

School of Physics and Astronomy

A Binary Origin For Blue Stragglers in Globular Clusters

Christian Knigge 12 January 2009

School of Physics and Astronomy

The Team

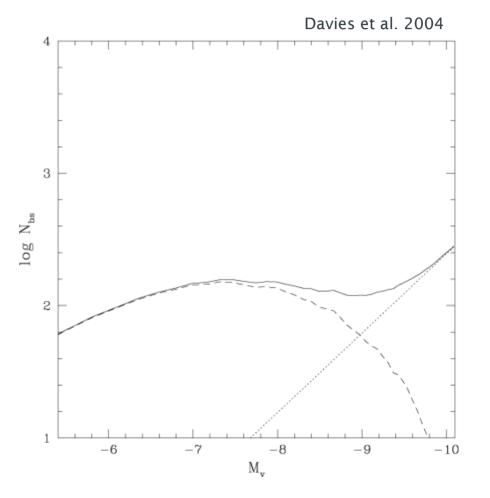
Christian Knigge (Southampton) Nathan Leigh (McMaster) Alison Sills (McMaster)

What is the dominant channel for blue straggler production in globular clusters?

(Assuming there is one...)

- The two simplest distinct formation channels are
 - Single-single physical collisions
 - Binary evolution (mass transfer and/or coalescence)
- There are also potentially important "hybrid" channels
 - Physical collisions during 3- or 4-body interactions (Fregeau et al. 2004)
 - Evolution of dynamically-formed or dynamically-altered binaries

Can formation channels be inferred from observations?


- Very difficult for individual blue stragglers
 - Possible tracers include rotation and abundances, but...
 - No firm theoretical predictions: what signature is expected for each channel?
- Mostly have to rely on statistical approaches, e.g.
 - The number of collisional BSs may be expected to scale with collision rate
 - The number of binary BSs may be expected to scale with total stellar mass

School of Physics and Astronomy

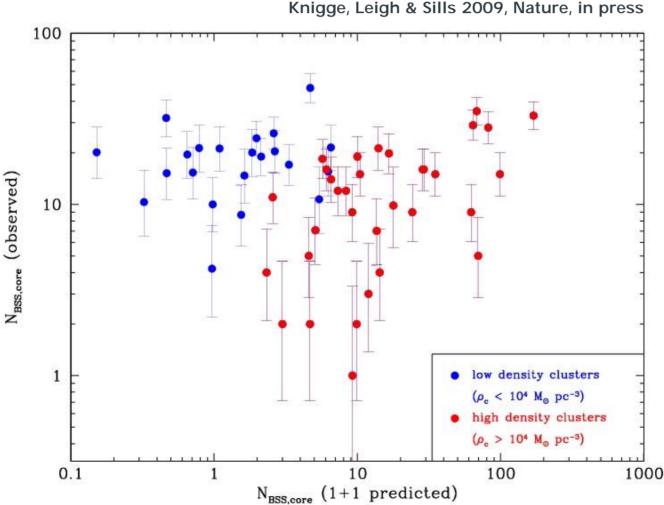
UNIVERSITY OF

How do these expectations compare to observations?

- Total (core + halo) BSs *numbers* seem "largely independent of both total mass and stellar collision rate" (Piotto et al. 2004; Davies et al. 2004)
- Do collisions and binaries both contribute and conspire to produce roughly flat distributions?
- Overall, the situation seems confusing
 - It is still not clear which channel dominates in which parts of what clusters!

Our Approach

- Focus on cluster cores, using Leigh et al. (2008) catalogue (c.f. Moretti et al. 2008)
 - If collisions/dynamics dominates anywhere, it will be in the dense cores
- Analyse only BSS numbers, rather than specific frequencies (i.e. counts normalized to other populations)
 - Easier to interpret
 - Theoretical predictions are for numbers, not frequencies
 - Cleaner
 - Correlations with cluster parameters are guaranteed to be due to BSS rather than the normalizing populations


Sout

School of Physics

and Astronomy

- Search for correlations with physically motivated cluster parameters
 - Collision rate: $\Gamma_{coll} \propto \rho_c^2 r_c^3 \sigma_c^{-1}$
 - Core mass: $M_c \approx (4\pi/3)r_c^3 \rho_c$
 - Generalized models: $r_c^{\alpha} \rho_c^{\beta} \sigma_c^{\gamma}$

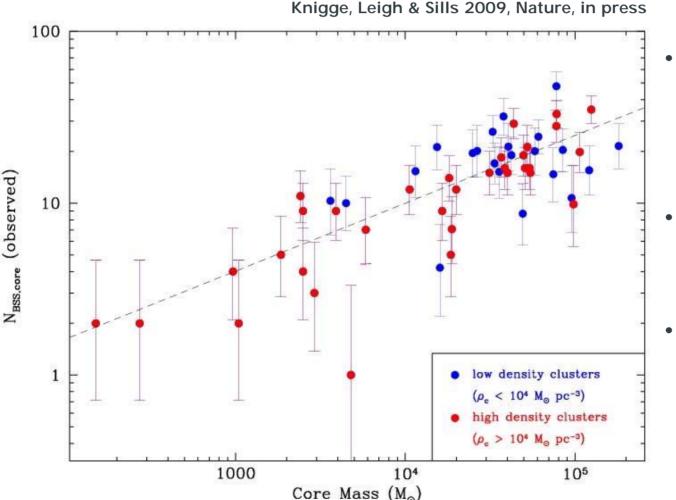
Core BS Numbers vs Collision Rate

Globally, core BS numbers do <u>**not**</u> correlate with collision rate

UNIVERSITY OF

School of Physics

and Astronomy


Southam

(c.f. Leigh et al. 2008; Moretti et al. 2008)

