Proper Motions at the Center of ω Cen

Jay Anderson
Roeland van der Marel
(STScl)

Cambridge,UK August 2001

Globular cluster or Dwarf Spheroidal?

Uses of Proper Motions in Globular Clusters

- Things we can measure:
- Cluster-field separation
- Fundamental distances
- Anisotropy (directly)
- Velocity distribution function (directly)
- Orbits in Galaxy
- Central IMBH
- Here: (1) measure motions
(2) fit a dynamical model

IMBHs in Globular Clusters

- Several ways to find (PMs or RVs)
- Fast moving star in orbit (smoking gun)
- Rise in velocities at center
- Either in the dispersion or in non-Gaussian wings
- Several ways to not find
- Not enough stars to sample its environs
- Nearby stars all dark, ejecting binaries
- Easiest places to look:
- Clusters with cusps \& slow velocities
- Paper by Drukier \& Bailyn 2003
- Omega Cen is not the easiest place to look
- Yet...

IMBH History

- $M-\sigma$ relation predicts $1,000-10,000 \mathrm{M}_{\text {sun }} B H$
- Detections/limits in the literature
- M15: back and forth; currently not required...
- 47 Tuc: upper limit of $1500 \mathrm{M}_{\text {sun }}$ (McLaughlin et al 2006)
- G1?
- Recent interesting result in ω Cen
- Noyola, Gebhardt \& Bergmann 2008 (NGB08)
- Detected a brightness cusp at center in ACS images
- Used an IFU at Gemini to measure velocity dispersion

They found:

$$
\begin{aligned}
& \sigma_{\mathrm{RV}}=23.0 \pm 2.0 \mathrm{~km} / \mathrm{s} \text { at center, and } \\
& \sigma_{\mathrm{RV}}=18.6 \pm 1.6 \mathrm{~km} / \mathrm{s} \text { at } 14^{\prime \prime} \text { (in-line with overall } \sigma_{\mathrm{RV}} \text { trend) }
\end{aligned}
$$

- Concluded that this could be explained by a $40,000 \mathrm{M}_{\text {sun }} \mathrm{IMBH}$
- This dispersion increase should be detectable in proper motions...

The ACS Data

2002.49

2004.95

GO-10252
PI-
Anderson
$5 \times$ F606W
$5 \times \mathrm{F} 814 \mathrm{~W}$

2006.56

PI-Sarajedini
$4 \times$ F606W
$4 \times$ F814W

Set-up

- Reference frame based on 3×3 mosaic - Gorgeous 14000×14000-pixel image

Reductions

- Automated finding routine
- Master star list of 1,164,317 stars
- Artificial-star run of 500,000 stars
- 700 in central arcsecond
- Proper motions:
- Measured unsaturated stars in each individual deep exposure
- 10 in first epoch
- 8 in second epoch
- Correct for distortion
- Carefully transform into reference frame
- Combine by epoch
- All data will be made public

CMD

Proper motions

Require a consistent positions at each epoch
0.02 pix $=1$ mas

An independent check...

Stars

 with Good Motions

Finding the Center

- Literature: no errors
- General: error ~ σ / $\sqrt{ } \mathrm{N}$
- Need to go out to at least a core radius
- For ω Cen, $r_{c}=2.5^{\prime}=150^{\prime \prime}$
- Need $\sim 22,500$ stars to get $\sigma_{\text {CEN }}$ to be $1^{\prime \prime}$
- Full coverage, no biases
- I will use three largely independent methods
- Contours
- Pie slices
- Velocity dispersion

Method 1

(A) CONTOUR PLOT

- 500×500 regions
- over 500,000 stars
- down to $\mathrm{m}_{\text {F435w }}=-9$ ($\mathrm{S} / \mathrm{N} \sim 40$)
(B) POINTS ALONG CONTOURS

(C) FITTED ELLIPSES

Method 2

 Finding thecenter using pie slices

Issue: small-number statistics of bright stars

CARDINAL

(Slices went
out to 200")

Centers agree to $\sim 2^{\prime \prime}$, so the average should be good to ~ 1 " (235,000 stars)

SEMI-CARDINAL

OVERLAP

Agree to $0.25^{\prime \prime}$ with contour center

Bored yet?

