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Solvable models play an important role in understanding 
Quantum Field Theory (QFT).

Each solvable, or partly solvable, QFT is simple when 
viewed in a particular way. 

Correspondingly, each model requires its own set of 
tools in order to solve it. Sometimes, this requires 
developing new techniques, which then prove useful in 
other contexts. 



In this talk the solvable QFT will be SYK and SYK-like 
models. The new techniques will include several results 
in Conformal Field Theory (CFT), in various dimensions. 

The talk has two parts.

Part 1: CFT results:

 Harmonic analysis on the conformal group
6j symbols
Multichannel conformal blocks. 

Part 2: The solution of SYK:
Computation of all-point correlation functions, at 
large N, in the infrared (conformal limit)



Before discussing SYK, let us recall a few classic 
examples of solvable QFTs, and the features they have 
that make them solvable:

1) 2d Integrable models: Sinh-Gordon

2) 4d Integrable model: maximally  
supersymmetric Yang Mills

3) 2d QCD with quarks (’t Hooft model)

4) 2d CFTs: minimal models



1) 2d Integrable models
Zamolodchikov and Zamolodchikov, ‘79

Solving a QFT means computing the full S matrix.
In particular, we need to compute the  n      n  S matrix, 
an arbitrarily large amount of work.

For integrable theories, there is no particle production, 
and the S matrix factorizes into a product of 2       2 S 
matrices. 

The 2       2 S matrix is computed by solving the 
constraints of unitarity, crossing, and Yang-Baxter (if 
there is more than one species)



The simplest example is the Sinh-Gordon model

From looking at the values we notice that,
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5. Sinh-Gordon

For the sinh-Gordon model,

L =
1

2
(@�)2 � m2

b2
(cosh(b�)� 1) (5.1)

the S-matrix is a CDD factor,

S(✓) =
sinh ✓ � i sin↵
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, ↵ =
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(1 + cosh ✓) , ✓ = ✓1 � ✓2 , E(✓i) = m cosh ✓i , p(✓) = m sinh ✓i . (5.3)
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2)
Beisert et al., ``Review of AdS/CFT Integrability”, 1012.3982 

In the simplest context, one wants to compute 
the dimensions of (single trace) operators.  

At weak coupling, this becomes a problem of 
diagonalizing an (integrable) spin-chain 
Hamiltonian. 

   =4  Super Yang-Mills
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duality, under tools for CFT.

references for SYK

condesned matter. better answer. (Leon) slide on experiment. buy real pointer. better

beginning + conclusion. How wonderful everything is. Cite other people (MS). Both at

18

At strong coupling, this is a string in AdS5 * S5, which 
also turns out to be integrable. 

At intermediate coupling, one assumes the 
Hamiltonian, whatever it is, is integrable. 



3) 2d QCD at large N (’t Hooft model)

Summing ladder diagrams gives the ’t Hooft 
equation: an integral equation, the solution of 
which gives the masses of mesons. 

’t Hooft, ’74;   Callan, Coote, Gross, ’76 
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4

Higher-point amplitudes are found by gluing 
together 4-point amplitudes, and are expressed in 
terms of the ’t Hooft wave function.



4) 2d CFTs: minimal models

CFTs in 2d have enhanced symmetry - Virasoro 
symmetry.  

The minimal models have a finite number of Virasoro 
primaries. The bootstrap equations can be solved 
explicitly. The correlation functions satisfy differential 
equations. The models are solved without drawing any 
Feynman diagrams.  

Belavin, Polyakov, Zamolodchikov, ’84 
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Sachdev & Ye, ‘93 
Kitaev, ’15 

SYK

Like the ’t Hooft model, SYK is solvable, but not 
integrable. 

The infrared of SYK is a near-CFT1, described by a 
CFT and the Schwarzian. The infrared of d-
dimensional SYK, as well variants of SYK (cSYK), are 
CFTs. I will be discussing the CFT sector/version. 



To solve a QFT, we must find the full S matrix

To solve a CFT, we must find all n-point correlation 
functions, of the fundamental field. (This is equivalent to 
finding all 3-point functions, of all operators, but this 
language is less natural in our context.)

The solvability of SYK will rely on two features:

1) A CFT n-point function is expressed in terms of n-
point conformal blocks. This will be Part 1. 

2) The Feynman diagrams contributing to the SYK n-
point function are built by gluing together four-point 
functions. This gives simple rules enabling us to, 
essentially,  write down an n-point function once we 
compute a six-point function. This will be Part 2. 



Part I: some CFT results



CFT 2-point and 3-point functions are fixed by conformal 
invariance. 
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n-point functions are built out of n-point blocks, found by 
gluing together 3-point functions. For instance, the 4-
point conformal partial wave is

For the 6-point block, there are three equations: the two above for the 5-point block, and in

addition,

[C(1, 2, 3) � 2( 2 � 1)] Gh1,...,h6

1, 2, 3
(z1,. . ., z6) = 0 . (2.52)

In any of these equations, it is equivalent to act with the Casimir on the complimentary set of

points. For instance, in the 4-point equation we could act with C(3, 4) instead of C(1, 2), or in the

5-point equation we could act with C(1, 2, 3) instead of C(4, 5). For the n-point block, the full set

of n � 3 equations are,

[C(1, . . . , k) � k�1( k�1 � 1)] Gh1,...,hn

1,..., n�3
(z1, . . . , zn) = 0 , 2  k  n�2 . (2.53)

We may insert into the these equations the decomposition of the conformal block into the

leg factor and the bare block (2.1), to then obtain sets of di↵erential equations in terms of the

cross-ratios. This is simple to do for low values of n, and to then recognize the equations, and to

see that the solutions are what we wrote down before for the conformal blocks.

