Observations of Cataclysmic Variables and Non-flickerers in 47 Tucanae and NGC 6397

Peter Edmonds

Collaborators: R. Gilliland, J. Grindlay, C. Heinke, A. Cool F. Camilo, J. Taylor, H. Cohn, P. Lugger

Cataclysmic variables (CVs)

Properties in field

- blue optical colors
- variable (flickering, outbursts, periodic variations)
- optical emission lines
- X-ray sources
- many CVs now seen in globulars thanks to HST & Chandra

Non-flickerers

- blue, non-variable stars in clusters, but not 'normal' CO WDs
- thought to be <u>He WDs</u>, low–mass WDs that did not undergo He burning
- these often found in binaries in field (e.g. WD and NS star companions)
- relatively few seen in globulars, but much work remains to be done

Motivation

- CVs in globulars almost certainly result from stellar interactions
 - in solar neighborhood, ~0.01% of stars are CVs, in globulars, typically ≥0.1% of stars near core are CVs, (despite lower binary fractions than field)

Globular cluster CV formation mechanisms

- similar to neutron star systems (LMXBs)
- 3 or 4 -body interactions
- tidal capture (?)

WD formation

'Normal' WD formation

Holison Red giant Berneth Bern

Asymptotic past past prend

He WD formation

- any process that strips away giant envelope before He flash
- again, interactions are likely important

Why study these objects?

- CVs and He WDs good diagnostics of stellar interactions
- Compact binaries important for cluster evolution
- First known samples of these objects at same, well-determined distance

Outline

CVs and He WDs in core-collapsed NGC 6397

- HST photometry, time series and spectra
- ROSAT and Chandra observations

CVs and He WDs in un-collapsed 47 Tuc

- ROSAT and Chandra observations
- HST photometry and time series
- F_X/F_{opt} for 47 Tuc CVs compared to field CVs

General questions/issues

- Are CVs in clusters magnetic?
- Comparisons between NGC 6397 and 47 Tuc

How to find CVs and He WDs in globular clusters?

- (1) get deep HST imaging
- (2) get deep Chandra imaging
- (3) get deep radio data
- (4) preferably all of above!

47 Tuc Chandra image with HST FoVs

GHE01a: Grindlay et al. (2001a) Chandra FoV GO-8267: WFPC2 U/V/I imaging (120 orbits) GO-7503: WFPC2 U/V imaging (6 orbits) Knigge: STIS UV imaging (30 orbits)

Evidence for NGC 6397 CVs being magnetic

Evidence for 47 Tuc CVs being magnetic

Comparison between 2 clusters

Cluster	Cluster M _V	Collision frequency	#CVs	# He WDs	MS-binary fraction
47 Tuc	-9.42	100	~30	1*	~14%
NGC 6397	-6.63	1	9	6	< 5-7%

^{*} No systematic search in optical

- 47 Tuc has more MS binaries, relatively fewer CVs
- NGC 6397 has apparently converted more of its primordial binaries into CVs (perhaps during core collapse)

Future observational work

- Search for faintest CVs, especially in 47 Tuc (less complete)
- Pulsation searches: optical and X-rays (magnetic CV search)
- Search for He WDs in 47 Tuc (have new HST/ACS data with $H\alpha$ imaging)
- More orbital periods needed for CVs
- Radial velocity studies needed for CVs and He WDs (challenging)
- More complete MSP searches in 6397 (NS number comparison)