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Deconfined quantum criticality
[Senthil, Vishwanath, Balents, Sachdev, Fisher, Science 303, 1490 (2004)] 

Continuous quantum phase transition (T=0) between two ordered phases
➣ Neel to valence-bond-solid (VBS)
➣ Deconfined spinons at critical point
➣ Confined spinons ➙ Neel or VBS order

= 〈!Si · !Sj〉

Outside the Ginzburg-Landau-Wilson phase transition framework
➣ GLW generically gives first-order or two separate transitions

H =
∑

i,j

Jij
!Si · !Sj + .... g = g({Jij , ...}

Two types of critical VBS fluctuations
➣ plaquette and columnar
➣ Z4 symmetry irrelevant at critical point
➣ emergent U(1) symmetry



Do deconfined quantum-critical points exist?
➣ Do they exist in nature? Can they be identified in numerical studies?
➣ First step: Find model hamiltonians exhibiting Neel-VBS transition

➣ VBS phases of quantum spin systems have been studied for a 
     long time [Read and Sachdev, PRL (1988)]
➣ Why have Neel-VBS transitions not been fully characterized yet?

Models exhibiting both Neel and VBS phases are typically frustrated 
➣ Sign problems for quantum Monte Carlo
➣ Only very small lattices can be studied (exact digonalization)
➣ No unbiased numerical methods for this class of systems
➣ Only approximate numerical/analytical results available

H = J
∑

〈ij〉

Si · Sj − Q
∑

〈ijkl〉

(Si · Sj −
1

4
)(Sk · Sl −

1

4
)

2D Heisenberg model with 4-spin term

➣ Studied using QMC projector method in the valence bond basis
➣ Turns out to have a Neel-VBS transition for J/Q≈0.04

[AWS, arXiv:cond-mat/0611343  (to appear in PRL)] 



|Ψ〉〈Ψ|

A

[Liang, 1990; Santoro & Sorella, 1998; AWS, Phys. Rev. Lett 95, 207203 (2005)]
Projector MC in the valence bond basis

(ai, bi) = (↑i↓j − ↓i↑j)/
√

2

|Ψ〉 =
∑

k

fk|(aa, b1)(a2, b2) · · · (aN/2, bN/2)〉

(−H)n|Ψ〉 → c0|E0|
n|0〉 〈A〉 =

〈Ψ|(−H∗)nA(−H)n|Ψ〉

〈Ψ|(−H∗)n(−H)n|Ψ〉

Project out the ground state 

H = −

∑

〈ij〉

Hij , Hij = −(Si · Sj −
1

4
)Example 2D Heisenberg model:



J-Q model; is there a VBS phase?
➭ VBS order parameter - columnar dimer-dimer correlations

➭ Sublattice magnetization - staggered spin-spin correlations

➤ J/Q=0.0 → VBS       ➤ J/Q=0.1 → antiferromagnet

D2 =
1

N2

∑

i,j

= 〈(Si · Si+x̂)(Sj · Sj+x̂)〉(−1)(xi−xj)

M2 =
1

N2

∑

i,j

〈Si · Sj〉(−1)(xi−xj+yi−yj)



Do the VBS and AFM orders vanish at the same point?

Both vanish at J/Q≈0.04 

scale as (1/L)z+η with z+η≈1.3

M2

D2

Compare with O(3) transition 
in Heisenberg bilayer

z+η≈1.03, z=1, η≈0.03

g=J2/J1



Singlet-triplet gap scaling → Dynamic exponent z
z relates length and time scales:
ωq ∼ |q|z finite size → 

There is an improved estimator
for the gap in the VB basis QMC∆ ∼ L−z

z=1 ⇒ η≈0.3: consistent with deconfined quantum-criticality 
•  z=1 field theory and ”large” η predicted (Senthil et al.)