This is a good approach for checking that one has the correct conformal blocks, but is less

good for actually finding the blocks, for n � 5, due to the large number of choices one needs to

make: the choice of the leg factors, as well as the choice of the cross-ratios. Any (correct) choice

will give correct equations, but they may not be in a form in which one can recognize the solution.

In Appendix A.2 we derive di↵erential equations for the comb function, which are what these

Casimir equations become. 9

3. d Dimensions

In this section we study conformal blocks in general dimension d. This is more involved than

in one or two dimensions, and we restrict to external operators that are scalars and exchanged

operators that are scalars. In Sec. 3.1 we review the computation of the 4-point blocks. In Sec. 3.2

we compute the 5-point blocks.

3.1. Four-point block, scalar exchange

The four-point conformal partial wave is,

 �i
� (xi) =

Z
d

d
x0 hO1O2O(x0)ih eO(x0)O3O4i , (3.1)

9
We checked that the Casimir equations for n-point blocks are the same as the di↵erential equations for the

comb function, for n up to 6. It is straightforward to check for larger n, but it is not obvious how to make the

match manifest.

16

Each vertex denotes a 3-point function, each line a 
position, and each internal line is a position that is 
integrated over.

(a)

...
(b)

Figure 1: (a) 4-point conformal block. (b) n-point conformal block, in the comb channel. ADD O

to first figure

like to exploit the symmetries of the theory to the fullest extent possible. In particular, one would

like to write the correlation functions in a way which separates the theory-dependent data from

the universal data, which only depends on the symmetries.

In a d dimensional quantum field theory endowed with conformal symmetry (a CFT), the

theory-dependent data are the dimensions and OPE coe�cients of the primary operators, and

the universal data are the conformal blocks. In the language of the OPE, in a CFT, the OPE

coe�cients of the primary operator fully fix the OPE coe�cients of the descendants - derivatives

of the primary. The conformal blocks sum all the descendants.

We can view a four-point conformal block as taking a four-point function and projecting the

intermediate state, lying in between the second and third operator, onto the conformal family of

a particular intermediate operator O, as shown in Fig. 1(a). An n-point conformal block, such

as the one shown in Fig. 1(b), has n�3 intermediate operators. Our goal is to compute n-point

conformal blocks.

Bootstrap using 4-pt. Already have all OPE data in 4-pt, so maybe don’t need higher point.

With higher point, would produce a richer set of equations.

In 2d, these are the global conformal blocks, not the Virasoro blocks. Global blocks are large

central charge limit (?) of Virasoro (in Yin paper, derive multipoint Virasoro. Not use optimal

form of Global).

v3 Want functional form correlation functions.

2pt, 3pt, fixed by conformal invariance. Simplest nontrivial case is 4-pt. Function of two cross

ratio built out of the 4 points. Get conformal blocks by doing OPE on both pairs of operators.

4pt block shown in Figure. Consistency of OPE in two di↵erent channel is basis of bootstrap.

We want higher-point blocks. There are now more cross ratios. In 2d the number is 2n.

Choice of channels. In what order OPE is performed. We will compute the conformal blocks in

the comb channel.

In Sec. ?? . In Sec. 2 we consider two dimensions, and compute the conformal blocks in the

comb channel, for any number of points. In Sec. 3 we turn to d dimensions. In Sec. ?? we compute

the 5-point blocks, .. We conclude in Sec. 4 with future directions.

[1–5] [6] [7]

SYK, or more precisely cSYK [8], is a one-dimensional CFT. Appearance of blocks in solution

2

1

2 3

4

(A conformal partial wave is a sum of a 
conformal block and a shadow block. )

Simmons-Duffin, ’12 
Ferrara et al, ’72 

partial wave,

hO1(x1)O2(x2)O3(x3)O4(x4)i =  
�3,�2,�1,�4

�0,J 0 (x3, x2, x1, x4) . (3.6)

(3.5) is a Euclidean inversion formula. It may be obtained starting from a four-point function

written in contour integral form,

hO1(x1)O2(x2)O3(x3)O4(x4)i =
1X

J=0

Z d

2+i1

d

2

d�

2⇡i

I�,J

n�,J

 �1,�2,�3,�4
�,J

(xi)

=
1X

J=0

Z d

2+i1

d

2�i1

d�

2⇡i

I�,J

n�,J

K�3,�4

e�,J
G�1,�2,�3,�4

�,J
(xi)

(3.7)

and applying orthogonality of partial waves. The function I�,J has poles at physical operator

locations with residues encoding the OPE coe�cients,

Res
�0=�

I�0,J / C12O�,J
C34O�,J

, (3.8)

after contour deformation away from the principal series � = d

2 + i⌫.19

Note that plugging (3.6) into (3.7) gives

 �3,�2,�1,�4

�0,J 0 (x3, x2, x1, x4) =
1X

J=0

Z d

2+i1

d

2

d�

2⇡i

⇣
 

e�1,e�2,e�3,e�4

e�,J
, �3,�2,�1,�4

�0,J 0

⌘

n�,J

 �1,�2,�3,�4
�,J

(x1, x2, x3, x4) .

(3.9)

Thus, the 6j symbol (3.4), divided by an appropriate normalization factor n�,J , gives the coe�-

cients for the expansion of a t-channel partial wave in s-channel partial waves.20 For this reason,

6j symbols are sometimes referred to as “crossing kernels.”

Instead of integrating over Euclidean space, an appropriate contour deformation of (3.5) allows

one to write it in terms of an integral of the double-commutator h[O4,O1][O2,O3]i over a Lorentzian
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This is analogous to a Fourier expansion, or an expansion 
in terms of  spherical harmonics. 

Dobrev et al., ’77 

Gadde, ’17;  
Karateev, Kravchuk, Simmons-Duffin ‘18 



The basic formalism of harmonic analysis was 
introduced a long time ago, but was not widely used.

