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Three-body interactions
Many-body interaction potential

- Hamiltonians in condensed matter are effective Hamiltonains 
  after integrating out high energy excitations

  

two-particle
interaction

three-body
interaction

Veff ({ri}) =
1
2

∑

i !=j

V (ri − rj) +
1
6

∑

i !=j !=k

W (ri, rj , rk) + . . .

Application

- Pfaffian wave function of fractional 
  quantum Hall state (More and Read, ‘91)

- exchange interactions in spin systems:
  microscopic models exotic phases
  (Moessner and Sondi, ’01, Balents et al., ’02, 
   Moutrich and Senthil ‘02)

- string nets: degenerate Hilbertspace for 
  loop gases (Fidowski, et al, ‘06)

Route towards
exotic and topological

phases?



Three-body interactions

Goal

- large interaction strengths

- independent control of two- and 
  three-body interaction

Extended Bose-Hubbard models

- hardcore bosons

hopping energy two-body interaction three-body interaction

H = −J
∑

〈ij〉

b†i bj +
1
2

∑

i #=j

Uijninj +
1
6

∑

i #=j #=k

Wijkninjnk.

Realizable with 
polar molecules

1D phase diagram

n = 2/3

n = 1/3

n = 1/2

µ/W

J/W



- electronic excitations
      

- vibrational excitations

      
- rotational excitations

- electron spin
- nuclear spin

Polar molecules
Hetronuclear Molecules

+

− dipole 
moment

Polar molecules in the  
electronic, vibrational, and
rotational ground state

- permanent dipole 
  moment:

- polarizable with static electric
  field, and microwave  fields

Strong dipole-dipole 
interactions tunable with 

external fields

ea0 ≈ 2.5Debye

∼ 1015Hz

∼ 1013Hz

∼ 1010Hz

V (r) =
d1d2

r3
− 3

(d1r) (d2r)
r5

d ∼ 1−9 Debye



Particles in an optical lattice

- lattice spacing

- recoil energy

Pseudo-potential

- dominant interaction in 
  atomic gases

Interaction energies

Magnetic dipole moment

- Chromium atoms with 

Electric dipole moment

- LiCs hetronuclear molecule

- increased by factor

on-site 
interaction

nearest-neighbor
interaction

a = λ/2 ∼ 500nm

Er =
2!2π2

mλ2

ah.o ∼ 0.2a- size of Wannier function

U ∼ 0.5Er
present but 

small

U ∼ 0.5Er

d ∼ 6.5Debye

U1 ∼ 10−3Er

U1 ∼ 30Er
U ∼???

m ∼ 6µB

1/α2 ∼ (137)2
(a/ah.o)3U1



AMO- solid state interface

- solid state quantum processor
- molecular quantum memory
  (P. Rabl, D. DeMille, J. Doyle, M. Lukin, 
  R. Schoelkopf and P. Zoller, PRL 2006)

Polar molecules

YY
 ZZ

XX

Cooper Pair Box
(superconducting qubit)

molecular ensembles
(quantum memory)

Spin toolbox 

- polar molecules with spin
- realization of Kitaev model
  (A. Micheli, G. Brennen, P. Zoller, 
  Nature Physics 2006)



Experimental status
- Polar molecules in the rotational and 
  vibrational ground state
- cooling and trapping techniques
  beeing developement:

- bosonic molecules with closed
  electronic shell, e.g., SrO, RbCs, LiCs

Polar molecules

Raman laser /
spontaneous emission

rotational and vibrational 
ground state

- cooling of polar molecules:
  e.g. stark decelerator
  
  D. DeMille, Yale
  J. Doyle, Harvard 
  G. Rempe, Munich
  G. Meijer, Berlin
  J. Ye, JILA

- photo association
  see J. Ye’s talk
  (all cold atom labs)



Crystalline phases

- long range dipole-dipole 
  interaction
- interaction energy exceeds 
  kinetic energy

Polar molecules

Three-body interaction

- extended Hubbard models
- tunable three-body interaction



Polar molecule

Low energy description

- rigid rotor in an electric field

}N = 1

N = 2

N = 0

- anharmonic spectrum
- electric dipole transition

- microwave transition frequencies
- no spontaneous emission

Accessible via microwave

dipole 
moment

rotation of 
the molecule

: angular momentum

: dipole operator



Interaction between polar molecules

Hamiltonian

Without external drive

-  van der Waals 
   attraction 
   

kinetic
energy

trapping
potential

rigid 
rotor

electric 
field

interaction 
potential

Static electric field

- internal Hamilton

- finite averaged dipole moment



Dipole-dipole interaction
Dipole-dipole interaction

- anisotropic interaction
- long-range 

- Born-Oppenheimer  
  valid for:

Instability in the 
many-body systemattraction

- collaps of the system for 
  increasing dipole interaction
- roton softening
- supersolids? 
  (Goral et. al. ‘02, L. Santos et al. ‘03, Shlyapnikov ‘06)

Stability:

- strong interactions

- confining into 2D
  by an optical lattice

repulsionattraction

confining 
potential

oscillator 
wavefunction

z

a⊥{



Stability via transverse confining
Effective interaction

- interaction potential with 
  transverse trapping potential

- characteristic 
  length scale

- potential barrier: 
  larger than kinetic energy

V (r) = D

[

1

r3
− 3

z2

r5

]

+
mω2

z

2
z
2

Tunneling rate:

- semi-classical rate
  (instanton techniques)

- Euclidean action of the 
  instanton trajectory

Γ = A exp (−SE/h̄)

SE = h̄

(

Dm

h̄
2
a⊥

)2/5

C

attempt frequency
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R l/
!

z l/ !

1

0

1

0.5

V R z l D( , ) /3!

{1.5

numerical
factor: bound 

states

kinetic
 energies



Hamiltonian
- polar molecules confined into a 
  two-dimensional plane

Crystalline phase
interaction 
strength:

rd =
Eint

Ekin

=
Dm

!2a

rd = 1− 300

Kosterlitz-Thouless 
transition

Quantum melting
(H.P. Büchler, E. Demler, M. Lukin, A. Micheli, 
G. Pupillo, P. Zoller, PRL 2007)

- indication of a first order transition

- critical interaction strength

First order melting 
(Kalida ‘81)

rd ≈ 20



Three-body interactions

H.P. Büchler, A. Micheli, and P. Zoller
cond-mat/0703688 (2007).

Veff ({ri}) =
1
2

∑

i !=j

V (ri − rj) +
1
6

∑

i !=j !=k

W (ri, rj , rk) + . . .



shifted away by  
external DC/AC 
fields

Single polar molecule

Ω

|g〉

∆
|e, 1〉

|e, 0〉

|e,−1〉

Mircowave field

- coupling the state       and

- restrict to two states
- ignore influence of
- rotating wave approximation
  

|g〉 |e, 1〉

: detuning
: rabi frequency

∆
Ω

Static electric field

- along the z-axes
- splitting the degeneracy of the first 
  excited states degeneracy
- induces finite dipole moments

dg = 〈g|dz|g〉
de = 〈e, 1|dz|e, 1〉

|e,−1〉

- anharmonic spectrum
- electric dipole transition

- microwave transition frequencies
- no spontaneous emission



Many-body Hamiltonian

H =
∑

i

p2
i

2m
+

∑

i

Vtrap(ri) +
∑

i

H(i)
0 + Hstat

int + Hex
int

Many-body Hamiltonian

- dipole-Dipole interaction
- restriction to the two 
  internal states:

|g〉i |e, 1〉i

{{
- external potentials:

- trapping potential
- optical lattices

Two-level System

- rotating wave approximation

-  two-level system in an effective 
   magnetic field

H(i)
0 =

1
2

(
∆ Ω
Ω −∆

)
= hSi

-  two eigenstates

    and energies

|+〉i = α|g〉i + β|e, 1〉i

|−〉i = −β|g〉i + α|e, 1〉i

E± = ±
√

Ω2 + ∆2/2



Dipole-dipole interaction

Hstat
int =

1
2

∑

i !=j

Dν (ri − rj) [ηgPi + ηeQi] [ηgPj + ηeQj ]

Hex
int = −1

2

∑

i !=j

D

2
ν(ri − rj)

[
S+

i S−j + S+
j S−i

]

ν(r) =
1− cos θ

r3

Induced dipole moments

-

Microwave photon exchange

- D = |〈e, 1|d|g〉|2 ≈ d2/3

ηd,g = de,g/
√

D

dipole-dipole 
interaction

Pi = |g〉〈g|i

Qi = |e, 1〉〈e, 1|i



Born-Oppenheimer potentials

Effective interaction

(i)  diagonalizing the internal Hamiltonian 
     for fixed interparticle distance         .

(ii) The eigenenergies 
     describe the Born-Oppenheimer
     potential a given state manifold.