∆(L) =
a1

L
+

a2

L2
+ · · ·

Critical gap scaling: 

Finite-size scaling of L∆



Finite-size scaling
Correlation lengths (spin, dimer): ξs,d
Binder ratio (for spins): qs=<M4>/<M2>2

long-distance spin and dimer correlations: Cs,d(L/2,L/2)
All scale with a single set of 
critical exponents at gc≈0.04

(with subleading corrections)

ν = 0.78(3), η = 0.26(3)



Analogy: 3D classical XY model with Z4 anisotropy
[Jie Lou and AWS, ArXiv:0704.1472] 

➭ the anisotropy h is known to be marginally irrelevant
➭ Universality class unaffected, but ordered state reflects Z4 term
➭ seen in 2D histogram P(Mx,My)

H = −J
∑

〈i,j〉

cos(Θi − Θj) − h
∑

i

cos(4Θi)

Any other evidence for deconfined quantum-criticality? 
Emergent U(1) symmetry predicted; should show up in the VBS 
order-parameter close to the critical point (on the VBS side)
➭ for L below a length scale Λ at which Z4 anisotropy becomes relevant

Mx =
1

N

∑

i

cos(Θi), My =
1

N

∑

i

sin(Θi)

T<TcT>Tc T<<Tc



 Mx≈My Configuration (one layer); h/J=1

4 orientations (colors)
➭ correspond to the
    4 ways of arranging
    VBS order in J-Q model
1 or 2 directions dominate
on the “U(1) circle”
➭ corresponds to mixing 
    of two types of VBS



J-Q model
Correlations between x and y VBS order parameters

|0〉 =

∑

k

ck|Vk〉

The simulations sample the ground state;

Graph joint probability distribution                      P (Dx, Dy)

〈Vk|Si · Si+x̂|Vp〉

〈Vk|Vp〉
Dx =

〈Vk|Si · Si+ŷ|Vp〉

〈Vk|Vp〉
Dy =

Questions
Is there an emergent U(1) symmetry at the transition
➭ rotational, U(1), vs 4-fold, Z4, symmetry of P(Dx,Dy)
Is the transition weakly first order?
➭ coexistence of Neel and VBS should show up in P(Dx,Dy)
    as a central peak coexisting with 4 VBS maxima

Results: L=32 lattices



J/Q=0.45



J/Q=0.40



J/Q=0.35



J/Q=0.30



J/Q=0.25



J/Q=0.20



J/Q=0.10



J/Q=0.00 No signs of Z4 anisotropy!

Return to classical Zq model to explore the 
cross-over from U(1) to Zq order-parameter



Order parameter quantifying U(1) emergence

M∗ =
∫

drdφr2P (r, φ) cos(qφ)

M =
∫

drdφr2P (r, φ)

Magnetization in terms of the probability distribution  

Modified magnetization vanishing if not Zq anisotropic

M* should be controlled by 
the length scale Λ at which 
the Zq term becomes relevant

Λ ∼ ξa ∼ t−aν

M ∼ L−(1+η)/2f(tL1/ν)

M∗ ∼ L−(1+η)/2g(tL1/aν)

Finite-size scaling

3D XY exponents

ν ≈ 0.67, η ≈ 0.04



Results: Z4

M M∗

a ≈ 1.07

T/J

M ∼ L−(1+η)/2f(tL1/ν)

M∗ ∼ L−(1+η)/2g(tL1/aν)



a ≈ 1.6

Z6

aq ≈ a4(q/4)2, a4 ≈ 1.07
Results for q=4,...,8 ⇒

Agrees with RG, ε-expansion
(Oshikawa, PRB 2000)
Asymptotic q→∞ form:
aq = q2/10



Summary & Conclusions 

➭ Results consistent with continuous Neel-VBS transition
➭ z=1, as required by deconfined theory
➭ Single set of exponents describe spin and dimer correl.
    - higher symmetry - SO(5) - at the critical point?
➭ η is large (≈0.26) - consistent with prediction for DCQP
➭ Evidence of emergent U(1) symmetry

2D J-Q model; Heisenberg model with 4-spin interactions

J-Q model: “Ising model of deconfined quantum-criticality”

How does the Z4 length Λ diverge?
• Larger lattices needed
• in 3D classical XY-Z4 model, a4≈1.07
   - aq increases with q for Zq model:
   - in good agreement with ε-expansion (Oshikawa)
• results indicate a>a4 for J-Q model

Λ ∼ ξa

aq ≈ a4(q/4)2


