Hubbard Models with Molecules in Optical Lattices: Engineering three-body interactions

H.P. Büchler

Theoretische Physik, Universität Innsbruck, Austria
Institut für Quantenoptik und Quanteninformation der Österreichischen Akademie der Wissenschaften, Innsbruck, Austria

G. Pupillo, A. Micheli, P. Zoller
(Innsbruck)

M. Lukin, E. Demler
(Harvard)

N. Prokofiev
(University of Massachusetts)
Atomic and molecular gases

Bose-Einstein condensation
- Gross-Pitaevskii equation
- non-linear dynamics

Quantum degenerate dilute atomic/molecular gases of fermions and bosons

Rotating condensates
- vortices
- fractional quantum Hall

Molecules
- Feshbach resonances
- BCS-BEC crossover
- polar molecules

Optical lattices
- Hubbard models
- strong correlations
- exotic phases

control and tunability
Crystalline phases
- long range dipole-dipole interaction
- interaction energy exceeds kinetic energy

Three-body interaction
- tunable three-body interaction
- extended Hubbard models in the presence of optical lattices
Polar molecules

Why polar molecules?
- coupling to optical and microwave fields
 - trapping/cooling
 - internal states
- permanent dipole moment
 - strong dipole-dipole interaction
 - long-range interaction

Polar molecules in 2D
- stability for strong interactions
 - suppressed three-body recombination
 - absence of thermodynamic instabilities
 - tunable long range interaction in strength and shape
 - tool for exploring novel quantum phenomena

Quantum melting
- appearance of a crystalline phase
- quantum melting to a superfluid phase
Experimental status

- Polar molecules in the rotational and vibrational ground state
- Cooling and trapping techniques being development:

 - Cooling of polar molecules:
 D. De Mille, Yale
 J. Doyle, Harvard
 G. Rempe, Munich
 G. Meijer, Berlin

 - Photo association
 (all cold atom labs)

- Bosonic molecules with closed electronic shell, e.g., SrO, RbCs, LiCs
Polar molecule

Low energy description
- rigid rotor in an electric field

\[H_{\text{rot}}^{(i)} = B N_i^2 - d_i E(t) \]

- \(N_i \): angular momentum
- \(d_i \): dipole operator

\[N = 2 \quad BN_i(N_i + 1) \]

\[N = 1 \quad \sim 20\text{GHz} \]

\(N = 0 \)

Accessible via microwave
- anharmonic spectrum
- electric dipole transition

\[\Delta N = \pm 1 \quad \Delta m_z = -1, 0, 1 \]
- microwave transition frequencies
- no spontaneous emission
heteronuclear molecule with strong persistent dipole moment in electronic groundstate.

Sr\(^{2+}\)O\(^{2-}\) ... ionic binding

\(r_{eq} = 1.919 \, \text{Å} \) ... equilibrium distance
\(d = 8.900 \, \text{D} \) ... dipole-moment

\(\omega_{eq} = 19.586 \, \text{THz} \) ... vibrational const.

\(B_{eq} = 10.145 \, \text{GHz} \) ... rotational

\(I = 0 \) ... no nuclear momenta for \(^{88}\text{SrO}, \, ^{86}\text{SrO}\)
Interaction between polar molecules

Hamiltonian

\[H^{(1,2)} = \sum_{i=1}^{2} \left[\frac{p_i^2}{2m} + V_{\text{trap}}(r_i) + B N_i^2 - d_i E \right] + \frac{d_1 d_2 - 3(d_1 n)(d_2 n)}{r^3} \]

- kinetic energy
- trapping potential
- rigid rotor
- electric field
- interaction potential

Without external drive

- van der Waals attraction
 \[V_{\text{vdW}}(r) = -\frac{C_6}{r^6} \]

Static electric field

- internal Hamilton
 \[H_{\text{rot}}^{(i)} = B N_i^2 - d_i E \]

- finite averaged dipole moment
 \[D = \left| \langle g|\hat{d}_i|g \rangle \right|^2 \leq d^2 \]
Dipole-dipole interaction

- anisotropic interaction
- long-range

\[V(r) = D \left[\frac{1}{r^3} - 3 \frac{z^2}{r^5} \right] \]

- Born-Oppenheimer
 valid for:
 \[r > R_{\text{rot}} = (D/B)^{1/3} \]
 \[r > (Ed/D)^{1/3} \]

Instability in the many-body system

- collaps of the system for increasing dipole interaction
- roton softening
- supersolids?
 (Goral et. al. ‘02, L. Santos et al. ‘03, Shlyapnikov ‘06)