(iii)  Adiabatically connected to the
groundstate

“weak” dipole interaction

{ri}

∑

i

H(i)
0 + Hstat

int + Hex
int

E({ri})

|G〉 = Πi|+〉i

interparticle 
distanceD√

∆2 + Ω2
= R3

0 " a3

ri − rjR0



Born-Oppenheimer potential

E(1)({ri}) =
1
2
λ1

∑

i !=j

Dν(ri − rj)

λ1 =
(
α2ηg + β2ηe

)2 − α2β2

Veff(r) = λ1
1− 3 cos θ

r3
dipole-dipole 
interaction:

First order perturbation

- 

- 

E(1)({ri}) = 〈G|Hex
int + Hstat

int |G〉
|G〉 =

∏

i

(α|g〉i + β|e, 1〉1)

Dimensionless coupling parameter
 
-

- tunable by the external electric field
  and the ratio            . 

dE/B
Ω/∆

- for a magic rabi frequency the 
  dipole-dipole interaction vanishes

λ1 = 0



Born-Oppenheimer potential

Second order perturbation

M = αβ
[(

α2ηg + β2ηe

)
(ηe − ηg) + (β2 − α2)/2

]

N = α2β2
[
(ηe − ηg)

2 + 1
]

E(2) ({ri}) =
∑

k !=i !=j

|M |2√
∆2 + Ω2

D2ν (ri − rk) ν (rj − rk)

+
∑

i !=j

|N |2√
∆2 + Ω2

[Dν (ri − rj)]
2

: three-body   
  interaction

: repulsive two-body 
  interaction 

Matrix elements

- 



Effective Hamiltonian
Effective interaction

- two-body interaction

- three-body interaction

- validity is restricted to

Veff ({ri}) =
1
2

∑

i !=j

V (ri − rj) +
1
6

∑

i !=j !=k

W (ri, rj , rk)

V (r) = λ1D ν (r) + λ2DR3
0 [ν (r)]2

W (r1, r2, r3) = γ2R
3
0D [ν(r12)ν(r13) + ν(r12)ν(r23) + ν(r13)ν(r23)]

interparticle 
distanceD√

∆2 + Ω2
= R3

0 " a3

(i) transverse confining 
    into 2D

(ii) vanishing dipole-dipole 
     interaction

0 1 2 3 4

0

+1.5

R l/
!

z l/ !

1

0

1

0.5

V R z l D( , ) /3!

{1.5



Bose-Hubbard 
model



Hubbard model

Extended Bose-Hubbard models

- hardcore bosons

hopping energy two-body interaction three-body interaction

- interaction parameters
  for strong optical lattices Uij = V (Ri −Rj) Wijk = W (Ri,Rj ,Rk)

Polar molecule: LiCs: 

- dipole moment

- hopping energy

d ≈ 6Debye
- lattice spacing:

- nearest neighbor 
  interaction:

J/Er ∼ 0− 0.5

λ ≈ 1000 nm

W/Er ∼ 30 (R0/aL)
3

U/Er ∼ 30

Er ≈ 1.4 kHz

H = −J
∑

〈ij〉

b†i bj +
1
2

∑

i #=j

Uijninj +
1
6

∑

i #=j #=k

Wijkninjnk.



Hubbard model
Three-body interaction

- next-nearest neighbor terms

Wijk = W0

[
a6

|Ri −Rj |3|Ri −Rk|3 + perm

]



Supersolids on a triangular lattice

H = −J
∑

〈ij〉

b†i bj +
1
2

∑

i #=j〉

Uijninj

Uij ∼
1

|i− j|3 : static electric field
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Supersolid hardcore bosons on the triangular lattice

Stefan Wessel(1) and Matthias Troyer(2)
(1)Institut für Theoretische Physik III, Universität Stuttgart, 70550 Stuttgart, Germany and

(2)Theoretische Physik, ETH Zürich, CH-8093 Zürich, Switzerland
(Dated: May 18, 2006)

We determine the phase diagram of hardcore bosons on a triangular lattice with nearest neighbor
repulsion, paying special attention to the stability of the supersolid phase. Similar to the same model
on a square lattice we find that for densities ρ < 1/3 or ρ > 2/3 a supersolid phase is unstable and
the transition between a commensurate solid and the superfluid is of first order. At intermediate
fillings 1/3 < ρ < 2/3 we find an extended supersolid phase even at half filling ρ = 1/2.

PACS numbers:

Next to the widely observed superfluid and Bose-
condensed phases with broken U(1) symmetry and “crys-
talline” density wave ordered phases with broken trans-
lational symmetry, the supersolid phase, breaking both
the U(1) symmetry and translational symmetry has been
a widely discussed phase that is hard to find both in
experiments and in theoretical models. Experimentally,
evidence for a possible supersolid phase in bulk 4He has
recently been presented [1], but the question of whether
a true supersolid has been observed is far from being set-
tled [2, 3], leaving the old question of supersolid behavior
in translation invariant systems [4, 5] unsettled for now.

