Tomonaga-Luttinger Liquids in Cold Atomic Gases.

A Fresh Look at Some Old and "New" Problems: Hubbard Models and Non-equilibrium

Miguel A. Cazalilla

Donostia International Physics Center (DIPC)

San Sebastian, Spain

KITP, UCSB, Santa Barbara, US

What is "new"?

Non-equilibrium steady states

Equilibrium phase diagram of H₂O

Non-equilibrium steady states

Rayleigh-Bénard convection cells

Equilibrium phase diagram of H₂O

Non-equilibrium steady states

Rayleigh-Bénard convection cells

Equilibrium phase diagram of H₂O

Quantum Fluids out of equilibrium

Problems with solid state/liquid He quantum fluids:

- Not easily tunable
- Quantum decoherence is a killer

Cold atoms in an optical lattice

[D. Jaksch *et al.* PRL <u>81</u> (1998)] [M Greiner *et al.* Nature, <u>415</u> (2002)]

Interacting bosons on a lattice

[MPA Fisher *et al.* PRB <u>40</u> (1989)]

$$H_{\rm BH} = -J \sum_{\langle \mathbf{R}, \mathbf{R}' \rangle} b^\dagger_{\mathbf{R}} b_{\mathbf{R}'} + U \sum_{\mathbf{R}} n_{\mathbf{R}} (n_{\mathbf{R}} - 1)$$

Absence of thermalization in 1DBG

nature

LETTERS

[T Kinoshita, T Wenger & D Weiss, Nature (2006)]

A quantum Newton's cradle

Toshiya Kinoshita¹, Trevor Wenger¹ & David S. Weiss¹

$$p_1 + p_2 = p'_1 + p'_2,$$

$$\frac{p_1^2}{2M} + \frac{p_2^2}{2M} = \frac{p'_1^2}{2M} + \frac{p'_2^2}{2M},$$

$$p_1 = p'_1, p_2 = p'_2, \qquad p_1 = p'_2, p_2 = p'_1$$

Quench at t = 0 (sudden approximation):

$$|\Phi(t>0)\rangle = e^{-iH_f t/\hbar} |\Phi(0)\rangle = e^{-iH_f t/\hbar} |\Phi_0\rangle$$

Not an eigenstate of *Hf*!!

Quench at t = 0 (sudden approximation):

$$|\Phi(t>0)\rangle = e^{-iH_f t/\hbar} |\Phi(0)\rangle = e^{-iH_f t/\hbar} |\Phi_0\rangle$$

Not an eigenstate of *Hf*!!

Operators after the quench:

$$O(t>0) = \langle \Phi(t)|\hat{O}|\Phi(t)\rangle = \langle \Phi_0|e^{iH_f t/\hbar}\hat{O}e^{-iH_f t/\hbar}|\Phi_0\rangle$$

Quench at t = 0 (sudden approximation):

$$|\Phi(t>0)\rangle = e^{-iH_f t/\hbar} |\Phi(0)\rangle = e^{-iH_f t/\hbar} |\Phi_0\rangle$$

Not an eigenstate of *Hf*!!

Operators after the quench:

$$O(t>0) = \langle \Phi(t)|\hat{O}|\Phi(t)\rangle = \langle \Phi_0|e^{iH_f t/\hbar}\hat{O}e^{-iH_f t/\hbar}|\Phi_0\rangle$$

Does the system reach a (quasi-) stationary state? If so,

$$\bar{O} = \lim_{T \to +\infty} \lim_{t_0 \to +\infty} \frac{1}{T} \int_{t_0}^{T+t_0} dt \, O(t)$$

Quench at t = 0 (sudden approximation):

$$|\Phi(t>0)\rangle = e^{-iH_f t/\hbar} |\Phi(0)\rangle = e^{-iH_f t/\hbar} |\Phi_0\rangle$$

Not an eigenstate of *Hf*!!