Stability:

- strong interactions
- confining into 2D by an optical lattice
Stability via transverse confining

Effective interaction

- interaction potential with transverse trapping potential

\[V(r) = D \left[\frac{1}{r^3} - 3 \frac{z^2}{r^5} \right] + \frac{m\omega_z^2}{2} z^2 \]

- characteristic length scale

\[l_\perp = \left(\frac{Dm}{\hbar^2 a_\perp} \right)^{1/5} a_\perp \]

- potential barrier: larger than kinetic energy

Tunneling rate:

- semi-classical rate (instanton techniques)

\[\Gamma = A \exp \left(- \frac{S_E}{\hbar} \right) \]

- Euclidean action of the instanton trajectory

\[S_E = \hbar \left(\frac{Dm}{\hbar^2 a_\perp} \right)^{2/5} C \]

numerical factor: \(C \approx 5.8 \)

kinetic energies

bound states

attempt frequency
Transverse trapping

- integrating out the fast transverse motion of the molecules

\[V_{\text{eff}}(\mathbf{R}_i - \mathbf{R}_j) = \int dz_i dz_j V(\mathbf{r}_i - \mathbf{r}_j) |\psi(z_i)|^2 |\psi(z_j)|^2 \]

transverse wave function

\[\psi(z) = \frac{1}{(\pi a_{\perp}^{1/4})} \exp \left(-\frac{z^2}{2a_{\perp}^2} \right) \]

Effective 2D potential

- large distances \(|\mathbf{R}| > l_{\perp} \)

\[V_{\text{eff}}(\mathbf{R}) = \frac{D}{R^3} \]
Crystalline phase
Hamiltonian

- polar molecules confined into a two-dimensional plane
- dipole interaction

Effective Hamiltonian

\[H_{\text{eff}} = \sum_i \frac{P_i^2}{2m} + \frac{D}{2} \sum_{i \neq j} \frac{1}{|\mathbf{R}_i - \mathbf{R}_j|^3} \]

interaction strength:
\[r_s = \frac{E_{\text{int}}}{E_{\text{kin}}} = \frac{Dm}{\hbar^2 a} \]

Polar molecule: SrO

- dipole moment:
 \[d \sim 9D \quad \text{(2.4 Debye \sim ea_0)} \]

- interparticle distance:
 \[a \sim 300 - 500\text{nm} \]

- stability:
 \[S_E/\hbar \gtrsim 130 \]

- transverse confining:
 \[a_\perp \sim 40\text{nm} \]
Quantum Phase transition

Kosterlitz-Thouless transition

First order melting (Kalida '81)

Crystal phase
- triangular lattice structure
- phonon modes

Strongly interacting superfluid
- superfluid stiffness
- large depletion

\[
\frac{T a^3}{D} = \frac{\pi \hbar^2}{2ma^2}
\]

\[
T_m
\]

instability at weak interactions

Quantum melting
- indication of a first order transition
- Quantum Monte Carlo simulations
Three-body interactions
Single polar molecule

Static electric field
- along the z-axes
- splitting the degeneracy of the first excited states
- induces finite dipole moments

\[d_g = \langle g | d_z | g \rangle \]
\[d_e = \langle e, 1 | d_z | e, 1 \rangle \]

Mircowave field
- coupling the state \(|g\rangle \) and \(|e, 1\rangle \)
- anharmonic spectrum
- electric dipole transition
- microwave transition frequencies
- no spontaneous emission

\[\Delta N = \pm 1 \quad \Delta m_z = -1, 0, 1 \]
Many-body Hamiltonian

\[H = \sum_i \frac{\mathbf{p}_i^2}{2m} + \sum_i V_{\text{trap}}(\mathbf{r}_i) + \sum_i H^{(i)}_0 + H^{\text{stat}}_{\text{int}} + H^{\text{ex}}_{\text{int}} \]

- external potentials:
 - trapping potential
 - optical lattices

- dipole-Dipole interaction
 - restriction to the two internal states:
 \[|g\rangle_i \quad |e, 1\rangle_i \]

Two-level System

- rotating wave approximation

\[H^{(i)}_0 = \frac{1}{2} \begin{pmatrix} \Delta & \Omega \\ \Omega & -\Delta \end{pmatrix} = \hbar S_i \]