SYK forces it upon us. The 4-point function is a sum of 
ladder diagrams. This sum becomes a trivial geometric 
sum when written in the above form (the conformal 
blocks are the eigenvectors that diagonalize the kernel 
that adds rungs to the ladders). 

Kitaev, ‘15 
Polchinski & V.R, ‘16 
Maldacena & Stanford, ‘16



Within CFT, one sometimes wishes to expand a 4-point 
function in various channels. The harmonic analysis 
formalism provides a way to do this.  One makes use of 
the crossing kernel: the overlap between the s-channel 
and the t-channel conformal partial waves  

In fact, this quantity is the 6j symbol for the Euclidean 
conformal group, SO(d+1,1). 

J. Liu, E. Perlmutter, V.R., D. Simmons-Duffin

We computed it in dimensions d=1, 2, 4, making use of 
Caron-Huot’s Lorentzian inversion formula. 

, =



The 6j symbol is probably most familiar in the context of 
spins in quantum mechanics. We can translate between 
the two:

SU(2) SO(d+1,1)

angular momentum J dimension Δ, spin J

z-component angular 
momentum position x

Clebsch-Gordan 3-pt function

hn = 2n+ 1 (0.11)

m2
n = hn(hn � 1) (0.12)
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⌧13⌧24

(0.13)

�i (0.14)

h (0.15)

Sbulk =

Z
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p
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2
n +

1
p
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�
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C

dh

2⇡i
⇢(h) ch1h2h ch3h4h F

h
hi
(⌧i) (0.17)

ni � 1 (0.18)

a1n, . . . , a
8
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hana
†
ma
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So far, we have discussed CFT 4-point functions. We 
said that these can be expanded in terms of a complete 
basis of conformal blocks (analogous to Fourier 
expansion), and some group-theoretic quantities like the 
6j symbol give us control over the expansion. 

We will need these results for computing correlation 
functions in SYK.

But before that we need to discuss n-point blocks. 



n-point conformal partial waves are found in the same 
way as the 4-point partial wave: by gluing together 3-
point functions. 

Let me focus on dimension d=1, and label the 
dimensions of operators by h. 

4-point 5-point 

3. Two dimensions
{2d}

Say how to get from 1d to 2d. In terms of diff eq, obvious that blocks are just a product of two

SL2 blocks. In terms of integral for shadow rep, probably 2d integral also factorizes. (will show the diff

eq. part later. Just state this as a fact for now).

State answer for n-point blocks, and define FK . Then, write explicitly, for 4, 5, 6 points. Also draw

picture for each.

Conformal partial wave,

Ψh1,...,hn
h1,...,hn−3

(z1, . . . , zn) (3.1)

Conformal bock with leg factors,

Gh1,...,hn

1,..., n−3
(z1, . . . , zn) (3.2)

Conformal block without leg factors, just a function of cross- ratios,

gh1,...,hn

1,..., n−3
(χ1, . . . ,χn−3) (3.3)

Cross-ratios,

χi =
zi,i+1zi+2,i+3

zi,i+2zi+1,i+3
(3.4)

The comb channel is defined as (see Fig. ??),

Ψ
h1,...,hn,hn+1

1,..., n−3, n−2
(z1, . . . , zn+1) =

∫
d n−2 Ψ

h1,...,hn−1, n−2

1,..., n−3
(z1, . . . , zn−1, n−2) ⟨Õ n−2

( n−2)OnOn+1⟩ (3.5)

Gh1,...,hn

1,..., n−3
(z1, . . . , zn) = Lh1,...,hn(z1, . . . , zn) g

h1,...,hn

1,..., n−3
(χ1, . . . ,χn−3) (3.6)

where,

Lh1,...,hn(z1, . . . , zn) =

(
z23

z12z13

)h1
(

zn−2,n−1

zn−2,nzn−1,n

)hn n−2∏

i=1

(
zi,i+2

zi,i+1zi+1,i+2

)hi+1

(3.7)

and

gh1,...,hn

1,..., n−3
(χ1, . . . ,χn−3)

=

(
n−3∏

i=1

χ i
i

)
FK

[
h1 + 1 − h2 1 + 2 − h3 . . . n−4 + n−3 − hn−2 n−3 + hn − hn−1

2 1 . . . 2 n−3
;χ1 . . . χn−3

]

(3.8)

suppress zi dependence when writing latter on?
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For n = 3 the leg factor is just a conformal three-point function,

Lh1,h2,h3(z1, z2, z3) =

(
z23

z12z13

)h1
(

z13
z12z23

)h2
(

z12
z13z23

)h3

(3.9)

Another form for writing the leg factor (a trivial rewriting) is,

(3.10)

The leg factors give the correct scaling in terms of dimension
∑

hi, for the correlator.

gh1,h2,h3,h4

1
= χ 1

1 FK

[
1 + h12, 1 − h34

2 1
;χ1

]
(3.11)

gh1,h2,h3,h4,h5

1, 2
= χ 1

1 χ 2
2 FK

[
1 + h12, 1 + 2 − h3, 2 − h45

2 1, 2 2
;χ1 χ2

]
(3.12)

gh1,h2,h3,h4,h5,h6

1, 2, 3
= χ 1

1 χ 2
2 χ 3

3 FK

[
1 + h12, 1 + 2 − h3, 2 + 3 − h4, 3 − h56

2 1, 2 2, 2 3
;χ1 χ2 χ3

]
(3.13)

It will also be useful to note,

Lh1,...,hn+1(z1, . . . , zn+1) = χ−hn
n−2

(
zn−1,n

zn−1,n+1zn,n+1

)hn+1

Lh1,...,hn(z1, . . . , zn) (3.14) {Lrel}

Discuss that the form we wrote is time ordered. Trivial to do anti-time ordrered. Discuss other

regiemes of cross ratios (for 4-pt), and how flipping times transforms the cross-ratios.

3.1. Five-point block

Do 4-pt exactly, by change of variables, and explain. That can restrict integration to regions.

