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• Quantum Mechanics in phase space. Truncated Wigner 

approximations (TWA) 

 

• Quantum correlations as extra phase space dimensions. 

Cluster TWA. 

 

• Simulating diffusion in strongly coupled spin chains. 

 

• Fermionic TWA. Applications to the SYK model. TWA as 

fluctuating mean-field approximation. 

 

Plan 

Major quest: reducing exponential complexity of quantum 

linear dynamics to polynomial complexity of classical nonlinear 

dynamics.  



Why phase space? 

Quantum mechanics – normally work in Schrödinger picture: evolve the  wave 

function (density matrix) keep observables time independent. Equivalent 

classical picture – Liouville equation for the probability distribution:   

Extremely complicated (nearly impossible to solve) in many-particle systems 

Quantum mechanics in Heisenberg picture – usually intractable with some 

exceptions. Equivalent classical picture – what we normally use 

Keep the initial probability distribution constant in time, evolve observables. 

Quantum mechanics in phase space – a convenient tractable 

way to work near a classical (saddle point) limit   



Phase space (Wigner-Weyl) representation of Quantum Mechanics 

Observables – ordinary functions (Weyl symbols):  

Wave function (density matrix) – Wigner quasiprobability distribution 

Expectation values: statistical averages  

Rules of QM: noncommutativity, uncertainty,... – Moyal product 

Equations of motion 



Standard Truncated Wigner Approximation (TWA) 

Classical (saddle point) evolution. Fluctuating (quantum) initial conditions 

1. Easy to simulate if W is positive 

2. Asymptotically exact at short times and near the classical limit 

3. Exact for Harmonic systems 

4. Quantum corrections can be expressed through quantum jumps. 

5. Within accuracy of TWA (up to    ) one can approximate W with a 

proper Gaussian reproducing leading correlations. 

6. TWA (and not the Dirac mean field approximation!)follows from the 

saddle point approximation of the Schwinger-Keldysh action! 

Coordinate-momentum  

 

Phase Space 

 

 Bosonic complex amplitude 



Jaynes-Cummings Model (with A. Altland and V. Gurarie, 2009) 
Reduces to Richardson model for BCS at large detuning (simple vector large N)  

Start with polarized spins and empty 

photon mode. Do LZ sweep  



The problem can be solved analytically using adiabatic invariants: 

A. Altland, V. Gurarie, T. Kriecherbauer, AP, PRA 79, 042703 (2009) , A.P. Itin, P. Törmä, arXiv:0901.4778. 

Almost perfect agreement with the exact result in the whole velocity 

range. Exact analytic solution perfectly agrees with TWA (C. Sun, N. A. 
Sinitsyn, arXiv:1606.08430) 
 

In Keldysh action the large N-limit gives spurious results: large N and 
long time (low velocity) limits do not commute:   



What if the elementary local degree of freedom (site) has 3 

states? E.g. a spin one system. 

TWA fails after a short time unless interactions are weak. 

Prepare the spin initially 

polarized along z. 

 

TWA fails. No small 

parameter to justify it. 
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Idea: fix TWA introducing additional (hidden) variables 
(S. Davidson and A.P., PRL 2015) 

Go to SU(3) group. Any 3x3 Hamiltonian is a linear combination 

of SU(3) generators. 

 (Mapping taken from M. Kiselev, et. al. EPL (2013) for LZ problem in a 3 level system) 

……… 



Single site Hamiltonian of Hubbard model: 

interaction and chemical potential 

Start from a state polarized along x 
3
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FIG. 1. Comparison of the dynamics of hŜx i for a spin-one
part icle init ially pointed in the x-direct ion subjected to the

Hamiltonian 1
2
Ŝ2

z − Ŝz . The dynamics are calculated with
exact diagonalizat ion (solid, blue), SU(3) TWA (dashed, red),

and SU(2) TWA (dot ted, yellow). (Color online.)

are

(H I )
SU (2)
W = (U/ 2)X 2

3 − X 3 − 1/ 2,

(H I )
SU (3)
W = (U/ 6)(2−

p
3X 8) − X 3. (10)