- two-level system in an effective magnetic field

- two eigenstates

\[|+\rangle_i = \alpha |g\rangle_i + \beta |e, 1\rangle_i \]
\[|-\rangle_i = -\beta |g\rangle_i + \alpha |e, 1\rangle_i \]

and energies

\[E_\pm = \pm \sqrt{\Omega^2 + \Delta^2 / 2} \]
Dipole-dipole interaction

Microwave photon exchange

- \(D = |\langle e, 1|d|g\rangle|^2 \approx d^2/3 \)

\[
H_{\text{int}}^{\text{ex}} = -\frac{1}{2} \sum_{i \neq j} \frac{D}{2} \nu(r_i - r_j) \left[S_i^+ S_j^- + S_j^+ S_i^- \right]
\]

\(\nu(r) = \frac{1 - \cos \theta}{r^3} \)

Induced dipole moments

- \(\eta_{d,g} = d_{e,g}/\sqrt{D} \)

\[
H_{\text{int}}^{\text{stat}} = \frac{1}{2} \sum_{i \neq j} D \nu(r_i - r_j) \left[\eta_g P_i + \eta_e Q_i \right] \left[\eta_g P_j + \eta_e Q_j \right]
\]

\(P_i = |g\rangle\langle g|_i \)

\(Q_i = |e, 1\rangle\langle e, 1|_i \)
Effective interaction

(i) diagonalizing the internal Hamiltonian for fixed interparticle distance \(\{ \mathbf{r}_i \} \).

\[
\sum_i \left(H_0^{(i)} + H_{\text{int}}^{\text{stat}} + H_{\text{int}}^{\text{ex}} \right)
\]

(ii) The eigenenergies \(E(\{ \mathbf{r}_i \}) \) describe the Born-Oppenheimer potential a given state manifold.

(iii) Adiabatically connected to the groundstate

\[
| G \rangle = \Pi_i | + \rangle_i
\]

“weak” dipole interaction

\[
\frac{D}{\sqrt{\Delta^2 + \Omega^2}} = R_0^3 \ll a^3
\]
Born-Oppenheimer potential

First order perturbation

\[E^{(1)}(\{r_i\}) = \langle G | H_{\text{ex}} + H_{\text{stat}} | G' \rangle \]

\[|G'\rangle = \prod_i (\alpha |g_i\rangle + \beta |e, 1\rangle_1) \]

\[E^{(1)}(\{r_i\}) = \frac{1}{2} \lambda_1 \sum_{i \neq j} D\nu (r_i - r_j) \]

dipole-dipole interaction:

\[V_{\text{eff}}(r) = \lambda_1 \frac{1 - 3 \cos \theta}{r^3} \]

Dimensionless coupling parameter

\[\lambda_1 = (\alpha^2 \eta_g + \beta^2 \eta_e)^2 - \alpha^2 \beta^2 \]

- tunable by the external electric field \(dE/B \) and the ratio \(\Omega/\Delta \).

- for a magic rabi frequency the dipole-dipole interaction vanishes

\[\lambda_1 = 0 \]
Second order perturbation

\[E^{(2)}(\{r_i\}) = \sum_{k \neq i \neq j} \frac{|M|^2}{\sqrt{\Delta^2 + \Omega^2}} D^2 \nu (r_i - r_k) \nu (r_j - r_k) \]

\[+ \sum_{i \neq j} \frac{|N|^2}{\sqrt{\Delta^2 + \Omega^2}} [D \nu (r_i - r_j)]^2 \]

Matrix elements

- \(M = \alpha \beta \left[(\alpha^2 \eta_g + \beta^2 \eta_e) (\eta_e - \eta_g) + (\beta^2 - \alpha^2)/2 \right] \)

- \(N = \alpha^2 \beta^2 \left[(\eta_e - \eta_g)^2 + 1 \right] \)

- special point

\[\lambda_1 = 0 \]
\[M = 0 \]
Effective Hamiltonian

Effective interaction

\[V_{\text{eff}}(\{r_i\}) = \frac{1}{2} \sum_{i \neq j} V(r_i - r_j) + \frac{1}{6} \sum_{i \neq j \neq k} W(r_i, r_j, r_k) \]

- two-body interaction

\[V(r) = \lambda_1 D \nu(r) + \lambda_2 DR_0^3 [\nu(r)]^2 \]

- three-body interaction

\[W(r_1, r_2, r_3) = \gamma_2 R_0^3 D [\nu(r_{12})\nu(r_{13}) + \nu(r_{12})\nu(r_{23}) + \nu(r_{13})\nu(r_{23})] \]

- validity is restricted to

\[\frac{D}{\sqrt{\Delta^2 + \Omega^2}} = R_0^3 \ll a^3 \]

interparticle distance

(i) transverse confining into 2D

(ii) vanishing dipole-dipole interaction
Bose-Hubbard model
Optical lattices

- AC Stark shift
- off-resonant laser
- periodic potentials

\[V(x) = V_0 \sin^2 kx + \ldots \]