Do for 5-pt exactly, by change of variables. Redo by adding onto 4-pt. (becomes harder to change

variables, and not using previous result). Of course, trivial to change variables to cross-ratio, by just

fixing pionts. But want the right cross ratios and need to produce function in a form in which it is

recognizable.

3.2. n-point block

For n-point, use block for n − 1 point, but only need to act on last cross-ratio. We can use the

following formula for FK (the splitting formula).

3.3. Evaluating the integral

Should call the integration variables z instead of τ , and let the cross-ratio be χ and not x?

4-pt - do exactly. To make use of SL2 symmetry, perform variable changes 3 times. Of course,

5
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( n−2)OnOn+1⟩ (3.5)

Gh1,...,hn

1,..., n−3
(z1, . . . , zn) = Lh1,...,hn(z1, . . . , zn) g

h1,...,hn

1,..., n−3
(χ1, . . . ,χn−3) (3.6)

where,

Lh1,...,hn(z1, . . . , zn) =

(
z23

z12z13

)h1
(

zn−2,n−1

zn−2,nzn−1,n

)hn n−2∏

i=1

(
zi,i+2

zi,i+1zi+1,i+2

)hi+1

(3.7)

and

gh1,...,hn

1,..., n−3
(χ1, . . . ,χn−3)

=

(
n−3∏

i=1

χ i
i

)
FK

[
h1 + 1 − h2 1 + 2 − h3 . . . n−4 + n−3 − hn−2 n−3 + hn − hn−1

2 1 . . . 2 n−3
;χ1 . . . χn−3

]

(3.8)

suppress zi dependence when writing latter on?

4

3. Two dimensions
{2d}

Say how to get from 1d to 2d. In terms of diff eq, obvious that blocks are just a product of two

SL2 blocks. In terms of integral for shadow rep, probably 2d integral also factorizes. (will show the diff

eq. part later. Just state this as a fact for now).

State answer for n-point blocks, and define FK . Then, write explicitly, for 4, 5, 6 points. Also draw

picture for each.

Conformal partial wave,

Ψh1,...,hn
h1,...,hn−3

(z1, . . . , zn) (3.1)

Conformal bock with leg factors,

Gh1,...,hn

1,..., n−3
(z1, . . . , zn) (3.2)

Conformal block without leg factors, just a function of cross- ratios,

gh1,...,hn

1,..., n−3
(χ1, . . . ,χn−3) (3.3)

Cross-ratios,

χi =
zi,i+1zi+2,i+3

zi,i+2zi+1,i+3
(3.4)

The comb channel is defined as (see Fig. ??),

Ψ
h1,...,hn,hn+1

1,..., n−3, n−2
(z1, . . . , zn+1) =

∫
d n−2 Ψ

h1,...,hn−1, n−2

1,..., n−3
(z1, . . . , zn−1, n−2) ⟨Õ n−2

( n−2)OnOn+1⟩ (3.5)

Gh1,...,hn

1,..., n−3
(z1, . . . , zn) = Lh1,...,hn(z1, . . . , zn) g

h1,...,hn

1,..., n−3
(χ1, . . . ,χn−3) (3.6)

where,

Lh1,...,hn(z1, . . . , zn) =

(
z23

z12z13

)h1
(

zn−2,n−1

zn−2,nzn−1,n

)hn n−2∏

i=1

(
zi,i+2

zi,i+1zi+1,i+2

)hi+1

(3.7)

and

gh1,...,hn

1,..., n−3
(χ1, . . . ,χn−3)

=

(
n−3∏

i=1

χ i
i

)
FK

[
h1 + 1 − h2 1 + 2 − h3 . . . n−4 + n−3 − hn−2 n−3 + hn − hn−1

2 1 . . . 2 n−3
;χ1 . . . χn−3

]

(3.8)

suppress zi dependence when writing latter on?

4

3. Two dimensions
{2d}

Say how to get from 1d to 2d. In terms of diff eq, obvious that blocks are just a product of two

SL2 blocks. In terms of integral for shadow rep, probably 2d integral also factorizes. (will show the diff

eq. part later. Just state this as a fact for now).

State answer for n-point blocks, and define FK . Then, write explicitly, for 4, 5, 6 points. Also draw

picture for each.

Conformal partial wave,

Ψh1,...,hn
h1,...,hn−3

(z1, . . . , zn) (3.1)

Conformal bock with leg factors,

Gh1,...,hn

1,..., n−3
(z1, . . . , zn) (3.2)

Conformal block without leg factors, just a function of cross- ratios,

gh1,...,hn

1,..., n−3
(χ1, . . . ,χn−3) (3.3)

Cross-ratios,

χi =
zi,i+1zi+2,i+3

zi,i+2zi+1,i+3
(3.4)

The comb channel is defined as (see Fig. ??),

Ψ
h1,...,hn,hn+1

1,..., n−3, n−2
(z1, . . . , zn+1) =

∫
d n−2 Ψ

h1,...,hn−1, n−2

1,..., n−3
(z1, . . . , zn−1, n−2) ⟨Õ n−2

( n−2)OnOn+1⟩ (3.5)

Gh1,...,hn

1,..., n−3
(z1, . . . , zn) = Lh1,...,hn(z1, . . . , zn) g

h1,...,hn

1,..., n−3
(χ1, . . . ,χn−3) (3.6)

where,

Lh1,...,hn(z1, . . . , zn) =

(
z23

z12z13

)h1
(

zn−2,n−1

zn−2,nzn−1,n

)hn n−2∏

i=1

(
zi,i+2

zi,i+1zi+1,i+2

)hi+1

(3.7)

and

gh1,...,hn

1,..., n−3
(χ1, . . . ,χn−3)

=

(
n−3∏

i=1

χ i
i

)
FK

[
h1 + 1 − h2 1 + 2 − h3 . . . n−4 + n−3 − hn−2 n−3 + hn − hn−1

2 1 . . . 2 n−3
;χ1 . . . χn−3

]

(3.8)

suppress zi dependence when writing latter on?