Note that in the SU(2) case we chose the spin-one repre-

sentat ion of the spin operators given by thefirst three op-

erators of the SU(3) representat ion. The addit ional con-

stant term − 1/ 2 in the SU(2) Hamiltonian comes from

(X̂ 2
k )W = X 2

k − t r(T2
k )/ 4. For concreteness we choose

U = 1 and start with the spin point ing along the x-

direct ion and observe the expectat ion value of Ŝx as a

funct ion of t ime. In Fig. 1 we show comparison of the

result ing exact dynamics with SU(2) and SU(3) TWA

approximat ions. As expected the SU(3) TWA is exact

while the SU(2) semiclassical dynamics are only accurate

at short t imes. The di↵erence comes from the fact that

any interact ion terms in the SU(2) case are represented

by non-linearity while in the SU(3) case they are rep-

resented by addit ional (hidden) variables, which in turn

have their own quite complex dynamics.

Next let us consider a more complicated setup, where

we deal with a system of interact ing spin-one degrees of

freedom such that the Hamiltonian becomes

Ĥ =
X

n

Ĥ
(n )

I + ĤC (11)

where H
(n )

I is the local spin-one Hamiltonian (7) describ-

ing n-th spin and

ĤC = − J
X

n 6= m

(Ŝn
x Ŝm

x + Ŝn
y Ŝm

y ). (12)

We have chosen a fully connected Hamiltonian to allow

for comparison of TWA and exact dynamics for larger

system sizes.

The Weyl symbol of the coupling term is the same for

the SU(2) and the SU(3) representat ions because it does

not involve local nonlinear spin-operators,

(HC )W = − J
X

n 6= m

(X n
1 X m

1 + X n
2 X m

2 ). (13)

For mult i-spin systems we do not use the exact Wigner

funct ion, which is defined and integrated over the coher-

ent state variables. Instead, we use a mult ivariate Gaus-

sian dist ribut ion f n (X n
1 , . . . , X n

N 2− 1) for each site n and

integrate over the N 2 − 1 SU(N ) variables:

h⌦̂(t)i ⇡

Z Y

n

dX n f n ( ~X n )⌦W ( ~X cl n (t)), (14)

where the mean and covariance matrix for each f is

fixed by the quantum expectat ion values of the init ial

state of the system, hX n
↵ i f n = hX̂ n

↵ i and hX n
↵ X n

β i f n =

h(X̂ n
↵ X̂ n

β + X̂ n
β X̂ n

↵ )/ 2i (see Supplementary Material for

details). We use this best Gaussian approximat ion for

two reasons. First , the exact Wigner funct ion will in

general have negat ive values, so the integrat ion depends

on the cancellat ion of posit ive and negat ive contribu-

t ions, which numerically requires more sample points to

converge. Secondly, we numerically found that the best

Gaussian TWA results are consistent ly more accurate.

Formally this Gaussian scheme is just ified if we increase

the spin size (proport ional to the conserved value of the

Casimir operator). For an init ial correlated (not prod-

uct ) stateoneshould use themult ivariateGaussian which

correct ly reproduces both local and non-local correlat ion

funct ions like hX m
↵ X n

β i . For observables, instead of Weyl

ordering one can use direct quantum classical subst itu-

t ion X̂ n
m ! X n

m because any onsite observable is linear in

X̂ and for linear operators this subst itut ion is exact [10].

In Fig. 2 we show the dynamics of the spin fluctua-

t ions hŜ2
z i per site obtained by exact diagonalizat ion, and

SU(2) and SU(3) TWA. The system is init ially prepared

with all spins point ing in the x-direct ion. We compare

the dynamics for a fully connected system for di↵erent

values of the coupling J and for di↵erent system sizes.

As the coupling is lowered and the on-site term in the

Hamiltonian becomes more dominant , the SU(3) TWA

becomes a bet ter approximat ion, while the SU(2) be-

comes worse. When the on-site term is 5 t imes as dom-

inant as the coupling term, the SU(3) TWA is indist in-

guishable from exact quantum dynamics. As the system

size increases, and hence each site is connected to more

sites, theSU(3) TWA dynamicsapproach exact quantum

dynamics. Similarly to the SU(2) case, SU(3) TWA fails

to describe quantum revivals, which occur later and later

in t ime as the system size increases.