- 2D and 1D setups
- different lattice structures

- characteristic energies

\[E_r = \frac{\hbar^2 k^2}{2m} \sim 10\text{kHz} \]

\[\frac{V_0}{E_r} \sim 50 \]
Microscopic Hamiltonian

\[H = \int d\mathbf{x} \psi^\dagger(\mathbf{x}) \left(-\frac{\hbar^2}{2m} \Delta + V_{\text{trap}}(\mathbf{x}) \right) \psi(\mathbf{x}) + H_{\text{int}} \]

- strong optical lattice \(V > E_r \)
- express the bosonic field operator in terms of Wannier functions
- restriction to lowest Bloch band
 Jaksch et al, PRL (1998)

\[\psi(\mathbf{x}) = \sum_i w(\mathbf{x} - \mathbf{x}_i) b_i \]
Hubbard model

Extended Bose-Hubbard models

- hardcore bosons

\[H = -J \sum_{\langle ij \rangle} b_i^\dagger b_j + \frac{1}{2} \sum_{i \neq j} U_{ij} n_i n_j + \frac{1}{6!} \sum_{i \neq j \neq k} W_{ijk} n_i n_j n_k. \]

- hopping energy
- two-body interaction
- three-body interaction

- interaction parameters for strong optical lattices

\[U_{ij} = V(R_i - R_j) \]
\[W_{ijk} = W(R_i, R_j, R_k) \]

Polar molecule: LiCs:

- dipole moment
 \[d \approx 6 \text{Debye} \]
- hopping energy
 \[J/E_r \approx 0 - 0.5 \]
- lattice spacing:
 \[\lambda \approx 1000 \text{nm} \]
 \[E_r \approx 1.4 \text{kHz} \]
- nearest neighbor interaction:
 \[U/E_r \approx 30 \]
 \[W/E_r \approx 30 \left(\frac{R_0}{a_L} \right)^3 \]
Supersolids on a triangular lattice

\[H = -J \sum_{\langle ij \rangle} b_i^\dagger b_j + \frac{1}{2} \sum_{i \neq j} U_{ij} n_i n_j \]

\[U_{ij} \sim \frac{1}{|i - j|^3} \quad : \text{static electric field} \]

\[U_{ij} \sim \frac{1}{|i - j|^6} \quad : \text{static electric field} + \text{microwave field} \]

Quantum Monte Carlo simulations

Wessel and Troyer, PRL (2005)
Melko et al., PRB, (2006)

- supersolid close to half filling and strong nearest neighbor interactions
 \[n = 1/2 \]
 \[U/J \gtrsim 10 \]
- stable under next-nearest neighbor interactions
One-dimensional model

Bosonization
- hard-core bosons
- instabilities for densities:
 \[n = \frac{2}{3} \quad n = \frac{1}{2} \quad n = \frac{1}{3} \]
- quantum Monte Carlo simulations (in progress)

Critical phase
- algebraic correlations
- compressible
- repulsive fermions

Solid phases
- excitation gap
- incompressible
- density-density correlations
 \[\langle \Delta n_i \Delta n_j \rangle \]
- hopping correlations (1D VBS)
 \[\langle b_i^\dagger b_{i+1}^\dagger b_j b_{j+1} \rangle \]
String nets

Honeycomb lattice
- Interaction Hamiltonian
\[
H_{\text{int}} = W \sum_{\langle\langle ijk \rangle\rangle} n_i n_j n_k + H_{\text{n.n.n.}}
\]
- Integer filling within a single layer
- Split the layer into a double layer
- Maps to an effective spin system
- Each well splits into a double well
- \(\cos \theta = 1/3 \)
- \(\uparrow \rangle \) and \(\downarrow \rangle \)

Spin-Hamiltonian
\[
H_{\text{spin}} = W \sum_{\langle\langle ijk \rangle\rangle} PS_{\text{tot}} = \pm 3/2
\]
- Penalizes three successive spins
- Allowed configurations are characterized by string nets (Fidkowski, et al, 2006)

Next-nearest neighbor interactions?
Conclusion and Outlook

Polar molecular crystal
- reduced three-body collisions
- strong coupling to cavity QED
- ideal quantum storage devices

Lattice structure
- alternative to optical lattices
- tunable lattice parameters
- strong phonon coupling: polarons

Extended Hubbard models
- strong nearest neighbor interaction
- three-body interaction

Novel quantum matter
- supersolid phases
- string nets?