4

For n = 3 the leg factor is just a conformal three-point function,

Lh1,h2,h3(z1, z2, z3) =

(
z23

z12z13

)h1
(

z13
z12z23

)h2
(

z12
z13z23

)h3

(3.9)

Another form for writing the leg factor (a trivial rewriting) is,

(3.10)

The leg factors give the correct scaling in terms of dimension
∑

hi, for the correlator.

gh1,h2,h3,h4

1
= χ 1

1 FK

[
1 + h12, 1 − h34

2 1
;χ1

]
(3.11)

gh1,h2,h3,h4,h5

1, 2
= χ 1

1 χ 2
2 FK

[
1 + h12, 1 + 2 − h3, 2 − h45

2 1, 2 2
;χ1 χ2

]
(3.12)

gh1,h2,h3,h4,h5,h6

1, 2, 3
= χ 1

1 χ 2
2 χ 3

3 FK

[
1 + h12, 1 + 2 − h3, 2 + 3 − h4, 3 − h56

2 1, 2 2, 2 3
;χ1 χ2 χ3

]
(3.13)

It will also be useful to note,

Lh1,...,hn+1(z1, . . . , zn+1) = χ−hn
n−2

(
zn−1,n

zn−1,n+1zn,n+1

)hn+1

Lh1,...,hn(z1, . . . , zn) (3.14) {Lrel}

Discuss that the form we wrote is time ordered. Trivial to do anti-time ordrered. Discuss other

regiemes of cross ratios (for 4-pt), and how flipping times transforms the cross-ratios.

3.1. Five-point block

Do 4-pt exactly, by change of variables, and explain. That can restrict integration to regions.

Do for 5-pt exactly, by change of variables. Redo by adding onto 4-pt. (becomes harder to change

variables, and not using previous result). Of course, trivial to change variables to cross-ratio, by just

fixing pionts. But want the right cross ratios and need to produce function in a form in which it is

recognizable.

3.2. n-point block

For n-point, use block for n − 1 point, but only need to act on last cross-ratio. We can use the

following formula for FK (the splitting formula).

3.3. Evaluating the integral

Should call the integration variables z instead of τ , and let the cross-ratio be χ and not x?

4-pt - do exactly. To make use of SL2 symmetry, perform variable changes 3 times. Of course,

5

higher point, would produce a richer set of equations.

In 2d, these are the global conformal blocks, not the Virasoro blocks. Global blocks are large central

charge limit (?) of Virasoro (in Yin paper, derive multipoint Virasoro. Not use optimal form of Global).

v3 Want functional form correlation functions.

2pt, 3pt, fixed by conformal invariance. Simplest nontrivial case is 4-pt. Function of two cross ratio

built out of the 4 points. Get conformal blocks by doing OPE on both pairs of operators. 4pt block

shown in Figure. Consistency of OPE in two different channel is basis of bootstrap.

We want higher-point blocks. There are now more cross ratios. In 2d the number is 2n. Choice of

channels. In what order OPE is performed. We will compute the conformal blocks in the comb channel.

In Sec. 2 . In Sec. 3 we consider two dimensions, and compute the conformal blocks in the comb

channel, for any number of points. In Sec. 4 we turn to d dimensions. In Sec. ?? we compute the 5-point

blocks, .. We conclude in Sec. 5 with future directions.

[1–5]

[6]

[7]

[8] [9]

h5 , h6 , 2 , 3 (1.9)

2. Conformal Blocks and Conformal Partial Waves
{CPW}

Need notation for partial wave and for block. Use what is in Simmons-Duffin last paper?

Discuss conformal symmetry.

The observables in a CFT are the correlation functions of operators. The symmetries constrain the

functional form of the correlators. Translational symmetry means correlators can only depend on the

differences of time. If we had translation invariance, the 2-pt function would be a function f(x1 − x2).

Conformal symmetry, in addition to translations has dilitations and special conformal transformations,

gives for the 2-pt of primaries 1/x2∆
12 .

List symmetries. Then do OPE. to get formal expression for blocks.

Then discuss shadow formalism. Why is this correct? How to map between the two?

3 ways of getting blocks. 1) OPE and doing the sum. 2) shadow formalism. 3) solving the differential

equation

1)Define OPE operator, and apply. We just want an explicit form for this expression (of differential

operators acting on the 3-pt function).

2) Simmons-Duffin defined monodromy conditions to pick out block. We just look at the expression.

Say how it should behave in the OPE limit.

3) Write down diff eq. and explain why they are correct. Point out that there are different way of

writing the same equation. For instance, for 5pt C(1, 2) or C(1, 2, 3).
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higher point, would produce a richer set of equations.

In 2d, these are the global conformal blocks, not the Virasoro blocks. Global blocks are large central

charge limit (?) of Virasoro (in Yin paper, derive multipoint Virasoro. Not use optimal form of Global).

v3 Want functional form correlation functions.

2pt, 3pt, fixed by conformal invariance. Simplest nontrivial case is 4-pt. Function of two cross ratio

built out of the 4 points. Get conformal blocks by doing OPE on both pairs of operators. 4pt block

shown in Figure. Consistency of OPE in two different channel is basis of bootstrap.

We want higher-point blocks. There are now more cross ratios. In 2d the number is 2n. Choice of

channels. In what order OPE is performed. We will compute the conformal blocks in the comb channel.

In Sec. 2 . In Sec. 3 we consider two dimensions, and compute the conformal blocks in the comb

channel, for any number of points. In Sec. 4 we turn to d dimensions. In Sec. ?? we compute the 5-point

blocks, .. We conclude in Sec. 5 with future directions.

