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Are there similar emergent  
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Quantum Fluids out of equilibrium
Problems with solid state/liquid He quantum fluids:  

• Not easily tunable 

• Quantum decoherence is a killer  

 Cold atoms in an optical lattice

 [D. Jaksch et al. PRL 81 (1998)]
 [M Greiner et al.  Nature, 415 (2002)]

 Interacting bosons on a lattice 

 [MPA Fisher et al. PRB 40 (1989)]



Absence of thermalization in 1DBG

[T Kinoshita, T Wenger & D Weiss, Nature (2006)]
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    A Statistical description of non-equilibrium states?

|Φ(t > 0)〉 = e−iHf t/!|Φ(0)〉 = e−iHf t/!|Φ0〉
Quench at t = 0  (sudden approximation):

Not an eigenstate of Hf !!
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Operators after the quench:

    A Statistical description of non-equilibrium states?

|Φ(t > 0)〉 = e−iHf t/!|Φ(0)〉 = e−iHf t/!|Φ0〉
Quench at t = 0  (sudden approximation):

Not an eigenstate of Hf !!
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Ō = lim
T→+∞

lim
t0→+∞

1
T

∫ T+t0

t0

dt O(t)

Does the system reach a (quasi-) stationary state? If so,

    A Statistical description of non-equilibrium states?

|Φ(t > 0)〉 = e−iHf t/!|Φ(0)〉 = e−iHf t/!|Φ0〉
Quench at t = 0  (sudden approximation):

Not an eigenstate of Hf !!

Is there any statistical ensemble such that                                       ?   Ō = Trρ̂quench Ô

Is                                                                      ?   (ergodic hypotesis)ρ̂quench = ρeq = e−(Hf−µN)/Teff

Won’t be looking at the creation of defects (Stamper-Kurn, Damski,...)
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Free expansion of hard-core bosons

Integrable XY model

[ M Rigol, B Dunjko, V Yurovsky, and M Olshanii PRL 98 (2007)]

〈σ+
k σ−k 〉

L(t = 0) = 150 a,N = 30
|Φ(t = 0)〉



〈σ+
k σ−k 〉

Free expansion of hard-core bosons

[E. T. Jaynes, PR 106 / 108 (1957)]

Maximum  entropy (generalized Gibbs)

(Maximum 

entropy) 

[ M Rigol, B Dunjko, V Yurovsky, and M Olshanii PRL 98 (2007)]
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rl

Joaquin M Luttinger

“Infinite storey hotel”

Dirac sea

εkin(p) = vF p

Daniel C. Mattis & Elliot H. Lieb朝永振一郎

[J. Math. Phys. (N.Y.) 6 (1965)]

‘Anomalous’ commutation relations

〈O(x)O(0)〉 ∼ x−α

n(k) = const. + |k − kF |αsgn(k − kF )

k

朝永-Luttinger Liquids (TLL) 

[F. D. M. Haldane, 
    J. Phys. C 14 (1981)]
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Relevant (to) experiments?
1D dipolar  gas of  (spin polarized) fermionic atoms/molecules  

  (not the LM but a Tomonaga-Luttinger liquid) 

E

‘Magic’ angle :

Quench    (very rapid change in the direction of E away from magic angle)
     vs.

Evaporative cooling (E away from magic angle) 

Other probes: Noise

[A Polkovnikov et al 

PNAS 103 (2006)]

Quench

EquilibriumFinite temperature effects

[MAC, PRL 97 (2006)]
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Asymetric 1D Hubbard model 

Constant N↑, N↓ 
(Canonical Ensemble)

Deep 2D optical lattice
[T Stöferle, H Moritz, C Schori M Köhl, and T Esslinger, PRL 92 (2004)]

kσF = πn0
σ

Internal-state  dependent optical lattice
[O Mandel et al. PRL 91 (2003)]

or two different atom species (6Li + 40K)

[V Liu, F Wilczek, and P Zoller PRA 70 (2004)]



   Schematic Phase Diagram

Falikov-Kimball
Model 

[MAC, AF Ho & T Giamarchi, PRL 95 (2005)]

Spin gapped phases
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  Explanation of Phase Diagram
“Almost crystaline” order in 1D
It looks like a crystal on a short distance scale, but it is disordered on a 
large distance scale. Periodic regions of all sizes.

Adiabatic approximation

SS / CDW

SDW




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What about d > 1?

DMFT U < 0 Asymmetric Hubbard

Harmonic trap  (LDA)

[TL Dao, A Georges, and M Capone, arxiv/0407.2260]

Coexistence of SF and CDW
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A Raman laser  induces 
transitions between 

hyperfine states
[HP Buchler et al PRL 93  (2004)]

[MAC, AF Ho & T Giamarchi, PRL 95 (2005)]



  Conclusions
• In cold atomic gases “conserved” quantities 

can yield physics different from cond-mat 
systems.

• Systems will not typically exhibit 
thermalization after a quench.

• Non-equilibrium stationary states can have 
properties that are different from their 
equilibrium properties. E.g. some observables 
of the LM have different critical indices.

• Absence of relaxation of the magnetization 
can yield different (spin gapped) zero-
temperature phases in asymmetric 1D 
Hubbard models.
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