More precise statements for a supersolid phase can be
made for bosons on regular lattices. It has been pro-
posed that such bosonic lattice models can be realized
by loading ultracold bosonic atoms into an optical lattice,
where the required longer range interaction between the
bosons could be induced by using the dipolar interaction
in chromium condensates [6], or an interaction mediated
by fermionic atoms in a mixture of bosonic and fermionic
atoms [7]. With the recent realization of a Bose-Einstein
condensate (BEC) in Chromium atoms [8], these exper-
iments have now become feasible, raising the interest in
phase diagrams of lattice boson model, and particularly
in the stability of supersolids on lattices.

The question if a supersolid phase is a stable ther-
modynamic phase for lattice boson models has been
controversial for many years. Analytical calculations
using mean-field and renormalization group methods
[9, 10, 11, 12] have predicted supersolid phases for many
models, including for the simplest model of hardcore
bosons with nearest neighbor repulsion on a square lat-
tice with Hamiltonian

H = −t
∑

〈i,j〉

(

a†
iaj + a†

jai

)

+ V
∑

〈i,j〉

ninj − µ
∑

i

ni, (1)

where a†
i (ai) creates (destroys) a particle on site i,

t denotes the nearest-neighbor hopping, V a nearest-
neighbor repulsion, and µ the chemical potential. Sub-
sequent numerical investigations using exact diagonal-
ization and quantum Monte Carlo (QMC) algorithms
[13, 14, 15, 16, 17] have shown that for this model, the

0 0.1 0.2 0.3 0.4 0.5
t/V

0

0.2

0.4

0.6

0.8

1

! superfluid

solid !=2/3

solid !=1/3

supersolid

PS

PS

PS

PS

FIG. 1: Zero-temperature phase diagram of hardcore bosons
on the triangular lattice in the canonical ensemble obtained
from quantum Monte Carlo simulations. The regions of phase
separation are denoted by PS. The insets exhibit the density
distribution inside the solid phases for ρ = 1/3 (lower panel),
and ρ = 2/3 (upper panel).

supersolid phase is unstable and phase separates into su-
perfluid and solid domains at a first order (quantum)
phase transition. Recently, this occurrence of a first or-
der phase transition was explained by showing that a
uniform supersolid phase in a hardcore boson model is
unstable towards the introduction of domain walls, low-
ering the kinetic energy of the system by enhancing the
mobility of the bosons on the domain wall [17]. In a re-
lated work it has been proposed that superfluid domain
walls might be an explanation for the experimental ob-
servation of possible supersolidity in Helium [3, 18].

To stabilize a supersolid on the square lattice, the ki-
netic energy of the bosons in the supersolid has to be
enhanced either by sufficiently reducing the on-site in-
teraction to be less than 4V [17], by adding additional
next-nearest-neighbor hopping terms [16], or by forming
striped solid phases with additional longer-ranged repul-
sions [13, 19].

In this Letter we will consider the interplay of super-
solidity and frustration by studying the hardcore boson
model (1) on a triangular lattice. In the classical limit

Quantum Monte Carlo simulations
Wessel and Troyer, PRL (2005)
Melko et al., PRB, (2006)

- supersolid close to half filling
  and strong nearest neighbor
  interactions

- stable under next-nearest
  neighbor interactions

n = 1/2
U/J ! 10



One-dimensional model next-nearest 
neighbor interactions

 Bosonization
  
- hard-core bosons
- instabilities for densities:

- quantum Monte Carlo simulations
  (in progress)

Critical phase

- algebraic correlations
- compressible
- repulsive fermions  

Solid phases

- excitation gap
- incompressible
- density-density correlations  

- hopping correlations (1D VBS)

n = 2/3 n = 1/2 n = 1/3

〈∆ni∆nj〉

〈b†i bi+1b
†
jbj+1〉

H = −J
∑

i

b†i bi+1 + W
∑

i

ni−1ni ni+1 − µ
∑

i

ni + Hn.n.n.

n = 2/3

n = 1/3

n = 1/2

µ/W

J/W



Conclusion and Outlook
Polar molecular crystal

- reduced three-body collisions
- strong coupling to cavity QED
- ideal quantum storage devices

Lattice structure

- alternative to optical lattices
- tunable lattice parameters
- strong phonon coupling: polarons

Extended Hubbard models

- strong nearest neighbor interaction
- three-body interaction

Novel quantum matter

- supersolid phases
- string nets?