As a more pract ical example, we model the Bose-

Hubbard model using the e↵ect ive Hamiltonian [19]

Hef f =
U

2

X

i

(Ŝi
z )2 − J n̄

X

hi j i

(Ŝi
x Ŝj

x + Ŝi
y Ŝj

y ) − µ
X

i

Ŝi
z ,

(15)

Exact, SU(3) TWA 

SU(2) TWA 

SU(3) TWA – 

(semi)classical dynamics 

in 8-dimensional phase 

space. 

 

Extra variables are like 

hidden variables.  

TWA, solve SU(3) Bloch equation: 

Map interacting SU(2) spin to noninteracting (= linear) SU(3)) spin 



What did we achieve? 

Classical dynamics becomes exact if we go to a higher-

dimensional phase space. 

Conventional 

Physical 3D  

Space 

Hidden (but still physical) 

8D space 

If we solve classical equations in 8D space and project to 3D 

space we are exact (for a single spin one) 

Linear (noninteracting) Hamiltonians are also easier to deal 

with in equilibrium. 



Many-body generalization. 

Bose Hubbard model in spin 1 representation (E. Altman 2001) 

Treat local interactions exactly by mapping to SU(3) spins.  

Treat NN interactions semiclassically within TWA. 

Small hopping or large dimensionality (connectivity) – expect SU(3) TWA to 

work much better than SU(2) TWA.  



Simulations for fully connected model (z=M - coordination number) 4
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FIG. 2. Comparison of the dynamics of hŜ2
z i for a fully con-

nected system with M spins due to Hamiltonian (11) calcu-
lated with exact diagonalizat ion (solid, blue), SU(3) TWA

(dashed, red), and SU(2) TWA (dot ted, yellow). Init ially
all spins are pointed in the x-direct ion. On the left are the

result s for various coupling st rengths J z, where z = M − 1
is the connectedness (the inset in the bot tom plot shows the

same plot for t imes 0 to 50). On the right are the results for
di↵erent system sizes. (Color online.)

where n̄ is the mean part icle density. This t runcat ion of

the Hilbert space to three dimensions per site is accept -

able in the vicinity of the Mot t insulat ing state [20]. We

use SU(3) TWA to determine the dynamics of the order

parameter ⇢s =
P

i 6= j hŜ+
i Ŝ−

j i / M 2 (represent ing super-

fluid density) for a 3D system with M = 103 sites in

a cubic lat t ice with periodic boundary condit ions. The

results are plot ted in Fig. 3.

First we quench from the Mot t insulator phase, i.e. a

Fock state on each site (the ground state for J = 0).

In terms of the e↵ect ive spin Hamiltonian, this corre-

sponds to a product state of |Ŝz = 0i . The dynamics

arise from an instantaneous quench to a finite coupling,

either J n̄z/ U = 0.2 or J n̄z/ U = 1. In each case, the

system moves away from a pure Mot t insulator state; for

a smaller coupling, there is some oscillat ion which is ab-

sent for a larger coupling. Thesuperfluid density remains

small, as a sudden quench leads to a high temperature

state which does not exhibit long range order [21].

We also show a quench from the superfluid phase (the

ground state for U = 0), which in terms of the e↵ec-

t ive spin Hamiltonian corresponds to a product state of

|Ŝx = + 1i . When the system is quenched to J = 0, each

site precesses independent ly. Thus we can calculate the

dynamics using exact diagonalizat ion, SU(3) TWA, and

SU(2) TWA. Since the on-site Hamiltonian can be lin-

FIG. 3. The dynamics of the order parameter ⇢s for the e↵ec-
t ive Bose-Hubbard model (15), calculated with SU(3) TWA.
The top row shows the results start ing in the Mot t insulator

phase. The bot tom row begins in the superfluid phase: in the
left -hand plot , the system is quenched to J = 0, while in the

right hand-hand plot the system is quenched to J n̄z/ U = 0.1.
(Color online.)

earized in terms of SU(3) variables, the SU(3) TWA re-

produces the exact quantum dynamics, including quan-

tum recurrences, while the SU(2) TWA decays. When

we instantaneously quench to J n̄z/ U = 0.1, the SU(3)

TWA st ill reproduces the oscillat ions of quantum recur-

rences, damped by the coupling to the larger system.