- Our center: (13:26:47.24, -47:28:46.5)
- absolute calibration from 2MASS*
- Why so much emphasis on center?
- Strong disagreement with previous centers:
- Harris catalog $\quad \Delta \alpha=-14.3^{\prime \prime} \Delta \delta=+7.5^{\prime \prime}$
- Castellani+ $2007 \Delta \alpha=-15.1^{\prime \prime} \Delta \delta=+3.6^{\prime \prime}$
- NGB08 $\Delta \alpha=-11.9^{\prime \prime} \Delta \delta=+3.6^{\prime \prime}$

Internal agreement is ~ 4",
but off by $\mathbf{\sim} 14$ " from this determination!
(For reference, $\mathrm{r}_{\mathrm{BH}} \sim 5^{\prime \prime}$ for $10,000 \mathrm{M}_{\text {SuN }}$ IMBH)

Surfacedensity profile

May not fit King model perfectly, but no need for a sharp cusp

Consistent with being flat within 20"

Turnoff

Just below TO

$S / N \sim 100$

PM Profile

Total motions of the stars in the inner 10"

Motions at the center are consistent with those
at 10 "

Velocity Profile with R

- Overall upward trend toward center
- But, it is consistent with being flat within $30^{\prime \prime}$

RADIAL DISTANCE (arcsec)

RADIAL DISTANCE (arcsec)

Back of the Envelope:

The closest star

- $\Sigma=3 / \square^{\prime \prime}$
- $\rho=0.006 /\left({ }^{\prime \prime}\right)^{3}$
- $\rho=500$ stars $/ \mathrm{pc}^{3}$
- $r_{*} \sim 0.08 \mathrm{pc}$, or 17,000 AU
- $\mathrm{v}^{2} \sim \mathrm{GM}_{\mathrm{BH}} / \mathrm{r}_{*}$
- For... $\begin{array}{ll}10,000 \mathrm{M}_{\text {SUN }} B H: & v \sim 55 \mathrm{~km} / \mathrm{s} \\ 40,000 \mathrm{M}_{\text {SUN }} B H: & v \sim 110 \mathrm{~km} / \mathrm{s}\end{array}$
- We see one star with v ~ $60 \mathrm{~km} / \mathrm{s}$
... screams out for a complete dynamical model!

Fitting a Dynamical Model

- Disclaimer
- Fit Jeans equations to:

$-\Sigma(R)$	surface-density profile	this + Trager
$-\mu(R)$	proper-motion profile	this $+v L$
$-V_{\text {l.o.s. }}(R)$	l.o.s.-velocity profile	vdV compilation
$-\beta(R)$	anisotropy profile	this $+v L$

Jeans-Model Results

- Flat $\Sigma(\mathrm{R})$ profile ok, but cusp also allowed
- depends on fitting radius: $\quad \gamma=0.00 \pm 0.07$ ($\mathrm{R}<15^{\prime \prime}$)

$$
\gamma=0.05 \pm 0.02 \text { (nuker) }
$$

- Flat central velocity slope: $-0.06 \pm 0.08 \mathrm{~km} / \mathrm{s} /{ }^{\prime \prime}$
- Anisotropy: $\sim 5 \%$ radial in core observed
- Gauss-Hermite moment $\mathrm{h}_{4}=-0.024 \pm 0.006$
- flat topped, but less extended wings
- 3 models:
- flat core + isotropy: not allowed (cen disp, h_{4})
- flat core + anistropy: no dark matter needed
- cusp + isotropy:
$10,000 \mathrm{M}_{\text {SUN }} \mathrm{BH} /$ dark matter

Future...

- More sophisticated models
- Better radial coverage $\mathrm{V}_{\text {I.o.s. }}(\mathrm{R})$ and $\Sigma(\mathrm{R})$
- Other clusters
- HRC/HRC/HRC data in hand \& coming...
- NGC2808, NGC6341, NGC6752
- HRC/WFPC2 data in hand \& coming for...
- NGC6624, NGC7078, NGC0362, NGC6681, NGC7099
- see Justice Bruursema's poster...

Historical Note

Using, van Leeuwen 2000 PMs, Ferraro et al 2002 found the RGB-a stars to be moving relative to the bulk cluster

