lattice

So far in atomic Flatland...

Phase transition with a critical point (N_C, T_C) :

- eliminates conventional BEC
- agrees quantitatively with BKT + LDA

Direct visualization of free vortices:

- coincides with loss of quasi-long-range order
- supports the microscopic basis of the theory

Open questions/future:

Equation of state? Tune the interactions from g ~ 1 to g ~ 10⁻⁴ Superfluidity – transport, dissipation? Resolve tightly bound vortex pairs in the superfluid state?

THE END