Blue Hook Stars in Globular Clusters

Andrea Dieball¹

Christian Knigge¹ Tom Maccarone¹ Knox Long² Diana Hannikainen³ Dave Zurek⁴ Mike Shara⁴

1 - University of Southampton
 2 - STSCI
 3 - Metsähovi Radio Observatory, Finland
 4 - AMNH

The Horizontal Branch

HB represents He core burning phase of stellar evolution

- He core roughly constant along HB
- Initial position determined by mass of H envelope
 M_{env} & T_{eff} sequence

Piotto et al. (2002) bimodal HB

Red HB Metal-rich, young

metal-poor, old

Blue HB

 Physical mechanism not well understood (mass loss, He abundance, ...)

The Horizontal Branch

Blue Tail (BT)

 Very small H envelopes
 mass loss (how?)
 Gaps along the BT

 BT extended to EHB

- Hotter than T_{eff} > 20,000 K (e.g. Brown et al. 2001)
- GC counterparts to field sdB star
- Do not return to AGB
- Evolve into AGB-manqué or post-early AGB stars
- Blue Hook stars
 - Hotter than canonical EHB
 - Below (fainter) the EHB sequence
 - Only very few GCs

- First detected in FUV CMD of ω Cen and NGC 2808 • FUV CMD: FUV fainter than the EHB stars \rightarrow Blue Hook • Hotter than canonical end of EHB sequence
- Fainter than hot end of EHB sequence in optical CMDs
 → Identification of BHk stars much more difficult!

NGC 2808: from FUV to V

NGC 2808: from FUV to V

- BHk stars are FUV bright \rightarrow easy to recognize
- BHk stars are optically faint → only very deep & accurate studies

How do BHk stars form?

Late He flasher scenario: (e.g. Brown et al. 2001)

- Mass loss during RGB phase prevents He flash at the tip of the RGB
- Late He flash while star is descending the WD cooling sequence
- Due to thin envelope, He is mixed into envelope and H into core (flash-mixing)
 - → Enhanced He and C abundance in envelope

(confirmed by Möhler et al. 2007)

- As a result, BHk stars are hotter (T_{eff} > 37,500 K) and fainter in the FUV than canonical EHB stars (T_{eff} ≈ 31,500 K)
- Can explain BHk stars and high temperature EHB gap in optical CMD of NGC 2808

How do BHk stars form?

He self-enrichment scenario: (e.g. Lee et al. 2005)

- EHB and BHk stars from normal evolution of Heenriched sub-populations in GCs
- Sub-populations from ejecta of first generation AGB stars
- He-enriched HB stars are bluer than normal HB stars
 of same age & metallicity (Lee et al. 1994)
- Could explain HB morphology and BHk stars in ω Cen and NGC 2808
- Also predicted multiple MS, which was later found (D'Antona et al. 2005, Piotto et al. 2007)

Is the presence of BHk stars associated with any particular cluster properties?

- He self-enrichment → only GCs that exceed a critical mass threshold
- Late He-flash → is the required mass loss due to dynamical processes, e.g. Binary interaction?

→ cluster sample in which the presence/ absence of BHk populations can be established with confidence

Only GCs with available FUV/NUV CMDs

 Only two optical studies: NGC 2419 & M 54 (Sandquist & Hess 2008, Rosenberg et al. 2004)