In summary, we have int roduced a semiclassical for-

malism for simulat ing the quantum dynamics of st rongly

interact ing coupled-spin systems. We have shown that

by increasing the phase space and int roducing new (hid-

den) degrees of freedom one can part ially account for

local quantum fluctuat ions and significant ly improve the

accuracy of the semiclassical descript ion of the dynam-

ics. We have argued and shown numerically that the

accuracy of this method increases as we increase connec-

t ivity of the system. We have demonst rated numerically

that this method accurately reproduced results of quench

dynamics of coupled spin-one systems in a broad range

of parameters including the st rong coupling regime. As

another illust rat ion we analyzed quench dynamics across

the superfluid-insulator t ransit ion in a three-dimensional

Bose-Hubbard model.

While here we only presented results for SU(3) vari-

ables, this formalism can be st raight forwardly applied

to any SU(N ) group (albeit with a larger phase space),

where N is the dimension of a local Hamiltonian. Thus

we can use classical dynamics to exact ly do local quan-

tum dynamics which are linear in any SU(N ) represen-

tat ion. This should allow one to take into account quan-

tum fluctuat ions within larger clusters and then use the

TWA approximat ion to t reat inter-cluster coupling. We

are planning to analyze this possibility in a future work.

An important and open quest ion is finding the opt imal

way of int roducing hidden variables keeping their number
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FIG. 2. Comparison of the dynamics of hŜ2
z i for a fully con-

nected system with M spins due to Hamiltonian (11) calcu-

lated with exact diagonalizat ion (solid, blue), SU(3) TWA
(dashed, red), and SU (2) TWA (dot ted, yellow). Init ially

all spins are pointed in the x-direct ion. On the left are the
result s for various coupling st rengths J z, where z = M − 1

is the connectedness (the inset in the bot tom plot shows the
same plot for t imes 0 to 50). On the right are the results for

di↵erent system sizes. (Color online.)

where n̄ is the mean part icle density. This t runcat ion of
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use SU(3) TWA to determine the dynamics of the order

parameter ⇢s =
P
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j i / M 2 (represent ing super-

fluid density) for a 3D system with M = 103 sites in

a cubic lat t ice with periodic boundary condit ions. The

results are plot ted in Fig. 3.

First we quench from the Mot t insulator phase, i.e. a

Fock state on each site (the ground state for J = 0).

In terms of the e↵ect ive spin Hamiltonian, this corre-

sponds to a product state of |Ŝz = 0i . The dynamics

arise from an instantaneous quench to a finite coupling,

either J n̄z/ U = 0.2 or J n̄z/ U = 1. In each case, the

system moves away from a pure Mot t insulator state; for

a smaller coupling, there is some oscillat ion which is ab-

sent for a larger coupling. Thesuperfluid density remains

small, as a sudden quench leads to a high temperature

state which does not exhibit long range order [21].

We also show a quench from the superfluid phase (the

ground state for U = 0), which in terms of the e↵ec-

t ive spin Hamiltonian corresponds to a product state of

|Ŝx = + 1i . When the system is quenched to J = 0, each

site precesses independent ly. Thus we can calculate the

dynamics using exact diagonalizat ion, SU(3) TWA, and

SU(2) TWA. Since the on-site Hamiltonian can be lin-
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right hand-hand plot the system is quenched to J n̄z/ U = 0.1.

(Color online.)

earized in terms of SU(3) variables, the SU(3) TWA re-

produces the exact quantum dynamics, including quan-

tum recurrences, while the SU(2) TWA decays. When

we instantaneously quench to J n̄z/ U = 0.1, the SU(3)

TWA st ill reproduces the oscillat ions of quantum recur-

rences, damped by the coupling to the larger system.

In summary, we have int roduced a semiclassical for-

malism for simulat ing the quantum dynamics of st rongly

interact ing coupled-spin systems. We have shown that

by increasing the phase space and introducing new (hid-

den) degrees of freedom one can part ially account for

local quantum fluctuat ions and significant ly improve the

accuracy of the semiclassical descript ion of the dynam-

ics. We have argued and shown numerically that the

accuracy of this method increases as we increase connec-

t ivity of the system. We have demonstrated numerically

that this method accurately reproduced results of quench

dynamics of coupled spin-one systems in a broad range

of parameters including the st rong coupling regime. As

another illust rat ion we analyzed quench dynamics across

the superfluid-insulator t ransit ion in a three-dimensional

Bose-Hubbard model.

