

Research Directions

- Quantum information processing w/ neutral atoms
- Correlated many-body physics
 w/ neutral atoms
- Engineering new optical trapping and control techniques

This Talk

- Realizing a dynamic double-well lattice
 - Demonstration of tools
 - Using state-dependence
 - Combining tools: toward a swap gate
- Future
 potential applications to lattice simulation

Basic Tool: Light Shifts

Flexibility to tune scalar vs. vector component

Basic Tool: Light Shifts

Example: lin \sqcup lin

Position dependent effective magnetic field alternating circular polarization

Double-Well Lattice

Motivation for the double-well lattice:

Isolate pairs of atoms in controllable potential,
to test

- addressing ideas
- controlled interactions, at 2-atom level etc.

Provide new possibilities for cold atom lattice physics

This Talk

- Realizing a dynamic double-well lattice
 - Demonstration of tools
 - Using state-dependence
 - Combining tools: toward a swap gate
- Future
 potential applications to lattice simulation

Phase Stable 2D Double Well

Basic idea:

Combine two different period lattices with adjustable

- intensities
- positions

Mott insulator → single atom/site

Polarization Controlled 2-period Lattice

Sebby-Strabley et al., PRA **73** 033605 (2006)

Polarization Controlled 2-period Lattice

Add an independent, deep vertical lattice

Provides an independent array of 2D systems

State Dependent Potential

We use the quadratic Zeeman shift to isolate a pseudo spin-1/2

For the demonstrations shown here, we use these 2 states in ⁸⁷Rb

Lattice Features

X-Y directions coupled

- Checkerboard topology
- Not sinusoidal (in all directions)

$$\cos^2(x+y)\cos^2(x-y) \longrightarrow \cos^4(x)$$

e.g., leads to very different tunneling

- spin-dependence in sub-lattice

Reciprocal Lattices and Brillouin Zones

'λ' lattice

Brillouin Zone mapping

This Talk

- Realizing a dynamic double-well lattice
 - De 2D Mott physics ols
 - Using state-dependence
 - Combining tools: toward a swap gate
- Future
 potential applications to lattice simulation

2D Mott-insulator

Spielman, Phillips, TP *PRL* **98**, 080404 (2007)

2D Mott-insulator

Momentum distribution

Quite good comparison to a homogeneous theory (no free parameters)

Sengupta and Dupuis, PRA 71, 033629

Information in the Noise?

Some information available...

This Talk

- Realizing a dynamic double-well lattice
 - Demonstration of tools
 - Using state-dependence
 - Combining tools: toward a swap gate
- Future
 potential applications to lattice simulation

Dynamic Lattice Manipulation

Use double well split/combine control to, e.g.

- characterize particular number distribution
- construct particular number distributions
- adiabatically populate vibrational levels
- distinguish left/right populations

•

•

•

Double Slit Diffraction

Slowly load mostly- λ lattice, snap off

load in ~300 ms phase scrambled

Single slit diffraction

Coherently split single well

split in ~200 μs coherent split

Double slit diffraction

Time dependence of diffraction

In 3D lattice, see: Greiner et al. Nature, **419** (2002)

Time dependence confirms single-atom loading

Constructing n=2 Shell

Normally available n=2 and n=1 shells

Adiabatically purify n=2 shell

Number Distribution Dependence

Red- load n≈1 into λ
Blue- load n>1 into λ
Greenconstruct pairs in λ

For n=2, collapse and revival shows revivals at half the original period.

May provide hole populations (dominant infidelity)

Indications: Fermionized but not necessarily Mott

Sebbey-Strabley et al. , PRL in press (quant-ph/0701110)

Probe: Selective Removal of Sites

Load left well→ expel left

Starting ' λ /2' 30 E_R

"Expelling" as a left/right probe

"Expelling" as a left/right probe

Scan the relative phase between lattices

Adiabatic transfer "excitation"

atoms can be put on the same site, (but different vibrational level), allowed to interact, and then separated adiabatically

This Talk

- Realizing a dynamic double-well lattice
 - Demonstration of tools
 - Using state-dependence
 - Combining tools: toward a swap gate
- Future
 potential applications to lattice simulation

State Dependent Potential

Sub-Lattice Addressing

Start with atoms in m=-1

Apply RF to spin flip to m=0

"Evaporate" m=0 atoms

Measure m=-1 occupation in the left or right well.

sub-lattice addressing by light shift gradient

Sub-Lattice Addressing

Lee et al., quant-ph/0702039

Atoms at sub-λ spacing
-focused beam sees
several sites

Atoms at sub- λ spacing

- -focused beam sees several sites
- state dependent shifts
 effective field gradients

Atoms at sub- λ spacing

-focused beam sees several sites

state dependent shifts
 effective field gradients

RF, μwave or Raman

Atoms at sub-λ spacing
-focused beam sees
several sites

- state dependent shifts
 effective field gradients
- frequency addressing

State selective motion/splitting

State selective motion/splitting

Coherent State-Dependent "Splitting"

State dependent detection

- via Stern-Gerlach
- via state-dependent motion

Stern-Gerlach

This Talk

- Realizing a dynamic double-well lattice
 - Demonstration of tools
 - Using state-dependence
 - Combining tools: toward a swap gate
- Future
 potential applications to lattice simulation

Putting it all together: a swap gate

Step 1: load single atoms into sites

Step 2: spin flip atoms on right

Step 3: combine wells into same site

Step 4: wait for time T

Step 5: measure state occupation (vibrational + internal)

Exchange Gate: \sqrt{swap}

Exchange Gate: \sqrt{swap}

Controlled Exchange Interactions

Basis Measurements

All axes are momentum $[\hbar k_R/\sqrt{2}]$

Swap Oscillations

Onsite exchange -> fast 140µs swap time

~700 μ s total manipulation time

Population coherence preserved for >10 ms.

Coherent Evolution

Current (Improvable) Limitaitons

Initial Mott state preparatio(30% holes -> 50% bad pairs)

```
- Imperfect vibrational motion ~85%
```

- Imperfect projection onto T_0 , S ~95%

```
- Sub-lattice spin control >95%
```

Field stability
 move to clock states
 (state-dependent control through intermediate states)

This Talk

- Realizing a dynamic double-well lattice
 - Demonstration of tools
 - Using state-dependence
 - Combining tools: toward a swap gate
- Future
 potential applications to lattice simulation

Tools for lattice systems

State preparation, e.g.

- 'filter' cooling
- constructing anti-ferromagnetic state.

Diagnostics, e.g.

- number distributions (including holes)
- neighboring spin correlations

Realizing lattice Hamiltonians, e.g.

- band structure engineering
- 'stroboscopic' techniques
- coupled 1D-lattice "ladder" systems
- RVB physics :

•

Wannier function control

Ian Spielman

Two band Hubbard model state-dependent control of: t/U, Δ/U , position of λ -lattice

Characterizing Holes

In a fixed period lattice, difficult to measure "holes"

Isolated holes in $\lambda/2$

Combine holes with neighbors

Coupling spin and motion

Purely vector part of lin | lin

with no coupling (large Zeeman splitting)

Can be coupled with perpendicular DC or RF fields

couples spin to Bloch state motion

Coupling spin and motion

local effective field

alternating plaquettes

People

Postdocs

- Jenni Sebby-Strabley
- Marco Anderlini Ben Brown Patty Lee
- Nathan Lundblad
- Student John Huckans

Lasercooling Group

I. Spielman K. Helmerson P. Lett T. Porto

W. Phillips

The End