GC sample that could be searched for BHk poplulations

duster	[Fe/H]	$ au_{e}$ [pc]	7 bm [pc]	⁷ tidal [pc]	c	e	$lg(t_c)$	$lg(t_{hm})$	$lg(\rho_c)$	M_{tot} $[10^6 M_{\odot}]$	ve [km/s]	v _{bm} [km/s]	Г	BHB	EHB	BHk	mp
NGC2419	- 2.12	8.57	17.88	214.07	1.40	0.03	9.98	10.55	1.54	1.74	27.8	19.6	0.003	у	у	у	
NGC2808	-1.15	0.73	2.12	43.42	1.77	0.12	8.30	9.13	4.59	1.42	72.8	45.8	0.912	у	у	у	у
ω Cen	-1.62	2.16	ö .44	87.93	1.61	0.17	9.05	10.00	3.37	3.35	6 0.4	44.0	0.119	у	у	у	у
NGC6388	- 0.61	0.35	1.95	18.0 6	1.70	0.01	7.74	9.08	5.34	2.17	124.0	80.2	2.810	у	у	у	HB
M54	-1.59	0.8 6	3.82	58.24	1.84	0.0 6	8.4 6	9.62	4.58	2.59	84.5	51. 6	1.230	У	У	у	у
47Tuc	- 0.7 6	0.52	3. 6 5	5 6 .11	2.03	0.09	7. 96	9.48	4.81	1.50	6 8.8	38.0	1.000	п	п	п	(D)
NGC1851	-1.23	0.21	1.83	41.18	2.32	0.05	6 .98	8.85	5.32	0.55	51.8	24.3	0.958	У	п	п	у
M79	-1.58	0. 6 0	3.00	31.30	1.72	0.01	7.78	9.10	4.00	0.3 6	40.7	26.1	0.081	у	у	п	
M3	-1.57	1.66	3.39	115.54	1.84	0.04	8.84	9.35	3.51	0.96	37.2	22.7	0.115	у	п	п	(D)
M80	-1.77	0.44	1.89	38. 6 3	1.95	0.00	7.73	8.8 6	4.76	0.50	48.7	28.1	0.592	у	у	п	
M13	-1.54	1.75	3.34	5 6 .40	1.51	0.11	8.80	9.30	3.33	0.78	39.1	26.9	0.0 6 8	у	у	п	(D)
NGC6441	-0.53	0.37	2.18	27.23	1.85	0.02	7.77	9.19	5.25	1.57	102.0	6 2.0	2.3 6 4	у	у	п?	HB
M70	-1.52	0.08	2.44	20.71	2.50	0.01	5. 6 2	8.83	5.41	0.18	39.3	17.3	0.183	у	у	л?	
NGC6752	-1.57	0.20	2.72	6 4.40	2.50	0.04	6 .83	9.01	4.91	0.32	32.9	14.5	0.205	у	у	п	
M15	- 2.27	0.21	3.18	64.42	2.50	0.05	7.02	9.35	5.38	1.19	6 2.1	27.4	1.1 6 8	у	п	п?	(D)
NGC7099	- 2.12	0.14	2. 6 8	42. 6 8	2.50	0.01	6 .38	8.95	5.04	0.24	34.1	15.0	0.1 6 0	У	п?	п	

Brown et al. 2001; Busso et al. 2004,2007; Conelly et al. 2004; D'Alessandro et al. 2008; D'Cruz et al. 2000; Dieball et al. 2007; Dieball et al. al. in prep.; Ferraro et al. 1998; Hill et al. 1996; Knigge et al. 2002; Landsman et al. 1996; Möhler et al. 1997, 2004, 2007; Mould et al. 1996; Parise et al. 1998; Ripepi et al. 2007; Rosenberg et al. 2004; Sandquist & Hess 2008; Watson et al. 1994; Zurek et al. in prep.

Results from KS tests:

	non-BHk vs. BHk	parent vs. Harris
Mist	0.79	0.04
c	2.52	0.4 8
e	4 6 .48	27.56
[Fe/H]	7 6 .77	2 6 .23
S(RR)	7 6 .77	2 6 .20
HBR.	24.23	1 8 .10
τ_c	8.48	8.77
$ au_{how}$	10.19	42.58
autáda l	70.72	4.89
$lg(t_c)$	8.48	40.22
$lg(t_{hm})$	10.19	18.59
$lg(ho_{m{c}})$	20.05	1.12
v_c	20.05	0.04
Uhm	3.13	0.50
Г	82.45	0.09

Correlation of cluster parameter and the presence of a BHk population: cluster mass

Results – so far:

- 5 BHk cluster
- 11 non-BHk cluster
- KS test: most significant difference (> 99% confidence) in mass distribution:
- → BHk clusters also amongst most massive GCs
- → high mass associated with BHk population
- At first glance: supports He self-enrichment scenario

But what about selection effects?

- Massive clusters contain more stars
- \rightarrow detection of rare BHk stars more likely
- Low-mass GCs contain fewer stars
- → no BHk stars, even if there is no physical lower mass limit for production of BHk stars

Is there a critical cluster mass limit for BHk production?