While here we only presented results for SU(3) vari-

ables, this formalism can be straight forwardly applied

to any SU(N ) group (albeit with a larger phase space),

where N is the dimension of a local Hamiltonian. Thus

we can use classical dynamics to exact ly do local quan-

tum dynamics which are linear in any SU(N ) represen-

tat ion. This should allow one to take into account quan-

tum fluctuat ions within larger clusters and then use the

TWA approximat ion to t reat inter-cluster coupling. We

are planning to analyze this possibility in a future work.

An important and open quest ion is finding the opt imal

way of int roducing hidden variableskeeping their number
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FIG. 2. Comparison of the dynamics of hŜ2
z i for a fully con-

nected system with M spins due to Hamiltonian (11) calcu-
lated with exact diagonalizat ion (solid, blue), SU(3) TWA

(dashed, red), and SU(2) TWA (dot ted, yellow). Init ially
all spins are pointed in the x-direct ion. On the left are the

results for various coupling st rengths J z, where z = M − 1
is the connectedness (the inset in the bot tom plot shows the

same plot for t imes 0 to 50). On the right are the result s for
di↵erent system sizes. (Color online.)
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use SU(3) TWA to determine the dynamics of the order
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j i / M 2 (represent ing super-
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a cubic lat t ice with periodic boundary condit ions. The
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We also show a quench from the superfluid phase (the

ground state for U = 0), which in terms of the e↵ec-

t ive spin Hamiltonian corresponds to a product state of

|Ŝx = + 1i . When the system is quenched to J = 0, each

site precesses independent ly. Thus we can calculate the

dynamics using exact diagonalizat ion, SU(3) TWA, and

SU(2) TWA. Since the on-site Hamiltonian can be lin-
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earized in terms of SU(3) variables, the SU(3) TWA re-

produces the exact quantum dynamics, including quan-

tum recurrences, while the SU(2) TWA decays. When

we instantaneously quench to J n̄z/ U = 0.1, the SU(3)

TWA st ill reproduces the oscillat ions of quantum recur-

rences, damped by the coupling to the larger system.

In summary, we have int roduced a semiclassical for-

malism for simulat ing the quantum dynamics of st rongly

interact ing coupled-spin systems. We have shown that

by increasing the phase space and int roducing new (hid-

den) degrees of freedom one can part ially account for

local quantum fluctuat ions and significant ly improve the

accuracy of the semiclassical descript ion of the dynam-

ics. We have argued and shown numerically that the

accuracy of this method increases as we increase connec-

t ivity of the system. We have demonst rated numerically

that this method accurately reproduced results of quench

dynamics of coupled spin-one systems in a broad range

of parameters including the st rong coupling regime. As

another illust rat ion we analyzed quench dynamics across

the superfluid-insulator t ransit ion in a three-dimensional

Bose-Hubbard model.

While here we only presented results for SU(3) vari-

ables, this formalism can be st raight forwardly applied

to any SU(N ) group (albeit with a larger phase space),

where N is the dimension of a local Hamiltonian. Thus

we can use classical dynamics to exact ly do local quan-

tum dynamics which are linear in any SU(N ) represen-

tat ion. This should allow one to take into account quan-

tum fluctuat ions within larger clusters and then use the

TWA approximat ion to t reat inter-cluster coupling. We

are planning to analyze this possibility in a future work.

An important and open quest ion is finding the opt imal

way of int roducing hidden variables keeping their number

In all these cases improve accuracy of 

TWA improves by going to SU(3). 

Conventional 

Physical 3D  Space 

Hidden (but still physical) 

8D space 

8D quantum world = 3D quantum world but 

it is closer to classical 



Cluster TWA (CTWA) 

Hilbert space of each cluster is spanned by SU(N) group. N 

– Hilbert Space Dimension. N=16 in the shown example. 

Classical equations of motion 

Initial conditions. Choose a Gaussian factorized distribution 

This choice can be justified from the short time expansion. Alternative 

discrete sampling: W. Wooters  et. al. 2004; works by A.M. Rey et. al.  



Example: four sites 

Treat local correlations (entangled degrees 

of freedom) as independent variables  

Some operators  

are correlated 



Equations of motion 

Identical to time-dependent variational principle (TDVP) if ignore fluctuations.  

