Fermi surface change across quantum phase transitions

cond-mat/0609106

Hans-Peter Büchler (Innsbruck)
Predrag Nikolic (Harvard)
Stephen Powell (Yale+KITP)
Subir Sachdev (Harvard)
Kun Yang (Florida State)

Talk online at http://sachdev.physics.harvard.edu
Consider a system of bosons and fermions at non-zero density, and N particle-number (U(1)) conservation laws.

Then, for each conservation law there is a “Luttinger” theorem constraining the momentum space volume enclosed by the locus of gapless single particle excitations, \textit{unless}:

- there is a broken translational symmetry, and there are an integer number of particles per unit cell for every conservation law;
- there is a broken U(1) symmetry due to a boson condensate – then the associated conservation law is excluded;
- the ground state has “topological order” and fractionalized excitations.
Outline

A. Bose-Fermi mixtures
 Depleting the Bose-Einstein condensate in trapped ultracold atoms

B. Fermi-Fermi mixtures
 Normal states with no superconductivity

C. The Kondo Lattice
 The heavy Fermi liquid (FL) and the fractionalized Fermi liquid (FL)*

D. Deconfined criticality
 Changes in Fermi surface topology
A. Bose-Fermi mixtures
 Depleting the Bose-Einstein condensate in trapped ultracold atoms

B. Fermi-Fermi mixtures
 Normal states with no superconductivity

C. The Kondo Lattice
 The heavy Fermi liquid (FL) and the fractionalized Fermi liquid (FL)*

D. Deconfined criticality
 Changes in Fermi surface topology
Mixture of bosons b and fermions f

(e.g. 7Li+6Li, 23Na+6Li, 87Rb+40K)

Tune to the vicinity of a Feshbach resonance associated with a molecular state ψ

Conservation laws:

\[
b^\dagger b + \psi^\dagger \psi = N_b
\]

\[
f^\dagger f + \psi^\dagger \psi = N_f
\]
Phases

\[\frac{k^2}{2} \]

\[f \]

\[b \]

\[\tilde{\Lambda} \]

2 FS, no BEC | 2 FS + BEC | 1 FS + BEC

Detuning °
Phase diagram

\[\langle b \rangle = 0 \]

- 2 FS, no BEC
- 2 FS + BEC
- \(\langle b \rangle \neq 0 \)
- 1 FS + BEC
2 FS, no BEC phase

“molecular” Fermi surface

\[
\text{Volume} = N_b
\]

\[
\langle b \rangle = 0
\]

“atomic” Fermi surface

\[
\text{Volume} = N_f - N_b
\]

2 Luttinger theorems; volume within both Fermi surfaces is conserved
Phase diagram

- \langle b \rangle = 0
- \langle b \rangle \neq 0

- 2 FS, no BEC
- 2 FS + BEC
- 1 FS + BEC
2 FS + BEC phase

“molecular” Fermi surface

“atomic” Fermi surface

\[\langle b \rangle \neq 0 \]

Total volume = \(N_f \)

1 Luttinger theorem; only total volume within Fermi surfaces is conserved
1 FS + BEC phase

“atomic” Fermi surface

\[\langle b \rangle \neq 0 \]

Total volume = \(N_f \)

1 Luttinger theorem; only total volume within Fermi surfaces is conserved
Outline

A. Bose-Fermi mixtures
 Depleting the Bose-Einstein condensate in trapped ultracold atoms

B. Fermi-Fermi mixtures
 Normal states with no superconductivity

C. The Kondo Lattice
 The heavy Fermi liquid (FL) and the fractionalized Fermi liquid (FL)*

D. Deconfined criticality
 Changes in Fermi surface topology
Mixture of fermions f_{\downarrow} and f_{\uparrow}

Tune to the vicinity of a Feshbach resonance associated with a Cooper pair Δ

Conservation laws:

\[
\begin{align*}
 f_{\downarrow}^\dagger f_{\downarrow} + \Delta^\dagger \Delta &= N_{\downarrow} \\
 f_{\uparrow}^\dagger f_{\uparrow} + \Delta^\dagger \Delta &= N_{\uparrow}
\end{align*}
\]
\(\mu \) chemical potential; \(h \) "magnetic" field; \(\nu \) detuning.
μ chemical potential; \(h \) "magnetic" field; \(ν \) detuning
μ chemical potential; h "magnetic" field; ν detuning
2 FS, normal state

Volume $= N_{\downarrow}$

$\langle \Delta \rangle = 0$

Volume $= N_{\uparrow}$

2 Luttinger theorems; volume within both Fermi surfaces is conserved
1 FS, normal state

 minority Fermi surface

 $\langle \Delta \rangle = 0$

 $N_{\downarrow} = 0$

 majority Fermi surface

 Volume $= N_{\uparrow}$

 2 Luttinger theorems; volume within both Fermi surfaces is conserved
Superfluid

minority Fermi surface

majority Fermi surface

\[\langle \Delta \rangle \neq 0 \]

\[\text{Volume}_\uparrow - \text{Volume}_\downarrow = N_\uparrow - N_\downarrow \]

