Interactions and Collisions involving Cold Molecules

Jeremy M. Hutson University of Durham, UK

Cold molecules offer new possibilities:

- 1. Dipole moments
- 2. Long-range molecule-molecule forces
- 3. Richer energy level structure (more handles)
- 4. Two general classes:
 - i. Molecules cooled from room temperature
 - ii. Dimers formed from ultracold atoms

Point of contact between collisions and condensed matter is scattering length: passes through pole at resonance

For molecular scattering, some resonances show poles

For molecular scattering, *some* resonances show poles: others show only small oscillation

Origin of scattering length in collision theory

Quantum scattering amplitudes defined by the S matrix:

$$\psi = \psi_0^- + \sum_i S_{0i} \psi_i^+$$

• The S matrix is unitary (complex symmetric). For condensed matter we are most interested in the elastic scattering submatrix (usually a single element) S_{00}

$$S_{00} = \exp[2i\delta(k)]$$

If scattering is purely elastic, $\delta(k)$ is real.

· Scattering length a(k) related to phase shift by

$$a(k) = \frac{-\tan \delta(k)}{k} = \frac{1}{ik} \left(\frac{1 - S_{00}}{1 + S_{00}} \right)$$

In limit of low kinetic energy, a(k) is independent of E_{kin} .

Low-energy collisions characterized by scattering length

- If $E_{kin}=0$, V(R)=E at long range
- $d^2\psi/dR^2 = 0$, so wavefunction is straight line at long range, $\psi = 1-r/a$
- Scattering length a is distance where extrapolated line crosses zero

- Elastic cross section $\sigma_{el} = 4\pi\alpha^2/(1+k^2\alpha^2) \approx 4\pi\alpha^2$
- The scattering length is a measure of the overall strength of the interaction:
 - A positive scattering length corresponds to a repulsive interaction
 - A negative scattering length corresponds to an attractive interaction

Remember how Feshbach resonances work for atoms:

Atomic dimers have many bound states near threshold. Bound states (blue) and thresholds (red) have different Zeeman effects: zero-energy Feshbach resonances occur where they cross

⁸⁷Rb₂: Marte et al., 2002

We need to be able to carry out *molecular* bound state and scattering calculations in magnetic fields

 Carry out bound-state calculations as function of magnetic field: we have modified our BOUND package to handle atom + molecule bound states in magnetic fields

Prototype: bound states crossing threshold in ³He + NH

Bound states: red and green; thresholds: blue dots

We need to be able to carry out *molecular* bound state and scattering calculations in magnetic fields

- Carry out bound-state calculations as function of magnetic field: we have modified our BOUND package to handle atom + molecule bound states in magnetic fields
- Find fields at which bound states cross thresholds: these are the positions of zero-energy Feshbach resonances

Prototype: bound states crossing threshold in

Bound states: red and green; thresholds: blue dots

Resonances expected at 7169 G and 14340 G

We need to be able to carry out *molecular* bound state and scattering calculations in magnetic fields

- 1. Carry out bound-state calculations as function of magnetic field: we have modified our BOUND package to handle atom + molecule bound states in magnetic fields
- 2. Find fields at which bound states cross thresholds: these are the positions of zero-energy Feshbach resonances
- 3. Carry out scattering calculations as function of magnetic field across resonances: we have modified our MOLSCAT package to handle atom-molecule collisions in magnetic fields

Prototype: bound states crossing threshold in

Bound states: red and green; thresholds: blue dots

Resonances expected at 7169 G and 14340 G

He+NH scattering resonance 1: pole in scattering length

³He + NH: bound states crossing threshold

Bound states: red and green; thresholds: blue dots

Resonances expected at 7169 G and 14340 G

He+NH scattering resonance 2: scattering length shows small wobble, not pole

Why the difference in behaviour?

