Formation and Evolution of Compact Objects in Dense Clusters

A Theory Overview

Natalia Ivanova (CITA)

KITP-UCSB
12 Jan 2009

NSs in GCs

- LMXBs's formation rate in GCs vastly exceeds that in the field (about 100 times more)
- most of known MSPs are located in GCs

Outline

NS

making them and keeping them in

LMXB
the standard formation scenario dynamical formation

MSPs
the standard formation paradigm
formation in globular clusters and the consequence for the standard paradigm
Red \& Blue GCs

Triples

NS production

- Core-collapse SNe:

Single stars mass range $\sim 8-21 M_{\circ}(Z=0.02)$ and $\sim 7-19 M_{\circ}(Z=0.001)$
Natal kick distribution (Hobbs et al 2005) : mean 3d pulsar birth velocity ~ $400 \mathrm{~km} / \mathrm{s}$

a typical cluster of 2×10^{5} M॰ would have produced ~3000 CC NSs (by present 10-11 Gyr, assuming the only mass loss from a GC through a stellar wind)
if the escape velocity $\sim 40 \mathrm{~km} / \mathrm{s}$, then 1 NS will be retained if all stars were initially single and 15 if all stars were initially in binaries

NS production

- Electron-capture SNe: degenerate ONeMg core reaches $1.38 \mathrm{M}_{\circ}$ no iron core! (Miyaji et al. 1980, Nomoto 1984, 1987, Timmes \& Woosley 1992,...) * Usual stellar evolution: a He core is massive enough to form an ONeMg core, but is less massive than is required to form a non-degenerate ONeMg core:
single stars: 7.7-8.3 $M_{\circ}(Z=0.02)$ and 6.2-6.8 $M_{\circ}(Z=0.0005)$,
in binary stars it can be from 3 to $20 M_{\circ}$
\star Accretion induced collapse of a WD
* Merger induced collapse. Might also lead to a formation of a supra-Chandrasekhar WD and accordingly to a heavy and very fast spinning NS (magnetars).

In normal stellar population, only small fraction of normal stars will experience ECS
most famous example - Crab Supernova (Kitaru et al. 2006)
Kicks are smaller than in the case of CC Sne and do not exceed $100 \mathrm{~km} / \mathrm{s}$

NS retention

assuming 40 km/s kick, a typical cluster of $2 \times 10^{5} \mathrm{M} \odot$ mass can contain as many as 200-300 NSs (even if all stars were single!),

47 Tuc type cluster ($10^{6} \mathrm{M} \odot$) ~ 1000 NSs.

So, it is possible to form and keep NSs in GCs, BUT:

Most of retained NSs in a GC are from different ECS channels.
Ratio of Core-Collapsed to ECS ~ 1 to 30-200 vs ~10 to 1 in the field.
The typical epoch when ECS NSs are formed is $5 \times 10^{7}-1.5 \times 10^{\circ}$ yr vs $2-3 \times 10^{7}$ yr for CC Nss.
Low-mass dominated NSs mass function? (as post-EC NS mass is ~1.22-1.27 M०)

Low-Mass X-ray Binaries

Compact accretors - NS or BH

RLOF Donors -
MS, RG, WD/degenerate low-mass, < 1 M○

Binary Periods:
10 minutes to ~ 100 days

Ages: ~ 0.1-10 Gyr
MT timescale $10^{7}-10^{9} \mathrm{yr}$

Credit: NASA/CXC/A.Hobart
Lx: can appear as a persistent or as a transient source. $\sim 10^{32} \mathrm{erg} / \mathrm{s}$ (in quiescence, qLMXB)
to $\sim 10^{39} \mathrm{erg} / \mathrm{s}$ (and may be more in outbursts) Can be detected in distant Galaxies in X-ray.