[1–5]

[6]

[7]

[8] [9]

h5 , h6 , 2 , 3 (1.9)

2. Conformal Blocks and Conformal Partial Waves
{CPW}

Need notation for partial wave and for block. Use what is in Simmons-Duffin last paper?

Discuss conformal symmetry.

The observables in a CFT are the correlation functions of operators. The symmetries constrain the

functional form of the correlators. Translational symmetry means correlators can only depend on the

differences of time. If we had translation invariance, the 2-pt function would be a function f(x1 − x2).

Conformal symmetry, in addition to translations has dilitations and special conformal transformations,

gives for the 2-pt of primaries 1/x2∆
12 .

List symmetries. Then do OPE. to get formal expression for blocks.

Then discuss shadow formalism. Why is this correct? How to map between the two?

3 ways of getting blocks. 1) OPE and doing the sum. 2) shadow formalism. 3) solving the differential

equation

1)Define OPE operator, and apply. We just want an explicit form for this expression (of differential

operators acting on the 3-pt function).

2) Simmons-Duffin defined monodromy conditions to pick out block. We just look at the expression.

Say how it should behave in the OPE limit.

3) Write down diff eq. and explain why they are correct. Point out that there are different way of

writing the same equation. For instance, for 5pt C(1, 2) or C(1, 2, 3).

3



Recall the form of the 4-point block

3. Two dimensions

{2d}
Say how to get from 1d to 2d. In terms of di↵ eq, obvious that blocks are just a product of two

SL2 blocks. In terms of integral for shadow rep, probably 2d integral also factorizes. (will show the di↵

eq. part later. Just state this as a fact for now).

State answer for n-point blocks, and define FK . Then, write explicitly, for 4, 5, 6 points. Also draw

picture for each.

Conformal partial wave,

 h1,...,hn
h1,...,hn�3

(z1, . . . , zn) (3.1)

Conformal bock with leg factors,

G
h1,...,hn

1,..., n�3
(z1, . . . , zn) (3.2)

Conformal block without leg factors, just a function of cross- ratios,

g
h1,...,hn

1,..., n�3
(�1, . . . , �n�3) (3.3)

Cross-ratios,

�i =
zi,i+1zi+2,i+3

zi,i+2zi+1,i+3
(3.4)

The comb channel is defined as (see Fig. ??),

 
h1,...,hn,hn+1

1,..., n�3, n�2
(z1, . . . , zn+1) =

Z
d n�2 

h1,...,hn�1, n�2

1,..., n�3
(z1, . . . , zn�1, n�2) h eO

n�2
( n�2)OnOn+1i (3.5)

G
h1,...,hn

1,..., n�3
(z1, . . . , zn) = L

h1,...,hn(z1, . . . , zn) g
h1,...,hn

1,..., n�3
(�1, . . . , �n�3) (3.6)

where,

L
h1,...,hn(z1, . . . , zn) =

✓
z23

z12z13

◆h1
✓

zn�2,n�1

zn�2,nzn�1,n

◆hn n�2Y

i=1

✓
zi,i+2

zi,i+1zi+1,i+2

◆hi+1

(3.7)

and

g
h1,...,hn

1,..., n�3
(�1, . . . , �n�3)

=

 
n�3Y

i=1

� i
i

!
FK


h1 + 1 � h2 1 + 2 � h3 . . . n�4 + n�3 � hn�2 n�3 + hn � hn�1

2 1 . . . 2 n�3
; �1 . . . �n�3

�

(3.8)

suppress zi dependence when writing latter on?
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3. Two dimensions

{2d}
Say how to get from 1d to 2d. In terms of di↵ eq, obvious that blocks are just a product of two

SL2 blocks. In terms of integral for shadow rep, probably 2d integral also factorizes. (will show the di↵

eq. part later. Just state this as a fact for now).

State answer for n-point blocks, and define FK . Then, write explicitly, for 4, 5, 6 points. Also draw

picture for each.

Conformal partial wave,

 h1,...,hn
h1,...,hn�3

(z1, . . . , zn) (3.1)

Conformal bock with leg factors,

G
h1,...,hn

1,..., n�3
(z1, . . . , zn) (3.2)

Conformal block without leg factors, just a function of cross- ratios,

g
h1,...,hn

1,..., n�3
(�1, . . . , �n�3) (3.3)

Cross-ratios,

�i =
zi,i+1zi+2,i+3

zi,i+2zi+1,i+3
(3.4)

The comb channel is defined as (see Fig. ??),

 
h1,...,hn,hn+1

1,..., n�3, n�2
(z1, . . . , zn+1) =

Z
d n�2 

h1,...,hn�1, n�2

1,..., n�3
(z1, . . . , zn�1, n�2) h eO

n�2
( n�2)OnOn+1i (3.5)

G
h1,...,hn

1,..., n�3
(z1, . . . , zn) = L

h1,...,hn(z1, . . . , zn) g
h1,...,hn

1,..., n�3
(�1, . . . , �n�3) (3.6)

where,

L
h1,...,hn(z1, . . . , zn) =

✓
z23

z12z13

◆h1
✓

zn�2,n�1

zn�2,nzn�1,n

◆hn n�2Y

i=1

✓
zi,i+2

zi,i+1zi+1,i+2

◆hi+1

(3.7)

and

g
h1,...,hn

1,..., n�3
(�1, . . . , �n�3)

=

 
n�3Y

i=1

� i
i

!
FK


h1 + 1 � h2 1 + 2 � h3 . . . n�4 + n�3 � hn�2 n�3 + hn � hn�1

2 1 . . . 2 n�3
; �1 . . . �n�3

�

(3.8)

suppress zi dependence when writing latter on?
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3. Two dimensions

{2d}
Say how to get from 1d to 2d. In terms of di↵ eq, obvious that blocks are just a product of two

SL2 blocks. In terms of integral for shadow rep, probably 2d integral also factorizes. (will show the di↵

eq. part later. Just state this as a fact for now).