Inelastic scattering is allowed for resonance at 14340 G

Characterising resonant behaviour

• Scattering phase shift $\delta(k)$,

$$S_{00} = \exp[2i\delta(k)]$$

Across an elastic scattering resonance, the phase shift changes sharply by π

 The S matrix element describes a circle in the complex plane as the energy (or field) is tuned across resonance

Characterising resonant behaviour

 Scattering length a(k) related to phase shift by

$$a(k) = \frac{-\tan\delta(k)}{k} = \frac{1}{ik} \left(\frac{1 - S_{00}}{1 + S_{00}} \right)$$

When $S_{00} = -1$, $a(k) = \infty$: corresponds to $\delta(k)/\pi = n + \frac{1}{2}$.

He + NH inelastic scattering resonance: 5-matrix element describes *small* circle in complex plane

Elastic S-matrix element in incoming (low-energy) channel Radius depends on energy

 $E_{kin} = 1 \mu K (green); 4 \mu K (red)$

Diagonal S-matrix element in inelastic channel Radius independent of energy

Threshold behaviour

- The circle in the elastic S-matrix element S_{00} gets smaller with decreasing energy: proportional to k (i.e. $E_{\rm kin}^{1/2}$) [wavenumber k related to $E_{\rm kin}$ by $E_{\rm kin}$ = $\hbar^2 k^2/2\mu$]
- Phase shift $\delta(k)$ defined as before by

$$S_{00} = \exp[2i\delta(k)]$$

but now complex because $|S_{00}| < 1$.

· Complex scattering length a(k) related to phase shift by

$$a(k) = \alpha(k) - i\beta(k) = \frac{-\tan\delta(k)}{k} = \frac{1}{ik} \left(\frac{1 - S_{00}}{1 + S_{00}} \right)$$

• If the circle in S_{00} is small, $\delta(k)$ and a(k) show a small oscillation instead of a pole

How general is the suppression of poles?

- Radius of circle in S_{00} depends on partial widths Γ_i : Radius is $\Gamma_0/\Gamma^{tot} \approx \Gamma_0/\Gamma^{inel}$ [Γ_i is a measure of the coupling between the resonant state and open channel i]
- Partial width for elastic S-matrix element is proportional to k, Γ_0 = $2k\gamma_0$
- Partial widths for inelastic S-matrix elements are independent of k, Γ^{inel}
- · Complex scattering length is described by

$$a(B) = a_{bg} + \frac{a_{res}}{2(B - B_{res})/\Gamma^{inel} + i}$$

with $a_{res} = 2\gamma_0/\Gamma^{inel}$

 Size of oscillation depends on ratio of coupling of resonant state to elastic and inelastic channels

He+NH inelastic scattering resonance: Re(a) shows small oscillation, -Im(a) shows peak

How general is the suppression of poles?

- Size of oscillation characterized by a_{res}: depends on *ratio* of coupling of resonant state to elastic and inelastic channels
- Consider example cases:
 - Atom-atom scattering with spin exchange forbidden
 - · Coupling to elastic channel is via central potential terms
 - · Coupling to inelastic channels is via weak dipolar (spin-spin) coupling
 - Resonance amplitude is strong ($a_{res} > 10^4 a_0$): pole-like behaviour in a

Coupled channel calculations: Köhler et. al., PRL 94, 020402 (2005)

How general is the suppression of poles?

- Size of oscillation characterized by a_{res}: depends on *ratio* of coupling of resonant state to elastic and inelastic channels
- Consider example cases:
 - Atom-atom scattering with spin exchange forbidden
 - · Coupling to elastic channel is via central potential terms
 - · Coupling to inelastic channels is via weak dipolar (spin-spin) coupling
 - Resonance amplitude is strong ($a_{res} > 10^5 a_0$): pole-like behaviour in a
 - He NH (N=0 states)
 - Coupling to elastic and inelastic channels is indirect coupling involving both potential energy terms and NH spin-spin coupling
 - Strengths of elastic and inelastic couplings are comparable, so resonance is weak
 - $a_{res} \approx 9 \text{ Å}$: only small oscillation
 - · Resonance width 0.006 G

What about other cases?