LMXBs in GCs

- LMXBs are dynamically formed in GCs, as their formation rate in clusters vastly exceeds that in the field (about 100 times more), 13 bright LMXBs, several quiescent LMXBs (qLMXBs) in 47 Tuc, several in other clusters (wCen, M80, NGC6440, NGC 6397,...).
- number of qLMXBs has very strong dependence upon the cluster density (Heinke et al. 2004).
- bright LMXBs preferentially reside in metal-rich cluster (3 times more likely). It was noted for our galaxy on the set of 13 LMXBs in GCs, M31-19 LMXBs, NGC4472-30 LMXBs, M82-58 LMXBs (Grindlay 1993, Belazzini et al. 1995, Kundu et al. 2003, Jordan et al. 2004).

All NS LMXBs were made in GCs? (Grindlay 1991)
action of the LMXB ulation found in GCs agains specific frequency S_{N}

LMXBs \& MSPs in GCs

~140 MSPs are currently known in GCs,
~83 in the rest of the Milky Way,
~1000 estimated to be present in the Galactic GC system

Do all NSs that were LMXBs become MSPs??

A millisecond pulsar (MSP), "recycled pulsar", is a pulsar with a rotational period in the range of about 1-10 milliseconds.
MSPs are believed to be spun up through a disk accretion in Roche lobe overflowing binaries.
Compared to young pulsars, they have low B and long spin-down times.

LMXBs: standard paradigm

Bhattacharya \& van den Heuvel (1991)
artist impression, Sky\&Telescope

Further orbit shrinkage due to tides, magnetic braking and gravitational waves in, likely, an eccentric binary

LMXBs in GCs: cheating!

SHORTCUT:
 dynamical binary formation

NS-MS LMXBs: life-time

NS-MS

Bright \& persistent for only ${t_{\text {m } \times 0} \sim \frac{1}{2} 10^{9} \mathrm{yr}}$

NS-WD LMXBs: UCXBs

- subset of low-mass X-ray binaries (LMXBs) and have periods $P<1 h$ - have a compact donor
- persistent
- believed to be related to NS recycling: half of Galactic accretion-powered millisecond X-ray pulsars are UCXBs and may be the progenitors of eclipsing binary radio pulsars with very low-mass companions
- Their relative fraction in the field is much smaller than in GCs

4U 1820-30

750 miles/sec
"Bright" $\left(L_{x}>10^{36} \mathrm{erg} / \mathrm{s}\right)$ for only $\dagger_{\text {ucxb }} \sim 10^{8} y r$

Prospective NS-MS LMXBs

There is a very narrow post-encounter parameters space that a binary can have in order to become an LMXB within the Hubble time. Almost NONE for NS-WD LMXBs...unless eccentricity pumping...

NS+RG collisions-"dynamical CE"

SPH simulations using "realistic" RG structure Collision: NS of 1.4 M。NS and RG of $0.9 M_{\circ}$ (core $0.23 M_{\circ}$) at 3.8 R。

Lombardi et al. (2006)

Physical collisions of NS and RG

- constant merger time for a 1.4 M。NS and a $0.25 \mathrm{M}_{\circ}$ WD, as function of postcollision eccentricity e and a.
- Data points from SPH results.
- Data point size indicates likelihood of collision (symbols for less evolved RGs are larger).
- The hatched area shows how the merger time changes for slightly different binary masses: the upper boundary corresponds to a $1.5 \mathrm{M}_{\circ}$ NS with a $0.45 \mathrm{M}_{\circ}$ WD, and the lower boundary corresponds to a $1.3 \mathrm{M}_{\circ}$ NS with a $0.15 M_{\circ}$ WD.

$$
e_{f}=0.88-p /\left(3 R_{R G}\right)
$$

$$
a_{f}=p /\left(3.3\left(1-e_{f}^{2}\right)\right)
$$

LMXBs: formation rates

Terzan 5
NS-MS: ~ 2-4/Gyr now
~50 in 11 Gyr

NS-WD: ~ 10/Gyr
~ 150 till 11 Gyr

To predict the observed numbers, one needs not only the formation rates, but also the lifetimes!

