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Outline
= Exotic Neel-VBS transition; deconfined quantum-criticality

> S=1/2 Heisenberg model with four-spin interactions
© Quantum Monte Carlo in the valence bond basis

< Simulation Results; VBS phase, critical behavior

> Emergent U(1) symmetry
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Deconfined quantum criticality

[Senthil, Vishwanath, Balents, Sachdev, Fisher, Science 303, 1490 (2004)]

Continuous quantum phase transition (T=0) between two ordered phases

> Neel to valence-bond-solid (VBS) 5 g

> Deconfined spinons at critical point Z TigSi- 8+ 9= 9o}
> Confined spinons = Neel or VBS order
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order parameter

Two types of critical VBS fluctuations

> plaquette and columnar

> Z4 symmetry irrelevant at critical point
> emergent U(1) symmetry

Outside the Ginzburg-Landau-Wilson phase transition framework
> GLW generically gives first-order or two separate transitions
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Do deconfined quantum-critical points exist?

> Do they exist in nature? Can they be identified in numerical studies?
> First step: Find model hamiltonians exhibiting Neel-VBS transition

> \/BS phases of quantum spin systems have been studied for a
long time [Read and Sachdev, PRL (1988)]
> \Why have Neel-VBS transitions not been fully characterized yet?

Models exhibiting both Neel and VBS phases are typically frustrated
> Sign problems for quantum Monte Carlo

> Only very small lattices can be studied (exact digonalization)

> No unbiased numerical methods for this class of systems

> Only approximate numerical/analytical results available

2D Heisenberg model with 4-spin term

H= JZS —Q ) (Si-S;—1)(Sk-Si— 1)
(13)
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> Studied using QMC projector method in the valence bond basis

> Turns out to have a Neel-VBS transition for J/Q=0.04
[AWS, arXiv:cond-mat/0611343 (to appear in PRL)]




Projector MC in the valence bond basis
[Liang, 1990; Santoro & Sorella, 1998; AWS, Phys. Rev. Lett 95, 207203 (2005)]
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(ai,bi) = (Tily — L)/ V2
Project out the ground state
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J-Q model; is there a VBS phase?

> VBS order parameter - columnar dimer-dimer correlations

NQZ

o Sublattice magnetlzatlon staggered spin-spin correlations
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» J/Q=0.1 — antiferromagnet

00 0.02 0.04 006 0.08 0.10 0.12




Do the VBS and AFM orders vanish at the same point?
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Both vanish at J/Q~0.04
scale as (1/L)*1N with z+n=1.3

Compare with O(3) transition
in Heisenberg bilayer

g=J2/J1
Jo

J1

¢ single layer
e bilayer, g=2.52
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z+n=1.03, z=1, n=0.03




Singlet-triplet gap scaling = Dynamic exponent z

z relates length and time scales: There is an improved estimator
wq ~ |q|*  finite size & A ~ L7  for the gap in the VB basis QMC

Finite-size scaling of LA
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z=1 = 1 =0.3: consistent with deconfined quantum-criticality
e z=1 field theory and ”large” n predicted (Senthil et al.)




Finite-size scaling
Correlation lengths (spin, dimer): &4

Binder ratio (for spins): g;=<M*>/<M?>2
long-distance spin and dimer correlations: C4(L/2,L/2)

L=12
L=16,20,24
L=32
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All scale with a single set of

critical exponents at g.~0.04
(with subleading corrections)

v = 0.78(3), 17 = 0.26(3)
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Any other evidence for deconfined quantum-criticality?
Emergent U(1) symmetry predicted; should show up in the VBS
order-parameter close to the critical point (on the VBS side)

© for L below a length scale A at which Z4 anisotropy becomes relevant

Analogy: 3D classical XY model with Z4 anisotropy
[Jie Lou and AWS, ArXiv:0704.1472]

H=-J Z cos(0; —0;) — hZCos(Zl@@-)
(2,7) g

© the anisotropy h is known to be marginally irrelevant

© Universality class unaffected, but ordered state reflects Z4 term

& seen in 2D histogram P(Mx,My) 7, = %Zcos(@i), M, = %Zsin(@i)




Mx~My Configuration (one layer); h/J=1
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4 orientations (colors)
© correspond to the
4 ways of arranging
VBS order in J-Q model
1 or 2 directions dominate
on the “U(1) circle”
© corresponds to mixing
of two types of VBS




J-Q model
Correlations between x and y VBS order parameters

The simulations sample the ground state;

0) = cx|Vi)

k
Graph joint probability distribution P (D, D)

(Vi|Si - Siyx|Vp) (Vi|Si - Sivg|Vp)

Da = 5 w) VilV,)
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Questions

Is there an emergent U(1) symmetry at the transition

< rotational, U(1), vs 4-fold, Z4, symmetry of P(Dx,Dy)

Is the transition weakly first order?

o coexistence of Neel and VBS should show up in P(Dx,Dy)
as a central peak coexisting with 4 VBS maxima

Results: L=32 lattices
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J/0=0.00 No signs of Z4 anisotropy!
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Return to classical Zq model to explore the
cross-over from U(l) to Zq order-parameter




Order parameter quantifying U(1) emergence
Magnetization in terms of the probability distribution
M = / drdgr®P(r, ¢)

Modified magnetization vanishing if not Zq anisotropic

Zy L=32

M* = /drd(bTQP(r, ¢) cos(qo) 24 L=4 | _

M" should be controlled by
the length scale A at which
the Zq term becomes relevant

A ~ fCL ~ t—ay
Finite-size scaling

M ~ L_(H")/Qf(tLl/”)

M* ~ L—(l—i—n)/Qg(tLl/ay)
3D XY exponents

v~ 0.67, n~0.04




Results: Z4

M ~ L_(H”)/Qf(tLl/”)

M* ~ L—(l—l—n)/Qg(tLl/al/)
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Results for g=4,...,8 =

a, ~ as(q/4)?, ag ~1.07
Agrees with RG, e-expansion
(Oshikawa, PRB 2000)
Asymptotic g— form:

ag = q°/10
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Summary & Conclusions
2D J-Q model; Heisenberg model with 4-spin interactions

= Results consistent with continuous Neel-VBS transition

@ z=1, as required by deconfined theory

= Single set of exponents describe spin and dimer correl.
- higher symmetry - SO(5) - at the critical point?

= n is large (=0.26) - consistent with prediction for DCQP

= Evidence of emergent U(1) symmetry

How does the Z4 length A diverge? A ~ &
e Larger lattices needed
e in 3D classical XY-Z4 model, as=1.07
- aq increases with g for Zg model: ¢, ~ a4(q/4)”
- in good agreement with e-expansion (Oshikawa)
e results indicate a>a4 for J-Q model

J-Q model: “Ising model of deconfined quantum-criticality”