- Spin relaxation in non-zero rotational states of $^3\Sigma$ molecule:
 - · Coupling to elastic and inelastic channels is via direct spin-spin coupling
 - Strengths of elastic and inelastic couplings are comparable, so resonance is suppressed: no pole-like behaviour in a
- He + NH (N=1): even weaker than for N=0
 - Amplitude of oscillation/peak a_{res} is only 1.2 Å
 - Resonance width ≈ 100 G

If the background scattering is inelastic, the inelastic cross sections can go down as well as up

Cross section at fixed energy fluctuates as resonance crosses it: can achieve major changes in ratio of elastic to inelastic cross sections

What about other cases?

- Rotationally and vibrationally inelastic molecular collisions
 - Coupling to elastic and inelastic channels is via anisotropic potential terms
 - Strengths of elastic and inelastic couplings are comparable, so resonance is suppressed: no pole-like behaviour in a
- Atom-atom scattering with spin exchange allowed,
 - Coupling to elastic and inelastic channels is via central potential terms
 - Strengths of elastic and inelastic couplings are comparable, so resonance will be suppressed: no pole-like behaviour in a

F + H₂ reactive scattering (with a barrier)

- For entrance channel resonances, the coupling to the elastic channel is strong but the coupling to exoergic (reactive) channels (through the barrier) is weak
- Resonance amplitude is strong: pole-like behaviour in a
- Real part of scattering length shows pole-like signature (peaks at least ± 100 Å)
- Reactive rate shows substantial peak.

Coupled channel calculations by Bodo et al., JPB 37, 3641 (2004)

Reactive scattering calculations on Li + Li₂ (barrierless)

Elastic cross sections as function of potential scaling factor λ σ_{el} for v=0 shows large peaks due to poles in scattering length

Reactive scattering calculations on Li + Li₂ (barrierless)

Elastic cross sections for vibrationally excited Li_2 as function of potential scaling factor λ

- Coupling to inelastic channels is reduced by large kinetic energy release
- Weakish resonances still observed for v=1, but almost completely suppressed for v=3

Feshbach resonance conclusions

- Inelastic scattering can strongly suppress resonant peaks in scattering lengths and cross sections
- For systems where resonances are very weakly coupled to inelastic channels, there is still (nearly) a pole in the scattering length:
 - Atom-atom systems with spin exchange forbidden e.g. for ^{85}Rb + ^{85}Rb in high $|\text{m}_{\text{f}}|$ states, inelastic scattering comes only from very weak dipolar spin-spin interactions
 - Reactive scattering in F+H₂: coupling to exoergic (reactive) channels is suppressed by high barrier
- For most molecular systems (and some atomic systems), the peaks will be strongly suppressed.
- The suppression has important consequences for control of quantum gases
- When resonances are strongly coupled to inelastic channels, cross sections are not so sensitive to details of the potential

Who did what, and where can I find it?

- RbOH surfaces:
 - Pavel Soldán (Post-doc, 2000-2005: now faculty in Prague)
 - Daniel Potter (MSc student)
- Scattering:
 - RbOH: John Bohn and Manuel Lara (JILA)
 - PRL, 97, 183201 (2006).
 - PRA 75, 012704 (2007).
 - He + NH: Maykel Leonardo González-Martínez (Cuba)
 - Formal theory, arXiv:physics/0610210
 - He + NH application, PRA 75, 022702 (2007).
- Recent reviews on alkali metal dimers:
 - Molecule formation in ultracold atomic gases, Int. Rev. Phys. Chem. 25, 497 (2006)
 - Molecular collisions in ultracold atomic gases, Int. Rev. Phys. Chem. 26, 1 (2007); arXiv:physics/0610219