LMXBs life-times

UCXBs (NS-WD)

NS-MS

Bright \& persistent for only $\dagger_{\text {ucx0 }} \sim \frac{1}{2} 10^{9} \mathrm{yr}$

most time in quiescence

Top: WD masses: middle: X-ray luminosity bottom: binary period [minutes]

LMXBs: rates

Terzan 5

NS-MS: ~2-4/Gyr now,

$$
\tau_{\mathrm{p}} \sim 0.2-0.5 \mathrm{Gyr}, \tau_{\mathrm{Tot}} \sim 2-3 \mathrm{Gyr}
$$

~50 in 11 Gyr
can have 4-12 qLMXBs
NS-WD: ~ 10/Gyr; $\tau_{\mathrm{p}}^{\sim 0.1 ~ G y r}$
~ 150 till 11 Gyr
1 bright UCXBs is observed can have several very faint qLMXBs
observed: 13 qLMXBs candidates
33 MSPs is observed, maximum 60 is estimated by LF
(Ransom et al. 2007)

UCXBs do NOT produce radio MSPs!

bMSPs in field

LMXBs -

 triangle symbols (accreting MSPs) and star symbols
Deloye (2008)

Accretion powered bMSP SWIFT J1756.9-2508

Krimm et al. 2007:

- 5.5 ms
- orbital period 54.7 m
- minimum mass companion 0.0067-0.0086 M○
- maximum mass companion 0.03 M®
- 13 days outburst, no earlier outbursts found in archival data
was NOT detected in radio neither during the outburst, or later (Possenti et al 2007, Hessels et al 2007)

It is likely that dozens of MSPs, that did not turn on yet in radio, sit in GCs and could be detected only in outbursts OR as single MSPs if their binary was destroyed

Red \& Blue

LMXBs preferentially reside in metal-rich cluster (3 times more likely). Was noted for our galaxy on the set of 13 LMXBs in GCs, M31-19 LMXBs, NGC4472-30 LMXBs, M82-58 LMXBs, ... (Grindlay 1993, Belazzini et al. 1995, Kundu et al. 2003, Jordan et al. 2004, Kim et al. 2006, Kundu et al. 2007). In NGC 1399, LMXBs are preferentially in the reddest clusters of the metal rich GCs.

- IMF is different? (Grindlay 1993)

No, IMF is fairly universal (Kroupa 2002). In fact, metal-poor cluster produce MORE NSS.

- Stellar radii are different -> affect encounters rate? (Belazzini et al. 1995)

Gives only about 30\% increase, far from 3 fold...(Maccarone et al. 2004)

- Lifetimes of LMXBs are shortened due to irradiation induced winds? (Maccarone et al. 2004)

This model predicts harder X-ray spectra in BGC LMXBs than RGC LMXBs, because of the extra absorption by accreting materials in BGC LMXBs. However the comparison the X-ray spectral hardness/absorption of LMXBs in red and blue clusters reveals no difference (Kim et al. 2006).

Red \& Blue LMXBs

- persistent
- transient

Bica et al. 2006

Red \& Blue LMXBs

LMXBs preferentially reside in metal-rich cluster (3 times more likely). Was noted for our galaxy on the set of 13 LMXBs in GCs, M31-19 LMXBs, NGC4472-30 LMXBs, M82-58 LMXBs, ... (Grindlay 1993, Belazzini et al. 1995, Kundu et al. 2003, Jordan et al. 2004, Kim et al. 2006, Kundu et al. 2007). In NGC 1399, LMXBs are preferentially in the reddest clusters of the metal rich GCs.

- IMF is different? (Grindlay 1993)

No, IMF is fairly universal (Kroupa 2002). In fact, metal-poor cluster produce MORE NSs.

- Stellar radii are different -> affect encounters rate? (Belazzini et al. 1995)

Gives only about 30% increase, far from 3 fold...(Maccarone et al. 2004)

- Lifetimes of LMXBs are shortened due to irradiation induced winds? (Maccarone et al. 2004)

This model predicts harder X-ray spectra in BGC LMXBs than RGC LMXBs, because of the extra absorption by accreting materials in BGC LMXBs. However the comparison the X-ray spectral hardness/absorption of LMXBs in red and blue clusters reveals no difference (Kim et al. 2006).

- in metal-poor clusters, due to the absence of the outer convective zone, a formed NS-MS LMXB seen only in quiescence? (Ivanova 2005). UCXBs are seen!