State answer for n-point blocks, and define FK . Then, write explicitly, for 4, 5, 6 points. Also draw

picture for each.

Conformal partial wave,

 h1,...,hn
h1,...,hn�3

(z1, . . . , zn) (3.1)

Conformal bock with leg factors,

G
h1,...,hn

1,..., n�3
(z1, . . . , zn) (3.2)

Conformal block without leg factors, just a function of cross- ratios,

g
h1,...,hn

1,..., n�3
(�1, . . . , �n�3) (3.3)

Cross-ratios,

�i =
zi,i+1zi+2,i+3

zi,i+2zi+1,i+3
(3.4)

The comb channel is defined as (see Fig. ??),

 
h1,...,hn,hn+1

1,..., n�3, n�2
(z1, . . . , zn+1) =

Z
d n�2 

h1,...,hn�1, n�2

1,..., n�3
(z1, . . . , zn�1, n�2) h eO

n�2
( n�2)OnOn+1i (3.5)

G
h1,...,hn

1,..., n�3
(z1, . . . , zn) = L

h1,...,hn(z1, . . . , zn) g
h1,...,hn

1,..., n�3
(�1, . . . , �n�3) (3.6)

where,

L
h1,...,hn(z1, . . . , zn) =

✓
z23

z12z13

◆h1
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zn�2,n�1

zn�2,nzn�1,n

◆hn n�2Y

i=1

✓
zi,i+2

zi,i+1zi+1,i+2

◆hi+1

(3.7)

and

g
h1,...,hn

1,..., n�3
(�1, . . . , �n�3)

=

 
n�3Y

i=1

� i
i

!
FK


h1 + 1 � h2 1 + 2 � h3 . . . n�4 + n�3 � hn�2 n�3 + hn � hn�1

2 1 . . . 2 n�3
; �1 . . . �n�3

�

(3.8)

suppress zi dependence when writing latter on?
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3. Two dimensions

{2d}
Say how to get from 1d to 2d. In terms of di↵ eq, obvious that blocks are just a product of two

SL2 blocks. In terms of integral for shadow rep, probably 2d integral also factorizes. (will show the di↵

eq. part later. Just state this as a fact for now).

State answer for n-point blocks, and define FK . Then, write explicitly, for 4, 5, 6 points. Also draw

picture for each.

Conformal partial wave,

 h1,...,hn
h1,...,hn�3

(z1, . . . , zn) (3.1)

Conformal bock with leg factors,

G
h1,...,hn

1,..., n�3
(z1, . . . , zn) (3.2)

Conformal block without leg factors, just a function of cross- ratios,

g
h1,...,hn

1,..., n�3
(�1, . . . , �n�3) (3.3)

Cross-ratios,

�i =
zi,i+1zi+2,i+3

zi,i+2zi+1,i+3
(3.4)

The comb channel is defined as (see Fig. ??),

 
h1,...,hn,hn+1

1,..., n�3, n�2
(z1, . . . , zn+1) =

Z
d n�2 

h1,...,hn�1, n�2

1,..., n�3
(z1, . . . , zn�1, n�2) h eO

n�2
( n�2)OnOn+1i (3.5)

G
h1,...,hn

1,..., n�3
(z1, . . . , zn) = L

h1,...,hn(z1, . . . , zn) g
h1,...,hn

1,..., n�3
(�1, . . . , �n�3) (3.6)

where,

L
h1,...,hn(z1, . . . , zn) =

✓
z23

z12z13

◆h1
✓

zn�2,n�1

zn�2,nzn�1,n

◆hn n�2Y

i=1

✓
zi,i+2

zi,i+1zi+1,i+2

◆hi+1

(3.7)

and

g
h1,...,hn

1,..., n�3
(�1, . . . , �n�3)

=

 
n�3Y

i=1

� i
i

!
FK


h1 + 1 � h2 1 + 2 � h3 . . . n�4 + n�3 � hn�2 n�3 + hn � hn�1

2 1 . . . 2 n�3
; �1 . . . �n�3

�

(3.8)

suppress zi dependence when writing latter on?

4

For n = 3 the leg factor is just a conformal three-point function,

L
h1,h2,h3(z1, z2, z3) =

✓
z23

z12z13

◆h1
✓

z13

z12z23

◆h2
✓

z12

z13z23

◆h3

(3.9)

Another form for writing the leg factor (a trivial rewriting) is,

(3.10)

The leg factors give the correct scaling in terms of dimension
P

hi, for the correlator.

g
h1,h2,h3,h4

1
= � 1

1 FK


1 + h12, 1 � h34

2 1
; �1

�
(3.11)

g
h1,h2,h3,h4,h5

1, 2
= � 1

1 � 2
2 FK


1 + h12, 1 + 2 � h3, 2 � h45

2 1, 2 2
; �1 �2

�
(3.12)

g
h1,h2,h3,h4,h5,h6

1, 2, 3
= � 1

1 � 2
2 � 3

3 FK


1 + h12, 1 + 2 � h3, 2 + 3 � h4, 3 � h56

2 1, 2 2, 2 3
; �1 �2 �3

�
(3.13)

It will also be useful to note,

L
h1,...,hn+1(z1, . . . , zn+1) = �

�hn
n�2

✓
zn�1,n

zn�1,n+1zn,n+1

◆hn+1

L
h1,...,hn(z1, . . . , zn) (3.14) {Lrel}

Discuss that the form we wrote is time ordered. Trivial to do anti-time ordrered. Discuss other

regiemes of cross ratios (for 4-pt), and how flipping times transforms the cross-ratios.

3.1. Five-point block

Do 4-pt exactly, by change of variables, and explain. That can restrict integration to regions.