Number of independent variables 2N+1 (not 4N). Need one extra ancilla spin. 



Applications to the long time hydrodynamics 

Central object 

Defines spectral function (dynamic structure factor), spin susceptibilities, 

diffusion constant, fluctuation-dissipation relation (key indicator of 

thermalization),... 

This work – focus on infinite temperatures 

Model (motivated by discussions with F. Pollmann): XXZ chain 

Choose 



Expected long time behavior 

Can be used to extract diffusion constant (D. Luitz and Y. Bar Lev, 2016, 2017) 

Main challenges: small system sizes amenable to ED can be too small to 

see asymptotic diffusive behavior. 

 

Approximate methods (DMRG, mean field, TWA, ...) do not preserve time 

translational invariance, fail at long times.  



Numerical Results 

longitudinal transverse 

Follows from conservation 

of Z-magnetization  



Longitudinal correlations, comparison with mean-field dynamics 

CTWA 

MF 

CTWA respects time-translation invariance: correct noise. MF fails, increasing 

cluster size makes things even worse due to ETH. Non-equilibrium initial state: 

MF is expected to fail completely.   



Extracting diffusion constant 

CTWA, N=64 

ED, N=16 

MF, N=64 

MF fails, ED gives a wrong diffusion constant 



Excellent convergence to diffusive profile for all cluster sizes   

Very slow saturation of the diffusive constant with the cluster 

size (strong quantum renormalization). 

 

This does not happen if we remove Z-conservation law. 

Classical dynamics gives nearly exact diffusion constant. MF 

works much better. 



Can reproduce well the whole dynamical structure factor 

Small frequency tail 

 

 

 

indicates asymptotic diffusive 

behavior. Only visible for 

N>32. 

 

High frequency (exponential) 

asymptotes are quantum and 

can not be recovered from 

hydrodynamic approaches. 

 

CTWA captures both! 



Group structure 

Fermions. No obvious classical limit. 

Treat string variables as SO(2N) nonlocal spin degrees of freedom. Phase 

space dimensionality ~ 2N2 (instead of 2N). 

 

Non-interacting system. Hamiltonian is linear. TWA is exact.  

Main idea: use bilinear strings as dynamical variables. Non-

locality is crucial 



New non-local phase space variables 

These variables satisfy canonical Poisson bracket relations, e.g.  

Poisson brackets (commutation relations). Encode locality 



Equations of motion 

Initial conditions: exact Wigner function is too complicated. Use the best 

Gaussian (alternatively discrete sampling A. M. Rey group). 

Example: initial free Fermi sea, indexes –momentum modes  

Normal variables: no fluctuations at zero or unit filling. 

Superconducting variables – always fluctuate. 



SYK model, many unusual properties 

QM

fTWA

time (1/t)0 10

QM

fTWA

time (1/t)0 10

QM

fTWA
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FIG. 1. Comparing the fermion occupat ion dynamics generated by fTWA with the exact case. Top

is for nearest -neighbour coupling and bot tom is for long-range hopping with ↵ = 1. For detailed

comparison, profiles are shown at t imes t/ J = 0, 2, 4, 8; exact is solid and fTWA is dashed. As the

interact ion U is increased, the error in the fTWA result grows, while the case with no interat ion

has no error.

following constraints

Ji j ;kl = − Ji j ;lk = − Jj i ;kl (12)

Ji j ;kl = J⇤
kl ;i j , (13)

|Ji j ;kl |2 = J 2. (14)

The SYK model has also recent ly at t racted tremendous at tent ion as a tractable example of

a strange metal which allows for a holographic dual descript ion. While exact ly solvable in

the large-N limit , the system cannot be described in terms of quasi-part icles. It is therefore

8

No obvious classical limit even at large N. 

Use representation of the Hamiltonian through the superconducting variables 

Start from the same initial conditions as for the expansion example  



Error goes down as 1/N2 (M. Schmidt, et. al. 2018). SYK model realizes a 

classical matrix model (L. G. Yaffe, Rev. Mod. Phys. 54, 407 (1982).) 