Observations in metal-poor GCS are required to find out whether they have NS-MS qLMXBs

Red \& Blue LMXBs

LMXBs preferentially reside in metal-rich cluster (3 times more likely). Was noted for our galaxy on the set of 13 LMXBs in GCs, M31-19 LMXBs, NGC4472-30 LMXBs, M82-58 LMXBs, ... (Grindlay 1993, Belazzini et al. 1995, Kundu et al. 2003, Jordan et al. 2004, Kim et al. 2006, Kundu et al. 2007). In NGC 1399, LMXBs are preferentially in the reddest clusters of the metal rich GCs.

- IMF is different? (Grindlay 1993)

No, IMF is fairly universal (Kroupa 2002). In fact, metal-poor cluster produce MORE NSS.

- Stellar radii are different -> affect encounters rate? (Belazzini et al. 1995)

Gives only about 30% increase, far from 3 fold...(Maccarone et al. 2004)

- Lifetimes of LMXBs are shortened due to irradiation induced winds? (Maccarone et al. 2004)

This model predicts harder X-ray spectra in BGC LMXBs than RGC LMXBs, because of the extra absorption by accreting materials in BGC LMXBs. However the comparison the X-ray spectral hardness/absorption of LMXBs in red and blue clusters reveals no difference (Kim et al. 2006).

- in metal-poor clusters, due to the absence of the outer convective zone, a formed NS-MS LMXB seen only in quiescence? (Ivanova 2005). UCXBs are seen!

Observations in metal-poor GCS are required to find out whether they have NS-MS qLMXBs

- IMF IS different!?

Dense metal-rich proto-GC, due to larger optical thickness, might have higher Jeans mass (Murray08)

Red \& Blue LMXBs

LMXBs preferentially reside in metal-rich cluster (3 times more likely). Was noted for our galaxy on the set of 13 LMXBs in GCs, M31-19 LMXBs, NGC4472-30 LMXBs, M82-58 LMXBs, ... (Grindlay 1993, Belazzini et al. 1995, Kundu et al. 2003, Jordan et al. 2004, Kim et al. 2006, Kundu et al. 2007). In NGC 1399 LMXBs are nreferentiallv in the reddest clustens of the metal rich GCs

- IMF Ivanova et al. 2008 suggested diagnostics:

N II Winds (Maccarone) favor the same number of MSPs formation but no qLMXBs

- Stell

Failed MB (Ivanova) favors the same MSPs \& qLMXB formation rates

- Lifet

If no MSPs \& no qLMXBs are present, IMF (Murray)
BFs measurements in halos could also provide a key
a.
harahess/absorption of LMXBE in rea and blue cIusters reveals no alfference (KIm ef al. ZUOV).

- in metal-poor clusters, due to the absence of the outer convective zone, a formed NS-MS LMXB seen only in quiescence? (Ivanova 2005). UCXBs are seen!

Observations in metal-poor GCS are required to find out whether they have NS-MS qLMXBs

- IMF IS different!?

Dense metal-rich proto-GC, due to larger optical thickness, might have higher Jeans mass (Murray08) -Primordial binary fraction is different???

At least some metal-poor GCs seem to have extremely low primordial BF, lower than in metal-rich GC

Red \& Blue

II Winds (Maccarone) favor the same number of MSPs formation but no qLMXBs
Failed MB (Ivanova) favors the same MSPs \& qLMXB formation rates
If no MSPs \& no qLMXBs are present, IMF (Murray)

Red \& Blue: qLMXBs \& MSPs

[$\mathrm{Fe} / \mathrm{H}]$

$\cdot 0.00$	Terzan 5
$\cdot-0.34$	NGC 6440
$\cdot-0.59$	NGC 6304
$\cdot-0.60$	NGC 6388
$\cdot-0.76$	47 Tuc (NGC 104)
$\cdot-0.96$	NGC 6652

