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Cold molecules offer new possibilities:

Dipole moments
Long-range molecule-molecule forces

Richer energy level structure (more handles)

Two general classes:
i.  Molecules cooled from room temperature

ii. Dimers formed from ultracold atoms
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Point of contact between collisions and condensed matter
is scattering length: passes through pole at resonance
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For molecular scattering, some resonances show poles
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For molecular scattering, some resonances show poles:
others show only small oscillation
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- This is a geﬁeral effect, which should -
be seen in atomic scattering too:
rest of talk will focus on explaining
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Origin of scattering length in collision theory

*  Quantum scattering amplitudes defined by the S matrix:
Y=g + Y Soi vy
7

* The S matrix is unitary (complex symmetric).
For condensed matter we are most interested in the elastic
scattering submatrix (usually a single element) Syy

Soo = exp[2i0(k)]
If scattering is purely elastic, 5(k) is real.

» Scattering length a(k) related to phase shift by

—tandé(k) 1 (1 — Soo
k ik \ 1+ Spo

In limit of low kinetic energy, a(k) is independent of E,;,..

a(k) =




Low-energy collisions characterized by scattering length

If E,=0, V(R) = E atf long range
d?y/dR? = O, so wavefunction is straight line at long range,
g=1-r/a

Scattering length a is distance where extrapolated line crosses
zero
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The scattering length is a measure of the overall strength of the
intferaction:

- A positive scattering length corresponds to a repulsive interaction
- A negative scattering length corresponds to an attractive interaction




Remember how Feshbach resonances work for atoms:

Atomic dimers have many bound states near threshold.
Bound states (blue) and thresholds (red) have different Zeeman
effects: zero-energy Feshbach resonances occur where they cross
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We need to be able to carry out molecular bound state
and scattering calculations in magnetic fields

1.

Carry out bound-state calculations as function of

magnetic field:
we have modified our BOUND package to handle
atom + molecule bound states in magnetic fields



Prototype: bound states crossing threshold in 3He + NH
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We need to be able to carry out molecular bound state
and scattering calculations in magnetic fields

1.

Carry out bound-state calculations as function of
magnetic field:

we have modified our BOUND package to handle
atom + molecule bound states in magnetic fields

Find fields at which bound states cross thresholds: these
are the positions of zero-energy Feshbach resonances



I?Ar'ptotyp‘ek: bound states crossing threshold in
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We need to be able to carry out molecular bound state
and scattering calculations in magnetic fields

1.

Carry out bound-state calculations as function of
magnetic field:

we have modified our BOUND package to handle
atom + molecule bound states in magnetic fields

Find fields at which bound states cross thresholds: these
are the positions of zero-energy Feshbach resonances

Carry out scattering calculations as function of magnetic
field across resonances:

we have modified our MOLSCAT package to handle
atom-molecule collisions in magnetic fields



I?Ar'ptotyp‘ek: bound states crossing threshold in

Oz
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He+NH scattering resonance 1: pole in scattering length
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3He + NH: bound states crossing threshold
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He+NH scattering resonance 2:
scattering length shows small wobble, not pole
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Why the difference in behaviour?
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Characterising resonant behaviour

SOO — eXD[Q’&(S(k)] % 9.6
. . % 9.4
Across an elastic scattering LI
resonance, the phase shift I . "
Changes Shar‘ply by Tr 7168.7550 7168?7553 716877556 7168?7559
Magnetic Field (G)
+ The S matrix element describes a oF
circle in the complex plane as the 08 |
energy (or field) is funed across | I
resonance Yy
£ 0.2 F

04}
06 F

-08 |

-1.0 | 1 1 ] 1 H 1 L 1 1 1
-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 04 06 0.8 1.0
Re [Syo]




Characterising resonant behaviour

- Scattering length a(k) related to

phase shift by

—tand(k) 1

a(k) =

k

1 — 500

y When SOO - -1, a(k) = OO]

corresponds to J(k)/m=n + 3.
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He + NH inelastic scattering resonance:
S-matrix element describes smal/ circle in complex plane

Im [So]
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Threshold behaviour

* The circle in the elastic S-matrix element Sy, gets smaller
with decreasing energy: proportional to k (i.e. E,;,1?)
[wavenumber k related to E,;, by E,;, = h*k?/2u]

* Phase shift d(k) defined as before by
Soo = exp[2id (k)]
but now complex because | Sy, < 1.

+ Complex scattering length a(k) related to phase shift by

a(k) = a(k)—iB(k) = — tar;é(k) - zlkz Gli‘zz)

+ If the circle in Sy, is small, d(k) and a(k) show a small
oscillation instead of a pole



How general is the suppression of poles?

* Radius of circle in Sy depends on partial widths I;:
Radius is g/Tfot & [,/ [inel
[["; is a measure of the coupling between the resonant state
and open channel i]

* Partial width for elastic S-matrix element is
proportional to k, 'y = 2ky,

* Partial widths for inelastic S-matrix elements are
independent of k, el

»+ Complex scattering length is described by

ares
B) = ' :
CL( ) abg | 2(B - Bres)/rlnel —|—[

with a.,, = 2yy/Tne!