Magnetization decay for a quench to SYK Hamiltonian 



TWA vs Mean field for SYK 

Mean field – a random superconductor 

Does not really work:                  due to the particle number conservation 

Essentially TWA (for the SYK model): introduce a fictitious ensemble of wave 

functions:       . These wave functions can be thought as Schwinger bosons of 

the corresponding SO(2N) group. 

Require 

Run mean field for each fictitious wave function. Average in the end. 



Apply this procedure to SYK, obtain TWA  

• TWA – a consistent way of implementing fluctuating meanfield 

approximation. 

• Wave functions = Schwinger bosons for the basis operators. 

• No issues with large entanglement = classical mutual information (checked 

numerically it works) 

• No need to invent artificial large N-parameters, need to invent good phase 

space variables. N = dimensionality of the group. 



Echo dynamics related to OTOC  
M. Schmitt, D. Sels, S. Kehrein, A.P. (2018).  

Accurate short-time echo growth 

The (semi-classical) Lyapunov exponent agrees with a fully quantum infinite temperature 

predictions: B. Kobrin, C. Olund, D. Stanford, J. Moore, and N. Yao, Talk given at APS 

March Meeting 2018. Different results: T. Scaffidi, E. Altman, 2018 

Echo can be used to probe OTOC and scales as in classical systems  

( also B. V. Fine et. al. Phys. Rev. E 89, 012923, 2014) 



Non-local correlations: cluster vs. fermion TWA for XY chain   

Accuracy of TWA depends on the choice of basis operators= phase space 

variables! 

 

Integrability is seeing as emerging asymptotically from CTWA with increasing 

cluster size. 



Conclusions 

Can incorporate (short-distance) quantum fluctuations 

into TWA by adding more degrees of freedom.  

 

CTWA - cluster degrees of freedom; fTWA – fermionic 

bilinears as degrees of freedom. In general need a 

closed set of commutation relations to define Poisson 

brackets.. 

 

TWA as a fluctuating mean field. Fluctuations in initial 

conditions are crucial for recovering non-equal time 

correlation functions and correct hydrodynamic behavior. 

 

Can dramatically improve accuracy of TWA by using 

better degrees of freedom. 



Comparison with the normal variable representation  

Exact

Hτ fTWA

Hρ fTWA

H+ fTWA
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Example: fermion expansion. 

In 1D the model maps to XXZ chain with power law XY interactions 

Use Bopp operators to get the Weyl  symbol 

Start from Gaussian initial conditions describing expectation 

values and fluctuations of the bilenears in the initial state.  



Model works fine with nearest neighbor hopping. Works even better 

with long range hopping. 
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Fermion expansion in 2D 
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Schwinger boson TWA  

Need to solve D=2N equations 

Can almost satisfy initial conditions with 

the Gaussian state. Works very well.  

Reduction from D2 operators to D Schwinger bosons is like 

reduction from the density matrix to the wave function.  

Make a product ansatz 

Dirac mean field equations 

are identical to classical equations. TWA is like a statistical 

mixture of many mean fields. This does make a difference! 



Application: two channel model (cartoon for gauge theories) 

Large positive (negative)        – attractive (repulsive) Hubbard model  

Two-site model, near mean-field regime. Fermion vacuum, coherent state 

for bosons with N=9 per site. Quench to  

• MF – only short times 

 

• fTWA nearly exact 

including long time 

limit (but no revivals) 

 

• Hilbert space is 

sufficiently large to 

thermalize. 
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Same model. Initially no bosons, half filling of fermions. No 

obvious small parameter 3x3 system.   

fTWA works very well except for very slow ramps. Can not 

predict correctly strongly-correlated GS. Works very well for 

short and intermediate time ramps.  
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Same as in the previous slide but for 10x10 lattice 

Emergence of a very unusual (ring-type) state of fermions.   
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Application to MBL experiment (M. Schreiber et. al.). Same 

parameters, same number of dublons. L=40  

fTWA works qualitatively well for at least intermediate times 

and better than CTWA. Long times – tendency to decay.  



Slow Ramps from IN to SF 

S. Braun, … I. Bloch, U. Schneider, J. Eisert, PNAS 2015 

Check correlation length in the SF state as a function of ramp rate 



Experiment vs. SU(3) TWA 



2D simulation (uncorrelated disorder), 8x8 lattice (quick run) 

Reliable for the time scales shown. 