--1.15
--1.29
--1.45
--1.54
--1.61
--1.62
--1.75
--1.95

- 2.12
--2.26
Terzan 5
NGC 6440
NGC 6304

47 Tuc (NGC 104)
NGC 6652

NGC 2808
NGC 6266
M28 (NGC 6626)
M13 (NGC 6205)
GLIMPSE-C01

M80 (NGC 6093)
NGC 6397
M30 (NGC 7099)
M15 (NGC 7078)
omega Cen (NGC 5139) 1 qLMXB (likely MS) 3 qLMXB candidates 5 qLMXB candidates 1 qLMXB, 1 bright

1 qLMXB

1 qLMXB
1 qLMXB
1 qLMXB candidate
2 qLMXB candidates
1 qLMXB (ultracompact?)
1 qLMXB
1 qLMXB (very faint) (2 bright)

12 qLMXB candidates (1 br trans)
33 MSPs 8 qLMXB candidates, 1 bright 6 MSPs 5 qLMXBs (2 are likely MS) 23 MSPs

5 qLMXB candidates 5 MSPs

$\Gamma / \Gamma_{47 \mathrm{Tuc}}$

~2.5 Wijnands et al. 2005, Heinke et al. 2006. ~2 Pooley et al. 2002, Heinke et al. 2003.
~0.1 Guillot et al. 2009.
~3 Maxwell et al. 2008, BAAS proceeding
1
0.1 Heinke et al. 2001.
~1 Servillat et al. 2008.
~1.4(CC) Pooley et al. 2003.
12 MSPs ~0.25 Becker et al. 2003
5 MSPs ~0.1 Gendre et al. 2003b.
Pooley et al. 2007.
~0.1 Rutledge et al. 2003, Gendre et al. 2003, Haggard et al. 2004.
~0.6 Heinke et al. 2003b.
1 MSPs ~ 0.01 (CC) Grindlay et al. 2001b.
2 MSPs ~0.04(CC) Lugger et al. 2007.
8 MSPs ~0.3(CC) Heinke et al. 2009.

Tests of the metallicity dependence of cluster qLMXBs are inconclusive at this time (Heinke)

Red \& Blue LMXBs

O - persistent
O-transient

Bica et al. 2006

NGC 6623: 4U 1820-303

- Binary orbital period is ~685s (Stella, Priedhorsky \& White 1987; Anderson et al. 1997).
- Secondary star is a He WD 0.06-0.08 M○ (Rappaport 1987).
- Stability of the period of $\operatorname{Pdot} / \mathrm{P}=(3.5+-1.5) 10^{-8} \mathrm{yr}^{-1}$ makes certain that 685 s period is the orbital period (Chou \& Grindlay 2001).
- Formation scenario of 4U 1820-303 is a direct collision of a neutron star and a giant (Verbunt 1987; Ivanova et al. 2005).
$4 \cup$ 1820-303 has the luminosity variation by a factor of ~ 2 at a superorbital period P~170d (Chou \& Grindlay 2001).
- X-ray busts take place only at the flux minima \Rightarrow the observed variability is due to intrinsic luminosity/accretion rate changes and not obscuration or changes of the projected area of the source due to precession.
- Ratio between superorbital and orbital periods (~22000) is too high for any kind of the disk precession at the mass ration of the system (Larwood 1998; Wijers \& Pringle 1999).

a hierarchical triple?

(Chou \& Grindlay 2001)

- The third body mass < $0.5 \mathrm{M} \odot$, based on the lack of its optical detection.
- The third body orbital period $P_{\text {out }} \sim 1.1 d$

In a hierarchical triple, a distant third body exerts tidal forces on the inner binary. As a result, there is a cyclic exchange of the angular momentum between inner binary and third body, causing variations in the eccentricity and inclination of the stars orbits (Kozai 1962; Ford, Kozinsky \& Rasio 2000; Blaes, Lee \& Socrates 2001).

