# Electrochemical Acceleration of Chemical Weathering & Geoengineering

Kurt Zenz House
KITP Climate Physics Conference
May 9<sup>th</sup>,2008

### The extremely skewed distribution of point sources indicates the potential need for multiple strategies



Source: Alliance Bernstein

### Agenda

- Accelerating atmospheric CO<sub>2</sub> concentration
- •The Taxonomy of climate change abatement technology
- •The details of electrochemical weathering

"The emissions growth rate since 2000 was greater than for the most fossilfuel intensive of the IPCC emissions scenarios developed in the late 1990s" - Raupach et al, PNAS (2007)



### The biggest surprise has been a reversal of the long-time trend in carbon intensity (kgC/\$GDP)



### The oil supply curve suggests that supply is have trouble keeping up with demand



### Agenda

- Accelerating atmospheric CO<sub>2</sub> concentration
- •The Taxonomy of climate change abatement technology
- •The details of electrochemical weathering



#### The sensibility of these various schemes can be visualized in risk-cost space



\$ Cost

The cheapest way to remove CO2 from the air is to combust appropriately harvested biomass and capture and store the CO<sub>2</sub>





### Agenda

- •Accelerating atmospheric CO<sub>2</sub> concentration
- •The Taxonomy of climate change abatement technology
- •The details of electrochemical weathering

#### Chemical weathering is the Earth's thermostat





### The partitioning of carbon between the atmosphere and the oceans is controlled in part by the ocean's alkalinity



#### The ocean has a surplus of conservative positive charge

$$Alkalinity = [Na^{+}] + 2[Mg^{2+}] + 2[Ca^{2+}] + [K^{+}] + \dots - [Cl^{-}] - 2[SO_{4}^{2-}] - \dots$$

#### ...which is primarily balanced by the carbonate system

Alkalinity = 
$$\left\lceil HCO_3^- \right\rceil + 2\left\lceil CO_3^{2-} \right\rceil + \dots$$

## On long time scales, nature will solve global warming on its own (in multiple ways)



#### **Droplet A** reacts with MgSiO<sub>3</sub>

- •Adds 2HCO<sub>3</sub> + Mg<sup>2+</sup> to ocean
- •The increase in Alkalinity shifts the partitioning toward HCO<sub>3</sub>
- •Most of the additional HCO<sub>3</sub>remains as such

#### **Droplet B** falls directly into ocean

- •Adds HCO<sub>3</sub>- + H+
- •[H<sup>+</sup>] goes up; pH goes down
- Shifts dissolved inorganic carbon partitioning toward CO<sub>2</sub>(aq)

If alkalinity can be added to the ocean at industrial rates, then the ocean will take up atmospheric CO<sub>2</sub>

Alkalinity 
$$=$$
  $\left[Na^{+}\right] + 2\left[Mg^{2+}\right] + 2\left[Ca^{2+}\right] + \left[K^{+}\right] + \dots + \left[Cl^{-}\right] - 2\left[SO_{4}^{2-}\right] - \dots$ 

Various scholars have considered ways to increase the ocean's alkalinity by dissolving carbonates into the ocean (e.g., Broecker, Caldeira)

So I thought, perhaps we can remove *conservative* negative charge in order to increase the ocean's alkalinity

#### More detailed block diagram (version 1)



#### **Chemical steps (version 1)**

$$\Delta G_1 = +212 \text{ kJ/(mol NaOH)}$$

$$2NaCl(aq) + 2H_2O(l) \longrightarrow 2NaOH(aq) + Cl_2(g) + H_2(g)$$

#### Step 2: HCl Fuel Cell

$$\Delta G_2 = -131 \text{ kJ/(mol HCl)}$$

$$Cl_2(g) + H_2(g) \longrightarrow 2HCl(aq)$$

**Step 3: Rock Dissolution** 

$$\Delta H_3 = -58 \text{ kJ/(mol HCl)}$$

$$2HCl(aq) + MgSiO_3(s) \longrightarrow MgCl_2(aq) + SiO_2(s) + H_2O$$

Step 4: CO<sub>2</sub> capture, storage

$$\Delta H_A = -70 \text{ kJ/(mol NaOH)}$$

#### **Overall Process:**

$$\Delta G = -4 \text{ kJ/(mol NaOH)}$$

$$MgSiO_3(s) + H_2O(l) + 2CO_2(g) \longrightarrow Mg^{2+} + SiO_2(s) + 2HCO_3^-$$

