Monte Carlo simulations of deconfined quantum-criticality

Anders W. Sandvik, Boston University

Outline

- Exotic Neel-VBS transition; deconfined quantum-criticality
- ⇒ S=1/2 Heisenberg model with four-spin interactions
- Quantum Monte Carlo in the valence bond basis
- Simulation Results; VBS phase, critical behavior
- **⇒** Emergent U(1) symmetry

Deconfined quantum criticality

[Senthil, Vishwanath, Balents, Sachdev, Fisher, Science 303, 1490 (2004)]

Continuous quantum phase transition (T=0) between two ordered phases

- ➤ Neel to valence-bond-solid (VBS)
- > Deconfined spinons at critical point
- ➤ Confined spinons → Neel or VBS order

$$H = \sum_{i,j} J_{ij} \vec{S}_i \cdot \vec{S}_j + \dots \quad g = g(\{J_{ij}, \dots\})$$

Two types of critical VBS fluctuations

- > plaquette and columnar
- > Z₄ symmetry irrelevant at critical point
- > emergent U(1) symmetry

Outside the Ginzburg-Landau-Wilson phase transition framework

> GLW generically gives first-order or two separate transitions

Do deconfined quantum-critical points exist?

- > Do they exist in nature? Can they be identified in numerical studies?
- > First step: Find model hamiltonians exhibiting Neel-VBS transition
- > VBS phases of quantum spin systems have been studied for a long time [Read and Sachdev, PRL (1988)]
- > Why have Neel-VBS transitions not been fully characterized yet?

Models exhibiting both Neel and VBS phases are typically frustrated

- ➤ Sign problems for quantum Monte Carlo
- > Only very small lattices can be studied (exact digonalization)
- > No unbiased numerical methods for this class of systems
- > Only approximate numerical/analytical results available

2D Heisenberg model with 4-spin term

$$H = J \sum_{\langle ij \rangle} \mathbf{S}_{i} \cdot \mathbf{S}_{j} - Q \sum_{\langle ijkl \rangle} (\mathbf{S}_{i} \cdot \mathbf{S}_{j} - \frac{1}{4})(\mathbf{S}_{k} \cdot \mathbf{S}_{l} - \frac{1}{4})$$

$$\downarrow^{i \bullet} \qquad \downarrow^{i \bullet} \qquad \downarrow^{i$$

- > Studied using QMC projector method in the valence bond basis
- > Turns out to have a Neel-VBS transition for J/Q≈0.04

[AWS, arXiv:cond-mat/0611343 (to appear in PRL)]

Projector MC in the valence bond basis

[Liang, 1990; Santoro & Sorella, 1998; AWS, Phys. Rev. Lett 95, 207203 (2005)]

$$|\Psi\rangle = \sum_{k} f_{k} |(a_{a}, b_{1})(a_{2}, b_{2}) \cdots (a_{N/2}, b_{N/2})\rangle$$

$$(a_{i}, b_{i}) = (\uparrow_{i} \downarrow_{j} - \downarrow_{i} \uparrow_{j})/\sqrt{2}$$

Project out the ground state

$$(-H)^{n}|\Psi\rangle \to c_{0}|E_{0}|^{n}|0\rangle \qquad \langle A\rangle = \frac{\langle \Psi|(-H^{*})^{n}A(-H)^{n}|\Psi\rangle}{\langle \Psi|(-H^{*})^{n}(-H)^{n}|\Psi\rangle}$$

Example 2D Heisenberg model:
$$H = -\sum_{\langle ij \rangle} H_{ij}, \quad H_{ij} = -(\mathbf{S}_i \cdot \mathbf{S}_j - \frac{1}{4})$$

J-Q model; is there a VBS phase?

> VBS order parameter - columnar dimer-dimer correlations

$$D^{2} = \frac{1}{N^{2}} \sum_{i,j} = \langle (\mathbf{S}_{i} \cdot \mathbf{S}_{i+\hat{x}}) (\mathbf{S}_{j} \cdot \mathbf{S}_{j+\hat{x}}) \rangle (-1)^{(x_{i}-x_{j})}$$

Sublattice magnetization - staggered spin-spin correlations

$$M^{2} = \frac{1}{N^{2}} \sum_{i,j} \langle \mathbf{S}_{i} \cdot \mathbf{S}_{j} \rangle (-1)^{(x_{i} - x_{j} + y_{i} - y_{j})}$$

>
$$J/Q=0.0 \rightarrow VBS$$
 > $J/Q=0.1 \rightarrow antiferromagnet$

Do the VBS and AFM orders vanish at the same point?

Both vanish at J/Q \approx 0.04 scale as (1/L)^{Z+ η} with z+ $\eta \approx$ 1.3

Compare with O(3) transition in Heisenberg bilayer

 $z+\eta \approx 1.03$, z=1, $\eta \approx 0.03$

Singlet-triplet gap scaling → Dynamic exponent z

z relates length and time scales: $\omega_q \sim |q|^z$ finite size $\rightarrow \Delta \sim L^{-z}$

There is an improved estimator for the gap in the VB basis QMC

Critical gap scaling:

$$\Delta(L) = \frac{a_1}{L} + \frac{a_2}{L^2} + \cdots$$

 $z=1 \Rightarrow \eta \approx 0.3$: consistent with deconfined quantum-criticality

• z=1 field theory and "large" η predicted (Senthil et al.)