NGC 6623: 4U 1820-303

Prodan \& Murray 2008:

- perturbation from a third body on a longer period orbit
-the quadrupolar distortion of stars due to their intrinsic spins
-the further quadrupolar distortion due to their mutual gravity
-tidal friction in the equilibrium tide approximation
- General Relativity
- mass transfer
-gravitational radiation
Initial parameters are: $\quad M_{1}=1.29 \mathrm{M} \odot$ (primary NS), $\boldsymbol{M}_{2}=0.07 \mathrm{M} \odot$ (secondary WD), $\boldsymbol{M}_{3}=0.5 \mathrm{M} \odot$, $\boldsymbol{e}_{\text {in }}=0.0001, \boldsymbol{e}_{\text {out }}=0.0001, i=40^{\circ} .044$ (initial mutual inclination), $a_{\text {out }}=8.66 a_{\text {in }}=1.6 \mathrm{R} \odot$ (outer binary semi-major axis), $P_{\text {out }}=4.1 \mathrm{~h}$ a companion is not a MS star

This model reproduces observed $\boldsymbol{P}_{\text {super }}=170 \mathrm{~d}$ and $\boldsymbol{e}_{\max }=0.004$.

NGC 6623: 4U 1820-303

dynamical tides are mandatory to
bring $\boldsymbol{e}_{\text {out }}$ down!
$P_{\text {out }}<1.6 \mathrm{~d}$
$\boldsymbol{e}_{\text {out }}<0.8$

Triples: formation rate

A typical cluster has about 5000 hier. stable triples formed throughout its evolution

$$
\begin{gathered}
\Delta N_{\mathrm{tr}} / \mathrm{N}_{\mathrm{bin}} \approx 0.05 \mathrm{f}_{\mathrm{b}}<\mathrm{m}_{\mathrm{b}}><\mathrm{a}>\text { per Gyr } \\
\text { At } 10 \mathrm{Gyr}:<m_{\mathrm{b}}>\approx 1.0 \mathrm{M}_{\odot},<\mathrm{a}>\approx 10 \mathrm{R}_{\odot}, \mathrm{f}_{\mathrm{b}} \approx 10 \% \\
\Delta \mathrm{~N}_{\mathrm{tr}} / \mathrm{N}_{\mathrm{bin}} \approx 5 \% \text { per Gyr } \\
\Delta \mathrm{N}_{\mathrm{tr}} \approx 600 / \mathrm{t}_{9} 1 / 3 \text { per Gyr, at ages }>1 \mathrm{Gyr} \\
\text { (for fixed } \mathrm{n}_{\mathrm{c}} \text { and } \sigma \text {) }
\end{gathered}
$$

Triples: formation rate for NS triples

$\Delta \mathrm{N}_{\mathrm{tr}, \text { ns }} / \mathrm{N}_{\mathrm{bin}, \mathrm{ns}} \approx 0.05$ per Gyr (47 Tuc-type)
$\Delta \mathrm{N}_{\mathrm{tr}, \mathrm{ns}} / \mathrm{N}_{\mathrm{bin}, \mathrm{ns}} \approx 0.15$ per Gyr (Ter 5-type)
$\sim 1 / 3$ of the are Kozai triples: $\tau_{\text {koz }}<\tau_{\text {coll }}$
Kozai mechanism causes large variations in the eccentricity and inclination of the stars orbits and could drive the inner binary of the triple system to merge before next interaction with other stars.

Kozai time-scale $\tau_{\text {koz }}$ as in Innanen et al. (1997)

NS-Triples: properties

NS-Triples: properties

Kozai triples only

NS-Triples: properties

NS-Triples: properties

Kozai triples only

NS-Triples: properties

Trenti et al 2008

NGC 6623: 4U 1820-303

Summary

- Formation rates and the population of LMXBs and MSPs in GCs are consistent with the observations. Dynamical formation of LMXBs is understood better (as it has less degrees of freedom) than the formation of LMXBs in the field
- There is no obvious red-blue dependence for the formation rates of qLMXBs
- no radio MSP is formed during UCXB evolution with a He/CO donor. An accretion-powered X-ray millisecond pulsar, for some reason, will never turn on in radio
- Triple systems with a NS are expected to be formed, though the only observed likely triple LMXB 4U 1820-303 is one of the hardest to make theoretically. Half of LMXBs were members of some hierarchically stable triples in the past
- Deep observations of metal-poor clusters, both for X-ray sources and for MSPs, are on a high demand.