+ Size of oscillation depends on ratio of coupling of resonant
state to elastic and inelastic channels



He+NH inelastic scattering resonance:
Re(a) shows small oscillation, -Im(a) shows peak
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How general is the suppression of poles?

+ Size of oscillation characterized by a...: depends on ratio of
coupling of resonant state to elastic and inelastic channels

- Consider example cases:
- Atom-atom scattering with spin exchange forbidden
» Coupling to elastic channel is via central potential terms
- Coupling to inelastic channels is via weak dipolar (spin-spin) coupling
» Resonance amplitude is strong (a,., > 10% a,): pole-like behaviour in a

10000 £
1000 =

Scattering length [a ]

i | | | | Coupled channel calculations: Kahler
10 ' ' ' — 4 et. al., PRL 94, 020402 (2005)




How general is the suppression of poles?

- Size of oscillation characterized by a...: depends on ratio of
coupling of resonant state to elastic and inelastic channels

- Consider example cases:

- Atom-atom scattering with spin exchange forbidden
» Coupling to elastic channel is via central potential terms
» Coupling to inelastic channels is via weak dipolar (spin-spin) coupling
» Resonance amplitude is strong (a,.. > 10° a,): pole-like behaviour in a

- He - NH (N=0 states) e 0wk S

» Coupling to elastic and inelastic 81

channels is indirect coupling
involving both potential energy
terms and NH spin-spin coupling tE i

+ Strengths of elastic and inelastic 2 | :
couplings are comparable, so o
resonance is weak
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What about other cases?

- Spin relaxation in non-zero rotational states of 3% molecule:
» Coupling to elastic and inelastic channels is via direct spin-spin coupling

- Strengths of elastic and inelastic couplings are comparable,
so resonance is suppressed: no pole-like behaviour in a

- He + NH (N=1): even weaker than
- Amplitude of oscillation/peak a
+ Resonance width = 100 G
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If the background scattering is inelastic,
the inelastic cross sections can go down as well as up

Crude model of Rb + OH:
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Cross section at fixed energy fluctuates as resonance crosses it:
can achieve major changes in ratio of elastic to inelastic cross sections



What about other cases?

- Rotationally and vibrationally inelastic molecular collisions

» Coupling to elastic and inelastic channels is via anisotropic
potential terms

- Strengths of elastic and inelastic couplings are comparable,
so resonance is suppressed: no pole-like behaviour in a

- Atom-atom scattering with spin exchange allowed,
- Coupling to elastic and inelastic channels is via central potential tferms

- Strengths of elastic and inelastic couplings are comparable,
so resonance will be suppressed: no pole-like behaviour in a



F + H, reactive scattering (with a barrier)
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For entrance channel resonances,
the coupling to the elastic channel
is strong but the coupling to
exoergic (reactive) channels
(through the barrier) is weak

Resonance amplitude is strong:
pole-like behaviour in a

Real part of scattering length
shows pole-like signature (peaks at
least + 100 A)

Reactive rate shows substantial
peak.

Coupled channel calculations by
Bodo et al., JPB 37, 3641 (2004)



Reactive scattering calculations on Li + Li, (barrierless)
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Reactive scattering calculations on Li + Li, (barrierless)
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- Coupling to inelastic channels is reduced by large kinetic energy release

» Weakish resonances still observed for v=1, but almost completely
suppressed for v=3



Feshbach resonance conclusions

* Inelastic scattering can strongly suppress resonant
peaks in scattering lengths and cross sections

+ For systems where resonances are very weakly coupled
to inelastic channels, there is still (nearly) a pole in the
scattering length:

- Atom-atom systems with spin exchange forbidden
e.g. for 85Rb + 85Rb in high |m,| states, inelastic scattering
comes only from very weak dipolar spin-spin interactions

- Reactive scattering in F+H,: coupling to exoergic (reactive)
channels is suppressed by ﬁigh barrier
» For most molecular systems (and some atomic systems),
the peaks will be strongly suppressed.

» The suppression has important consequences for control
of quantum gases

* When resonances are strongly coupled to inelastic
channels, cross sections are not so sensitive to details
of the potential



Who did what, and where can I find it?

* RbOH surfaces:
- Pavel Soldan (Post-doc, 2000-2005: now faculty in Prague)
- Daniel Potter (MSc student)

- Scattering:
- RbOH: John Bohn and Manuel Lara (JILA)
- PRL, 97, 183201 (2006).
- PRA 75, 012704 (2007).
- He + NH: Maykel Leonardo Gonzdlez-Martinez (Cuba)
» Formal theory, arXiv:physics/0610210
* He + NH application, PRA 75, 022702 (2007).

- Recent reviews on alkali metal dimers:

- Molecule formation in ultracold atomic gases,
Int. Rev. Phys. Chem. 25, 497 (2006)

- Molecular collisions in ultracold atomic gases,
Int. Rev. Phys. Chem. 26, 1 (2007);
arXiv:physics/0610219
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