Operators after the quench:

$$O(t>0) = \langle \Phi(t)|\hat{O}|\Phi(t)\rangle = \langle \Phi_0|e^{iH_f t/\hbar}\hat{O}e^{-iH_f t/\hbar}|\Phi_0\rangle$$

Does the system reach a (quasi-) stationary state? If so,

$$\bar{O} = \lim_{T \to +\infty} \lim_{t_0 \to +\infty} \frac{1}{T} \int_{t_0}^{T+t_0} dt \, O(t)$$

Is there any statistical ensemble such that $\bar{O} = \text{Tr}\hat{\rho}_{\text{quench}} \hat{O}$?

Is
$$\hat{\rho}_{\text{quench}} = \rho_{\text{eq}} = e^{-(H_f - \mu N)/T_{\text{eff}}}$$
? (ergodic hypotesis)

Quench at t = 0 (sudden approximation):

$$|\Phi(t>0)\rangle = e^{-iH_f t/\hbar} |\Phi(0)\rangle = e^{-iH_f t/\hbar} |\Phi_0\rangle$$

Not an eigenstate of *Hf*!!

Operators after the quench:

$$O(t>0) = \langle \Phi(t)|\hat{O}|\Phi(t)\rangle = \langle \Phi_0|e^{iH_f t/\hbar}\hat{O}e^{-iH_f t/\hbar}|\Phi_0\rangle$$

Does the system reach a (quasi-) stationary state? If so,

$$\bar{O} = \lim_{T \to +\infty} \lim_{t_0 \to +\infty} \frac{1}{T} \int_{t_0}^{T+t_0} dt \, O(t)$$

Is there any statistical ensemble such that $\bar{O} = \text{Tr}\hat{\rho}_{\text{quench}} \hat{O}$?

Is
$$\hat{\rho}_{\text{quench}} = \rho_{\text{eq}} = e^{-(H_f - \mu N)/T_{\text{eff}}}$$
? (ergodic hypotesis)

Won't be looking at the creation of defects (Stamper-Kurn, Damski,...)

[M Rigol, B Dunjko, V Yurovsky, and M Olshanii PRL 98 (2007)]

$$H = -J \sum_{\langle n,m \rangle} \sigma_m^+ \sigma_n^- = -\sum_p \left(2J \cos p\right) f^{\dagger}(p) f(p)$$

[M Rigol, B Dunjko, V Yurovsky, and M Olshanii PRL 98 (2007)]

$$H = -J \sum_{\langle n,m \rangle} \sigma_m^+ \sigma_n^- = -\sum_p \left(2J \cos p\right) \ f^\dagger(p) f(p)$$
 Density profile
$$0.4 \qquad 0.4 \qquad 0$$

[M Rigol, B Dunjko, V Yurovsky, and M Olshanii PRL 98 (2007)]

$$H = -J \sum_{\langle n,m \rangle} \sigma_m^+ \sigma_n^- = -\sum_p \left(2J \cos p\right) \ f^\dagger(p) f(p)$$
 Density profile
$$0.4 \qquad 0.4 \qquad 0$$

[M Rigol, B Dunjko, V Yurovsky, and M Olshanii PRL 98 (2007)]

$$H = -J \sum_{\langle n,m \rangle} \sigma_m^+ \sigma_n^- = -\sum_p \left(2J \cos p\right) \ f^\dagger(p) f(p)$$
 Density profile
$$0.4 \qquad 0.4 \qquad 0$$

[M Rigol, B Dunjko, V Yurovsky, and M Olshanii PRL 98 (2007)]

Maximum entropy (generalized Gibbs)

$$ho_{
m gG}(\{\lambda_p\}) = rac{e^{\sum_p \lambda_p I_p}}{Z_{
m gG}}, \quad I_p = f^\dagger(p) f(p)$$

$$\langle I_p \rangle_{
m gG} = \operatorname{Tr}
ho_{
m gG} I_p = \langle \Phi(t=0) | f^\dagger(p) f(p) | \Phi(t=0) \rangle$$
[E. T. Jaynes, PR 106 / 108 (1957)]

The Luttinger model (LM)

Joaquin M Luttinger

The Luttinger model (LM)