 $2CO_2(g) + 2NaOH(aq) \longrightarrow 2NaHCO_3(aq)$ 

## It turns out that halogen-fuel cells have great potential for grid scale energy storage

#### **DUAL USE POTENTIAL for HCI Fuel Cell**

- CO<sub>2</sub> sequestration
- Peak shaving / load leveling



The net reaction is spontaneous, but a range of scenarios bounds the



Carbon Intensity of Input Fuel Source (Tonnes CO<sub>2</sub> emitted per MW-hr Electrical Input)

House et al, ES&T (2007)

#### **Rock type matters**

#### Rock/CO<sub>2</sub> mass ratio



Furthermore, secondary reactions can limit the alkalinity generated pure unit mass of the rock. For example:

$$FeS_{2} + 2H^{-} + 2Cl^{-} + H_{2}O + \frac{5}{2}O_{2} \longrightarrow FeCl_{2} + 2HSO_{3}^{-} + 2H^{+}$$
  
 $FeCl_{2} + 2H_{2}O \longrightarrow Fe(OH)_{2} + 2H^{-} + 2Cl^{-}$ 

#### Dissolution reaction kinetics are highly temperature dependent



## Enhanced CaCO<sub>3</sub> precipitation is the ultimate fate of the additional alkalinity and carbon

$$MgSiO_3(s) + H_2O(l) + 2CO_2(g) \longrightarrow Mg^{2+} + SiO_2(s) + 2HCO_3^{-}$$

$$2HCO_3^- + Ca^{2+} \longrightarrow CaCO_3 + CO_2 + H_2O$$



If the dissolution products are returned to the ocean, CaCO<sub>3</sub> is certain to precipitate quickly due to the increase in local alkalinity

#### Another way to think about this the creation of artificial soda-lakes



#### The purity requirements pose a serious engineering challenge



#### Offsetting 1 GtC/yr with electrochemical weathering is a serious task

- $\bullet$ To offset 1 GtC,  $\sim$ 10<sup>14</sup> moles of HCl would have to be produced and neutralized each year
  - i. Volumetric flow rate of seawater equal to 6000 m<sup>3</sup>/sec
  - ii. Volumetric flow rate of artificial brine from mined halite of 600 m<sup>3</sup>/s
- •If basalt were used for neutralization, then 10 Gt would be required annually
- •Our kinetic experiments indicate the rock dissolution would require ~10<sup>7</sup> m³ of reaction volume (1500 Olympic swimming pools)
- •The global weathering rate would be x10
- •Local alkalinity hot spots would form and potentially cause severe damage to marine biota

#### **Benefits of electrochemical weathering**

•Permanency of storage to do thermodynamics and kinetics of marine chemistry

•Simultaneously manage the oceans and the atmosphere → particularly ocean pH

Could be run off stranded power

•1 large plant (~50 m<sup>3</sup>/sec) would offset ~5,000,000 cars

#### **Conclusions**

- •Despite global awareness and the Kyoto treaty, CO<sub>2</sub> emissions have outpaced our most pessimistic forecast
- •A wide variety of schemes—other than decreasing CO<sub>2</sub> emissions—have been proposed to deal with climate change
- •Of these, biomass with CO<sub>2</sub> capture & storage will work, but is limited in scale to about 1 GtC/year
- •We can accelerate weathering with electrochemistry, but it will be expensive and the rock requirements will severely limit its scale