For dense clusters, a positive, but weak, correlation is present

Core BS Numbers vs Core Mass

- There is a strong correlation between core BS numbers and core mass across the entire GC sample
- The relationship between N_{BSS} and M_{core} is clearly sub-linear: $N_{BSS} \sim M_{core}$ ^{0.4}
 - Simplest interpretation:

Even in the core, binaries, rather than collisions dominate BS formation

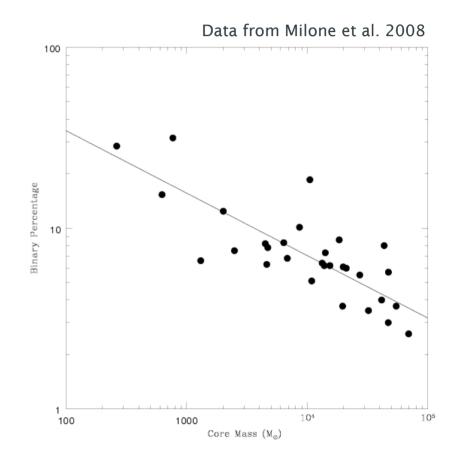
A Generalized Model Fit to BS Numbers

0.5 0 og(K) 2 0.5 -0.5 -3-1.52 2 2 α α α 100 N_{I68} (observed) 10 10 N_{RSS} (predicted) = 0.30 $r_e^{1.47}$ $\rho_n^{0.56}$ $\sigma_n^{-0.40}$

Knigge, Leigh & Sills 2009, Nature, in press

- Generalized power law: $N_{RSS} = K r_c^{\alpha} \rho_c^{\beta} \sigma_c^{\gamma}$
- Power law dependence on N_{coll}: $\alpha = 1.5\beta = -3\gamma$
- Power law dependence on $M_{\text{core:}}$ $\alpha = 3\beta \land \gamma = 0$
- Fit is consistent with M_{core} ^{0.5} dependence (but not a power law in N_{coll})
- No need for a dependence on σ

UNIVERSITY OF Southam School of Physics and Astronomy


Why is the N_{BSS} vs M_{core} correlation sub-linear?

- If core BSS descend from binaries $N_{BSS} \sim f_{bin} M_{core}$
- Observationally, we find $N_{BSS} \sim M_{core}^{0.4-0.5}$
- The two can be reconciled trivially if $f_{bin} \sim M_{core}^{-(0.5-0.6)}$
- Analysing two recent compilations of binary fractions in GC cores (Sollima et al. 2008; Milone et al. 2008)

$$f_{bin} \sim M_{core}^{-0.35}$$

• This is promisingly close, albeit not perfect

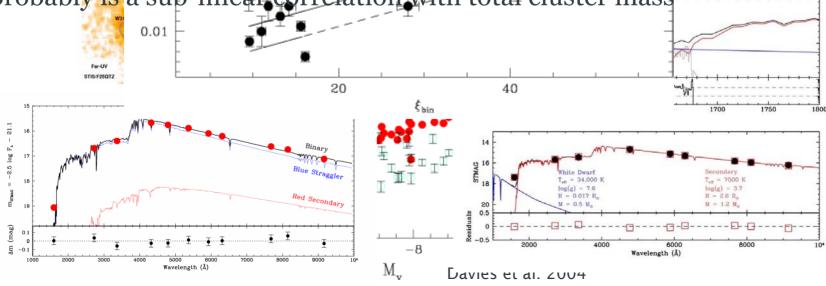
Skeletons in the closet?

- Selection effects and completeness
 - We obtain essentially identical results if we use the Moretti et al. BSS sample
 - RGB and HB stars are comparably bright and their numbers scale roughly linearly with core mass, as expected
- Mass segregation
 - Should be less than a factor of ~2 effect if collisions dominate (Leonard 1989)
 - Splitting the sample by half-mass relaxation time does not provide evidence for collisional dominance obscured by mass segregation
- Hybrid Models (Binary Interactions)
 - Collision rates become
 - 2+1: $\Gamma_{2+1} \propto f_{bin} \rho_c^2 r_c^3 \sigma_c^{-1}$
 - 2+2: $\Gamma_{2+1} \propto f_{bin}^2 \rho_c^2 r_c^3 \sigma_c^{-1}$
 - Neither improves the match to observations
 - Fundamental problem is that all collision scenarios predict too strong a density dependence
 - Nevertheless too early to rule out hybrid models

Additional evidence pointing towards binaries

- Correlation between core binary fraction and BSS frequency in a sample of clusters
- Direct detections of binary BSS

BSS + WD (Knigge et al. 2008)


UNIVERSITY OF

School of Physics

and Astronomy

Sout

- W UMa stars and CO-depleted BSS (Ferraro et al. 2006)
- Recent discovery of companions to two core BSS in 47 Tuc
 - BSS + X⁰ray active MS (Knigge et al. 2006)
- Close inspection of total (core+hato) BSS numbers shows that there
 probably is a sub-linear correlation with total cluster mass

Sollima et al. 2008

Summary

- There is no global correlation between core BSS numbers and collision rate
- There is, however, a strong, sub-linear correlation between the number of blue stragglers found in GC cores and total core mass

 $- N_{BSS} \sim M_{core}^{0.4-0.5}$

• There is also an anti-correlation between core binary frequency and core mass

 $- f_{bin} \sim M_{core}^{-0.35}$

• Together, the two *almost* agree with the simplest possible binary formation idea

 $- ~~N_{BSS} \sim f_{bin} ~ M_{core}$

- This (and other evidence) strongly suggests that most BSS descend from binaries
 - even in GC cores, single-single collisions do not dominate BSS numbers
- It remains to be seen if hydrid models (involving both binaries and dynamics) can work
 - Expected 2+1 and 2+2 collision rates still scale too strongly with density compared with observations