Joaquin M Luttinger

朝永振一郎

Daniel C. Mattis & Elliot H. Lieb

[J. Math. Phys. (N.Y.) <u>6</u> (1965)]

$$[
ho_{lpha}(q),
ho_{eta}(-q')]=rac{qL}{2\pi}\delta_{q,q'}\delta_{lpha,eta}\quad (lpha,eta=r,l)$$

'Anomalous' commutation relations

The Luttinger model (LM)

Joaquin M Luttinger

朝永振一郎

Daniel C. Mattis & Elliot H. Lieb

[J. Math. Phys. (N.Y.) <u>6</u> (1965)]

$$[
ho_{lpha}(q),
ho_{eta}(-q')]=rac{qL}{2\pi}\delta_{q,q'}\delta_{lpha,eta}\quad (lpha,eta=r,l)$$

'Anomalous' commutation relations

朝永-Luttinger Liquids (TLL)

$$\langle O(x)O(0)\rangle \sim x^{-\alpha}$$

$$\uparrow n(k) = \text{const.} + |k - k_F|^{\alpha} \operatorname{sgn}(k - k_F)$$

k

[F. D. M. Haldane, J. Phys. C <u>14</u> (1981)]

$$H_{\text{kin}} = \sum_{q \neq 0} \hbar v_F |q| \ a^{\dagger}(q) a(q) \quad H_{\text{LM}} = \sum_{q \neq 0} \hbar v |q| \ b^{\dagger}(q) b(q)$$

Non-interacting fermions ($t \le 0$)

Interacting fermions (t > 0)

$$H_{\text{kin}} = \sum_{q \neq 0} \hbar v_F |q| \ a^{\dagger}(q) a(q) \quad H_{\text{LM}} = \sum_{q \neq 0} \hbar v |q| \ b^{\dagger}(q) b(q)$$

Non-interacting fermions ($t \le 0$)

Interacting fermions (t > 0)

Equilibrium solution
$$b(q) = \cosh \varphi(q) \ a(q) + \sinh \varphi(q) \ a^{\dagger}(-q)$$

$$H_{\text{kin}} = \sum_{q \neq 0} \hbar v_F |q| \ a^{\dagger}(q) a(q) \quad H_{\text{LM}} = \sum_{q \neq 0} \hbar v |q| \ b^{\dagger}(q) b(q)$$

Non-interacting fermions ($t \le 0$)

Interacting fermions (t > 0)

Equilibrium solution
$$b(q) = \cosh \varphi(q) \ a(q) + \sinh \varphi(q) \ a^{\dagger}(-q)$$

Non-equilibrium (quench) solution:

$$a(q,t) = e^{iH_{LM}t/\hbar}a(q)e^{-iH_{LM}t/\hbar} = f(q,t)a(q) + g^*(q,t)a^{\dagger}(-q),$$

$$f(q,t) = \cos v|q|t - i\sin v|q|t \cosh 2\varphi(q),$$

$$g(q,t) = i\sin v|q|t \sinh 2\varphi(q)$$
[MAC, PRL 97 (2006)]

[MAC, PRL <u>97</u> (2006)]

$$H_{\text{kin}} = \sum_{q \neq 0} \hbar v_F |q| \ a^{\dagger}(q) a(q) \quad H_{\text{LM}} = \sum_{q \neq 0} \hbar v |q| \ b^{\dagger}(q) b(q)$$

Non-interacting fermions ($t \le 0$)

Interacting fermions (t > 0)

Equilibrium solution
$$b(q) = \cosh \varphi(q) \ a(q) + \sinh \varphi(q) \ a^{\dagger}(-q)$$

Non-equilibrium (quench) solution:

$$a(q,t) = e^{iH_{LM}t/\hbar}a(q)e^{-iH_{LM}t/\hbar} = f(q,t)a(q) + g^*(q,t)a^{\dagger}(-q),$$

$$f(q,t) = \cos v|q|t - i\sin v|q|t \cosh 2\varphi(q),$$

$$g(q,t) = i\sin v|q|t \sinh 2\varphi(q)$$
[MAC, PRL 97 (2006)]