- Location of BHk clusters in sorted, cumulative mass distribution of cluster sample
- Combine many low-mass clusters to form aggregate high-mass cluster
- → No mass limit: uniformly distributed
- → Mass limit: concentrated at high mass end

(Verbunt & Hut 1987: connection between bright LMXBs and cluster collision rate)

Is there a critical cluster mass limit for BHk production?

KS-test : ≈ 40% probability that BHk clusters are randomly selected from uniform distribution
 → no statistically significant difference!
 → no evidence for a lower mass limit for clusters capable of producing BHk stars!

Discussion:

- BHk populations have so far been found in highmass clusters
- This does not (yet!) imply a lower mass cut-off
- Apparent preference for massive GCs might be because they also have more stars
- Whether or not there exists a lower mass-limit for BHk clusters: cluster mass is a key parameter
- However: high-mass clusters without BHk
 populations do exist! (47 Tuc, NGC 6441)
- → mass is not the only parameter associated with BHk stars

Other parameters with significant differences:

	non-BHk vs. BHk	parent vs. Harris
Mtot	0.79	0.04
c i	2.52	0.46
e	46.48	27.56
[Fe/H]	76.77	26.23
S(RR)	76.77	26.20
HBR	24.23	1 6 .10
τ_c	8.48	8.77
τ_{hm}	10.19	42.58
τ_{tidal}	70.72	4.89
$lg(t_c) =$	8.48	40.22
$lg(t_{hm})$	10.19	18.59
$lg(\rho_c)$	20.05	1.12
v_c	20.05	0.04
Uhm	3.13	0.50
Г	82.45	0.09

Caution: these parameters correlate also with mass!

Is binarity a key ingredient in producing BHk stars?

- Parameters might indicate decelaration of core collapse (most likely by presence of binaries)
- EHB binaries rare, but might still be binary product
- Binary interaction might enhance mass loss
 - \rightarrow production of late He-flashers (\rightarrow BHk stars)

BHk clusters and multiple populations:

- Most BHk clusters also show multiple stellar populations (ω Cen, NGC 2808, M 54) and/or unusal HB (NGC 6388) → He self-enrichment
- However, so far no evidence for multiple populations in NGC 2419 (Sandquist & Hess 2008)

- Present cluster sample does not allow conclusion of low-mass cut-off of BHk clusters
- However: absence of evidence ≠ evidence of absence!
- Lower mass limit might exist
- Cluster sample biased towards high-mass clusters

→ available cluster sample is too small & too deficient in low-mass clusters to allow a more definitive test of critical mass hypothesis

Such a bias is to be expected: high mass clusters are usually the more promising targets for both physical and observational reasons

Summary

- BHk stars rare
- Found in only few, massive GCs
- However, present cluster sample does not (yet) allow conclusion of low-mass limit
- Most (but not all) BHk clusters also have multiple populations

But:

- not all clusters with multiple populations have BHk population (NGC 6441, NGC 1851)
- Not all massive clusters have BHk population (47 Tuc, NGC 6441)

Mass seems to be the main, but not the only parameter relevant for existence of a BHk population in a cluster

How to improve?

- Clearly need more GCs in which reliable BHk identification is possible
- More low-mass GCs
- Number of BHk stars ↔ total cluster mass

cluster	BHB	EHB	BHk	mр	#BHk
NGC2419	У	У	у		≳190
NGC2808	У	У	У	У	≳50
ωCen	у	у	у	У	$\gtrsim 25$
NGC6388	У	У	У	$_{\rm HB}$	$\gtrsim 10$
M54	У	У	У	у	≳30
47Tuc	п	п	п	(D)	
NGC1851	У	п	п	У	
M79	У	У	п		
M3	У	п	п	(D)	
M80	У	У	п		1?
M13	У	У	п	(D)	
NGC 6 441	У	У	л?	HB	4?
M70	У	У	л?		1?
NGC6752	У	У	п		
M15	У	п	л?	(D)	1
NGC7099	У	п?	п		

Dieball et al. 2009, MNRAS accepted Today on astro-ph: 0901.1309