Finite-size scaling

Correlation lengths (spin, dimer): $\xi_{s,d}$

Binder ratio (for spins): $q_s = \langle M^4 \rangle / \langle M^2 \rangle^2$

long-distance spin and dimer correlations: $C_{s,d}(L/2,L/2)$

All scale with a single set of critical exponents at $g_c \approx 0.04$ (with subleading corrections)

$$\nu = 0.78(3), \ \eta = 0.26(3)$$

Any other evidence for deconfined quantum-criticality?

Emergent U(1) symmetry predicted; should show up in the VBS order-parameter close to the critical point (on the VBS side)

 \Rightarrow for L below a length scale \land at which Z_4 anisotropy becomes relevant

Analogy: 3D classical XY model with Z₄ anisotropy

[Jie Lou and AWS, ArXiv:0704.1472]

$$H = -J\sum_{\langle i,j\rangle}\cos(\Theta_i - \Theta_j) - h\sum_i\cos(4\Theta_i)$$

- the anisotropy h is known to be marginally irrelevant
- Universality class unaffected, but ordered state reflects Z₄ term
- \Rightarrow seen in 2D histogram P(Mx,My) $M_x = \frac{1}{N} \sum_i \cos(\Theta_i), \quad M_y = \frac{1}{N} \sum_i \sin(\Theta_i)$

J-Q model

Correlations between x and y VBS order parameters

The simulations sample the ground state;

$$|0\rangle = \sum_{k} c_k |V_k\rangle$$

Graph joint probability distribution $P(D_x, D_y)$

$$D_x = \frac{\langle V_k | \mathbf{S}_i \cdot \mathbf{S}_{i+\hat{\mathbf{x}}} | V_p \rangle}{\langle V_k | V_p \rangle} \qquad D_y = \frac{\langle V_k | \mathbf{S}_i \cdot \mathbf{S}_{i+\hat{\mathbf{y}}} | V_p \rangle}{\langle V_k | V_p \rangle}$$

Questions

Is there an emergent U(1) symmetry at the transition

 \Rightarrow rotational, U(1), vs 4-fold, Z₄, symmetry of P(D_x,D_y)

Is the transition weakly first order?

coexistence of Neel and VBS should show up in P(Dx,Dy) as a central peak coexisting with 4 VBS maxima

Results: L=32 lattices

J/Q=0.00 No signs of Z₄ anisotropy!

Return to classical Z_q model to explore the cross-over from U(1) to Z_q order-parameter

Order parameter quantifying U(1) emergence

Magnetization in terms of the probability distribution

$$M = \int dr d\phi r^2 P(r,\phi)$$

Modified magnetization vanishing if not Z_q anisotropic

$$M^* = \int dr d\phi r^2 P(r,\phi) \cos(q\phi)$$

 M^* should be controlled by the length scale Λ at which the Z_q term becomes relevant

$$\Lambda \sim \xi^a \sim t^{-a\nu}$$

Finite-size scaling

$$M \sim L^{-(1+\eta)/2} f(tL^{1/\nu})$$

$$M^* \sim L^{-(1+\eta)/2} g(tL^{1/a\nu})$$

3D XY exponents

$$\nu \approx 0.67, \quad \eta \approx 0.04$$

Results: Z₄ •• L=8 L=10 L=12 L=14 L=16 L=24 $M \sim L^{-(1+\eta)/2} f(tL^{1/\nu})$ ◆ L=32 $M^* \sim L^{-(1+\eta)/2} g(tL^{1/a\nu})$ 2.10 2.15 2.20 T/J M^* M•• L=8 • L=24 • L=10 2.0 ● L=16 •• L=12 • L=14 ••• L=14 2.0 ● L=16 •• L=12 ••• L=24 ••• L=32 ••• L=10 $ML^{(1+\eta)/2}$ •• L=8 0.5 0.5 $a \approx 1.07$ -5 tL^{1/av} -10 -10 10 0 tL^{lN}

Summary & Conclusions

2D J-Q model; Heisenberg model with 4-spin interactions

- Results consistent with continuous Neel-VBS transition
- $\Rightarrow z=1$, as required by deconfined theory
- Single set of exponents describe spin and dimer correl.
 - higher symmetry SO(5) at the critical point?
- ¬ is large (≈0.26) consistent with prediction for DCQP

How does the Z₄ length Λ diverge? $\Lambda \sim \xi^a$

- Larger lattices needed
- in 3D classical XY-Z₄ model, a₄≈1.07
 - a_q increases with q for Z_q model: $a_q \approx a_4 (q/4)^2$
 - in good agreement with ϵ -expansion (Oshikawa)
- results indicate a>a4 for J-Q model

J-Q model: "Ising model of deconfined quantum-criticality"