One-particle density matrix

$$C_{\psi_r}(x,t>0) = \langle 0|e^{iH_{LM}t/\hbar}\psi_r^{\dagger}(x)\psi_r(0)e^{-iH_{LM}t/\hbar}|0\rangle_{\text{Dirac}}$$

$$C_{\psi_r}(x,t>0) = C_{\psi_r}^{\text{free}}(x)$$

Thermodynamic limit:
$$C_{\psi_r}(x,t>0) = C_{\psi_r}^{\text{free}}(x) \left| \frac{R}{x} \right|^{\gamma^2} \left| \frac{x^2 - (2vt)^2}{(2vt)^2} \right|^{\gamma^2/2}$$

$$C_{\psi_r}(x,t>0) = C_{\psi_r}^{\text{free}}(x)$$

Thermodynamic limit:
$$C_{\psi_r}(x,t>0) = C_{\psi_r}^{\text{free}}(x) \left| \frac{R}{x} \right|^{\gamma^2} \left| \frac{x^2 - (2vt)^2}{(2vt)^2} \right|^{\gamma^2/2}$$

Thermodynamic limit:

ermodynamic limit:
$$C_{\psi_r}(x,t>0) = C_{\psi_r}^{\text{free}}(x) \left|\frac{R}{x}\right|^{\gamma^2} \left|\frac{x^2-(2vt)^2}{(2vt)^2}\right|^{\gamma^2/2}$$

Non-equilibrium exponent:

$$\gamma^2 = \sinh^2 2\varphi > \gamma_{\rm eq}^2 = 2\sinh^2 \varphi$$

Thermodynamic limit:

rmodynamic limit:
$$C_{\psi_r}(x,t>0)=C_{\psi_r}^{\rm free}(x)\, \left|\frac{R}{x}\right|^{\gamma^2} \left|\frac{x^2-(2vt)^2}{(2vt)^2}\right|^{\gamma^2/2}$$

Non-equilibrium exponent :
$$\gamma^2 = \frac{1}{4} \left(K - K^{-1} \right)^2 > \gamma_{eq} = \frac{1}{2} \left(K - K^{-1} - 2 \right)$$

~ Interaction range [MAC, PRL <u>97</u> (2006)]

Thermodynamic limit:

$$C_{\psi_r}(x,t>0) = C_{\psi_r}^{\text{free}}(x) \, \left| \frac{R}{x} \right|^{\gamma^2} \left| \frac{x^2 - (2vt)^2}{(2vt)^2} \right|^{\gamma^2/2}$$

Momentum distribution at time t: $n(p,t) = \int dx \ e^{-ipx} C_{\psi_r}(x,t>0)$

Non-equilibrium exponent: $\gamma^2 = \frac{1}{4} (K - K^{-1})^2 > \gamma_{eq} = \frac{1}{2} (K - K^{-1} - 2)$

Maximum entropy :
$$ho_{
m gG} = rac{e^{\sum_q \lambda_q I_q}}{Z_{
m gG}}, \quad I_q = b^\dagger(q) b(q)$$

$$\lim_{t \to +\infty} C_{\psi_r}(x,t) = C_{\psi_r}^{gG}(x) = \operatorname{Tr} \rho_{gG} \psi_r^{\dagger}(x) \psi(0)$$

1D dipolar gas of (spin polarized) fermionic atoms/molecules

(not the LM but a Tomonaga-Luttinger liquid)

1D dipolar gas of (spin polarized) fermionic atoms/molecules

(not the LM but a Tomonaga-Luttinger liquid)

Quench (very rapid change in the direction of E away from magic angle)

1D dipolar gas of (spin polarized) fermionic atoms/molecules

(not the LM but a Tomonaga-Luttinger liquid)

Quench (very rapid change in the direction of E away from magic angle) vs.

1D dipolar gas of (spin polarized) fermionic atoms/molecules

(not the LM but a Tomonaga-Luttinger liquid)

Quench (very rapid change in the direction of E away from magic angle) vs.

Evaporative cooling (E away from magic angle)

1D dipolar gas of (spin polarized) fermionic atoms/molecules

(not the LM but a Tomonaga-Luttinger liquid)

(very rapid change in the direction of E away from magic angle) Quench VS.