1 Luttinger theorem; difference volume within both Fermi surfaces is conserved
Magnetized Superfluid

\[\langle \Delta \rangle \neq 0 \]

Volume_{\uparrow} - Volume_{\downarrow} = N_{\uparrow} - N_{\downarrow}

1. Luttinger theorem; difference volume within both Fermi surfaces is conserved
Sarma (breached pair) Superfluid

minority Fermi surface

majority Fermi surface

\[\langle \Delta \rangle \neq 0 \]

\[\text{Volume}_{\uparrow} - \text{Volume}_{\downarrow} = N_{\uparrow} - N_{\downarrow} \]

1. Luttinger theorem; difference volume within both Fermi surfaces is conserved.
Any state with a density imbalance must have at least one Fermi surface
Outline

A. Bose-Fermi mixtures
 Depleting the Bose-Einstein condensate in trapped ultracold atoms

B. Fermi-Fermi mixtures
 Normal states with no superconductivity

C. The Kondo Lattice
 The heavy Fermi liquid (FL) and the fractionalized Fermi liquid (FL*)

D. Deconfined criticality
 Changes in Fermi surface topology
The Kondo lattice

Local moments f_σ

\[H_K = \sum_{i<j} t_{ij} c_{i\sigma}^{\dagger} c_{j\sigma} + J_K \sum_i c_{i\sigma}^{\dagger} \bar{\tau}_{\sigma\sigma} c_{i\sigma} \cdot \vec{S}_{fi} + J \sum_{\langle ij \rangle} \vec{S}_{fi} \cdot \vec{S}_{fj} \]

Conduction electrons c_σ

Number of f electrons per unit cell = $n_f = 1$

Number of c electrons per unit cell = n_c
Define a bosonic field which measures the hybridization between the two bands:

\[b_i \sim \sum_\sigma c_{i\sigma}^\dagger f_{i\sigma} \]

Analogous to Bose-Fermi mixture problem:
\[c_{i\sigma} \] is the analog of the "molecule" \(\psi \)

Conservation laws:
\[
\begin{align*}
 &f_{\sigma}^\dagger f_{\sigma} + c_{\sigma}^\dagger c_{\sigma} = 1 + n_c \quad \text{(Global)} \\
 &f_{\sigma}^\dagger f_{\sigma} + b^\dagger b = 1 \quad \text{(Local)}
\end{align*}
\]

Main difference: second conservation law is \textit{local} so there is a U(1) gauge field.
If the f band is dispersionless in the decoupled case, the ground state is always in the 1 FS FL phase.
A bare f dispersion (from the RKKY couplings) allows a 2 FS FL phase.
The f band “Fermi surface” realizes a spin liquid (because of the local constraint)
Another perspective on the FL* phase

Local moments \(f_\sigma \)

\[
H = \sum_{i<j} t_{ij} c_{i\sigma}^\dagger c_{j\sigma} + \sum_i \left(J_K c_{i\sigma}^\dagger \vec{\tau}_{\sigma\sigma} c_{i\sigma} \cdot \vec{S}_{fi} \right) + \sum_{i<j} J_H (i, j) \vec{S}_{fi} \cdot \vec{S}_{fj}
\]

Determine the ground state of the quantum antiferromagnet defined by \(J_H \), and then couple to conduction electrons by \(J_K \)

Choose \(J_H \) so that ground state of antiferromagnet is a \(Z_2 \) or U(1) spin liquid
Influence of conduction electrons

Local moments f_σ

At $J_K = 0$ the conduction electrons form a Fermi surface on their own with volume determined by n_c.

Perturbation theory in J_K is regular, and so this state will be stable for finite J_K.

So volume of Fermi surface is determined by $\binom{n_c+n_f-1}{n_c} = n_c \pmod{2}$, and does not equal the Luttinger value.

The (U(1) or Z_2) FL* state
Outline

A. Bose-Fermi mixtures
 Depleting the Bose-Einstein condensate in trapped ultracold atoms

B. Fermi-Fermi mixtures
 Normal states with no superconductivity

C. The Kondo Lattice
 The heavy Fermi liquid (FL) and the fractionalized Fermi liquid (FL)*

D. Deconfined criticality
 Changes in Fermi surface topology
Phase diagram of S=1/2 square lattice antiferromagnet

Neel order

\(\tilde{\phi} \sim z^*_{\alpha} \tilde{\sigma}_{\alpha\beta} z_{\beta} \neq 0 \)

(Higgs)

VBS order \(\Psi_{VBS} \neq 0 \),

\(S = 1/2 \) spinons \(z_\alpha \) confined,

\(S = 1 \) triplon excitations

Deconfined critical point described by a theory of spinons

\[
S_{\text{critical}} = \int d^2x d\tau \left[|(\partial_\mu - iA_\mu)z_\alpha|^2 + s |z_\alpha|^2 + \frac{u}{2} (|z_\alpha|^2)^2 + \frac{1}{4e^2} (\partial_\mu A_\nu - \partial_\nu A_\mu)^2 \right]
\]

Landau-forbidden transition between phases which break “unrelated” symmetries
Holon metal
Area = $\frac{\delta}{4}$

Area = $\frac{\delta}{8}$