Evaporative cooling (E away from magic angle)

Finite temperature effects

$$t_{
m Relax} \simeq rac{\hbar}{T}$$
 Quench

[MAC, PRL <u>97</u> (2006)]

1D dipolar gas of (spin polarized) fermionic atoms/molecules

(not the LM but a Tomonaga-Luttinger liquid)

(very rapid change in the direction of E away from magic angle) Quench VS.

Evaporative cooling (E away from magic angle)

Finite temperature effects

$$t_{
m Relax} \simeq rac{\hbar}{T}$$
 Quench

Equilibrium

Other probes: Noise

[A Polkovnikov et al

PNAS 103 (2006)]

[MAC, PRL <u>97</u> (2006)]

What is old (but different)?

Deep 2D optical lattice $\min\{t_\uparrow,t_\downarrow\}\gg t_\perp$ [T Stöferle, H Moritz, C Schori M Köhl, and T Esslinger, PRL 92 (2004)]

[V Liu, F Wilczek, and P Zoller PRA 70 (2004)]

Internal-state dependent optical lattice [O Mandel et al. PRL 91 (2003)]

or two different atom species (⁶Li + ⁴⁰K)

$$H_{\mathbf{R}} = -\sum_{\langle m,n
angle\sigma} t_{\sigma} \, c_{\sigma\mathbf{R}m}^{\dagger} c_{\sigma\mathbf{R}n} + U \sum_{m} n_{\uparrow\mathbf{R}m} n_{\downarrow\mathbf{R}m}$$

Deep 2D optical lattice $\min\{t_{\uparrow}, t_{\downarrow}\} \gg t_{\perp}$

[T Stöferle, H Moritz, C Schori M Köhl, and T Esslinger, PRL 92 (2004)]

[V Liu, F Wilczek, and P Zoller PRA 70 (2004)]

Internal-state dependent optical lattice [O Mandel et al. PRL <u>91</u> (2003)] or two different atom species (⁶Li + ⁴⁰K)

$$H_{\mathbf{R}} = -\sum_{\langle m,n
angle \sigma} \mathbf{t}_{\sigma} c_{\sigma \mathbf{R}m}^{\dagger} c_{\sigma \mathbf{R}n} + \mathbf{U} \sum_{m} n_{\uparrow \mathbf{R}m} n_{\downarrow \mathbf{R}m}$$

Constant N_{\uparrow} , N_{\downarrow} (Canonical Ensemble)

Deep 2D optical lattice $\min\{t_{\uparrow}, t_{\downarrow}\} \gg t_{\perp}$ [T Stöferle, H Moritz, C Schori M Köhl, and T Esslinger, PRL 92 (2004)]

[V Liu, F Wilczek, and P Zoller PRA 70 (2004)]

Internal-state dependent optical lattice [O Mandel et al. PRL <u>91</u> (2003)] or two different atom species (⁶Li + ⁴⁰K)

$$H_{\mathbf{R}} = -\sum_{\langle m, n \rangle \sigma} \mathbf{t}_{\sigma} c_{\sigma \mathbf{R} m}^{\dagger} c_{\sigma \mathbf{R} n} + \mathbf{U} \sum_{m} n_{\uparrow \mathbf{R} m} n_{\downarrow \mathbf{R} m}$$

Deep 2D optical lattice $\min\{t_{\uparrow},t_{\downarrow}\}\gg t_{\perp}$ [T Stöferle, H Moritz, C Schori M Köhl, and T Esslinger, PRL 92 (2004)]

Schematic Phase Diagram

[MAC, AF Ho & T Giamarchi, PRL <u>95</u> (2005)]

Spin gapped phases

Falikov-Kimball Model

$$z = \frac{|t_\uparrow - t_\downarrow|}{t_\uparrow + t_\downarrow}$$

"Almost crystaline" order in 1D

It looks like a crystal on a short distance scale, but it is disordered on a large distance scale. Periodic regions of all sizes.

$$(t_{\uparrow}\gg t_{\downarrow})$$

"Almost crystaline" order in 1D

It looks like a crystal on a short distance scale, but it is disordered on a large distance scale. Periodic regions of all sizes.

$$(t_{\uparrow}\gg t_{\downarrow})$$

"Almost crystaline" order in 1D

It looks like a crystal on a short distance scale, but it is disordered on a large distance scale. Periodic regions of all sizes.

$$(t_{\uparrow}\gg t_{\downarrow})$$

"Almost crystaline" order in 1D

It looks like a crystal on a short distance scale, but it is disordered on a large distance scale. Periodic regions of all sizes.

"Almost crystaline" order in 1D

It looks like a crystal on a short distance scale, but it is disordered on a large distance scale. Periodic regions of all sizes.

"Almost crystaline" order in 1D

It looks like a crystal on a short distance scale, but it is disordered on a large distance scale. Periodic regions of all sizes.

$$(t_{\uparrow}\gg t_{\downarrow})$$

"Almost crystaline" order in 1D

It looks like a crystal on a short distance scale, but it is disordered on a large distance scale. Periodic regions of all sizes.

$$(t_{\uparrow}\gg t_{\downarrow})$$

"Almost crystaline" order in 1D

It looks like a crystal on a short distance scale, but it is disordered on a large distance scale. Periodic regions of all sizes.

$$(t_{\uparrow}\gg t_{\downarrow})$$

"Almost crystaline" order in 1D

It looks like a crystal on a short distance scale, but it is disordered on a large distance scale. Periodic regions of all sizes.

$$(t_{\uparrow}\gg t_{\downarrow})$$

"Almost crystaline" order in 1D

It looks like a crystal on a short distance scale, but it is disordered on a large distance scale. Periodic regions of all sizes.

$$(t_{\uparrow}\gg t_{\downarrow})$$

$$U < 0$$
 SS/CDW $U > 0$ $U > 0$

"Almost crystaline" order in 1D

It looks like a crystal on a short distance scale, but it is disordered on a large distance scale. Periodic regions of all sizes.

$$(t_{\uparrow}\gg t_{\downarrow})$$

$$U < 0$$
 SS/CDW $U > 0$ $U > 0$

"Almost crystaline" order in 1D

It looks like a crystal on a short distance scale, but it is disordered on a large distance scale. Periodic regions of all sizes.

$$(t_{\uparrow}\gg t_{\downarrow})$$

$$U < 0$$
 SS/CDW $U > 0$ SDW

What about d > 1?

[TL Dao, A Georges, and M Capone, arxiv/0407.2260]

DMFT U < 0 Asymmetric Hubbard

What about d > 1?

[TL Dao, A Georges, and M Capone, arxiv/0407.2260]

DMFT U < 0 Asymmetric Hubbard

What about d > 1?

[TL Dao, A Georges, and M Capone, arxiv/0407.2260]

DMFT U < 0 Asymmetric Hubbard

Coexistence of SF and CDW

Harmonic trap (LDA)

Detecting the spin gap

A Raman laser induces transitions between hyperfine states

[HP Buchler *et al* PRL <u>93</u> (2004)]

$$S^{+-}(t) = \langle S_T^+(t) S_T^-(0) \rangle$$

Detecting the spin gap

A Raman laser induces [MAC, AF Ho & T Giamarchi, PRL 95 (2005)]

transitions between hyperfine states

[HP Buchler et al PRL <u>93</u> (2004)]

Conclusions

- In cold atomic gases "conserved" quantities can yield physics different from cond-mat systems.
- Systems will not typically exhibit thermalization after a quench.
- Non-equilibrium stationary states can have properties that are different from their equilibrium properties. E.g. some observables of the LM have different critical indices.
- Absence of relaxation of the magnetization can yield different (spin gapped) zerotemperature phases in asymmetric 1D Hubbard models.

Thanks to...

```
Andrew F. Ho (see talk in this workshop)
```

A. Iucci

T. Giamarchi (see talk in this workshop) for collaborations and discussions,

Antoine Georges

Victor Gurarie

Jason Ho

Brad Marston

Alejandro Muramatsu

Shura Nersesyan

Marcos Rigol

Gora Shlyapnikov

Masahito Ueda

for discussions,

and you, for your attention