Do for 5-pt exactly, by change of variables. Redo by adding onto 4-pt. (becomes harder to change

variables, and not using previous result). Of course, trivial to change variables to cross-ratio, by just

fixing pionts. But want the right cross ratios and need to produce function in a form in which it is

recognizable.

3.2. n-point block

For n-point, use block for n � 1 point, but only need to act on last cross-ratio. We can use the

following formula for FK (the splitting formula).

3.3. Evaluating the integral

Should call the integration variables z instead of � , and let the cross-ratio be � and not x?

4-pt - do exactly. To make use of SL2 symmetry, perform variable changes 3 times. Of course,

5

(a)

3. Two dimensions

{2d}
Say how to get from 1d to 2d. In terms of di↵ eq, obvious that blocks are just a product of two

SL2 blocks. In terms of integral for shadow rep, probably 2d integral also factorizes. (will show the di↵

eq. part later. Just state this as a fact for now).

State answer for n-point blocks, and define FK . Then, write explicitly, for 4, 5, 6 points. Also draw

picture for each.

Conformal partial wave,
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h1,...,hn�3
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Conformal bock with leg factors,
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h1,...,hn
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Cross-ratios,
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zi,i+2zi+1,i+3
(3.4)

The comb channel is defined as (see Fig. ??),
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1,..., n�3
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where,
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(3.7)

and

g
h1,...,hn

1,..., n�3
(�1, . . . , �n�3)

=

 
n�3Y
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� i
i

!
FK
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2 1 . . . 2 n�3
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�

(3.8)

suppress zi dependence when writing latter on?
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Say how to get from 1d to 2d. In terms of di↵ eq, obvious that blocks are just a product of two

SL2 blocks. In terms of integral for shadow rep, probably 2d integral also factorizes. (will show the di↵

eq. part later. Just state this as a fact for now).

State answer for n-point blocks, and define FK . Then, write explicitly, for 4, 5, 6 points. Also draw

picture for each.
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h1,...,hn
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Say how to get from 1d to 2d. In terms of di↵ eq, obvious that blocks are just a product of two

SL2 blocks. In terms of integral for shadow rep, probably 2d integral also factorizes. (will show the di↵
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For n = 3 the leg factor is just a conformal three-point function,
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(3.9)

Another form for writing the leg factor (a trivial rewriting) is,

(3.10)

The leg factors give the correct scaling in terms of dimension
P

hi, for the correlator.

g
h1,h2,h3,h4

1
= � 1

1 FK


1 + h12, 1 � h34

2 1
; �1

�
(3.11)

g
h1,h2,h3,h4,h5

1, 2
= � 1

1 � 2
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2 1, 2 2
; �1 �2

�
(3.12)

g
h1,h2,h3,h4,h5,h6

1, 2, 3
= � 1
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1 + h12, 1 + 2 � h3, 2 + 3 � h4, 3 � h56

2 1, 2 2, 2 3
; �1 �2 �3

�
(3.13)

It will also be useful to note,

L
h1,...,hn+1(z1, . . . , zn+1) = �
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zn�1,n
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L
h1,...,hn(z1, . . . , zn) (3.14) {Lrel}

Discuss that the form we wrote is time ordered. Trivial to do anti-time ordrered. Discuss other

regiemes of cross ratios (for 4-pt), and how flipping times transforms the cross-ratios.

3.1. Five-point block

Do 4-pt exactly, by change of variables, and explain. That can restrict integration to regions.

Do for 5-pt exactly, by change of variables. Redo by adding onto 4-pt. (becomes harder to change

variables, and not using previous result). Of course, trivial to change variables to cross-ratio, by just

fixing pionts. But want the right cross ratios and need to produce function in a form in which it is

recognizable.

3.2. n-point block

For n-point, use block for n � 1 point, but only need to act on last cross-ratio. We can use the

following formula for FK (the splitting formula).

3.3. Evaluating the integral

Should call the integration variables z instead of � , and let the cross-ratio be � and not x?

4-pt - do exactly. To make use of SL2 symmetry, perform variable changes 3 times. Of course,

5

higher point, would produce a richer set of equations.

In 2d, these are the global conformal blocks, not the Virasoro blocks. Global blocks are large central

charge limit (?) of Virasoro (in Yin paper, derive multipoint Virasoro. Not use optimal form of Global).

v3 Want functional form correlation functions.

2pt, 3pt, fixed by conformal invariance. Simplest nontrivial case is 4-pt. Function of two cross ratio

built out of the 4 points. Get conformal blocks by doing OPE on both pairs of operators. 4pt block

shown in Figure. Consistency of OPE in two di↵erent channel is basis of bootstrap.

We want higher-point blocks. There are now more cross ratios. In 2d the number is 2n. Choice of

channels. In what order OPE is performed. We will compute the conformal blocks in the comb channel.

In Sec. 2 . In Sec. 3 we consider two dimensions, and compute the conformal blocks in the comb

channel, for any number of points. In Sec. 4 we turn to d dimensions. In Sec. ?? we compute the 5-point

blocks, .. We conclude in Sec. 5 with future directions.

[1–5]

[6]

[7]

[8] [9]

h5 , h6 , 2 , 3 (1.9)

2. Conformal Blocks and Conformal Partial Waves

{CPW}
Need notation for partial wave and for block. Use what is in Simmons-Du�n last paper?

Discuss conformal symmetry.

The observables in a CFT are the correlation functions of operators. The symmetries constrain the

functional form of the correlators. Translational symmetry means correlators can only depend on the

di↵erences of time. If we had translation invariance, the 2-pt function would be a function f(x1 � x2).

Conformal symmetry, in addition to translations has dilitations and special conformal transformations,

gives for the 2-pt of primaries 1/x2�
12 .

List symmetries. Then do OPE. to get formal expression for blocks.

Then discuss shadow formalism. Why is this correct? How to map between the two?

3 ways of getting blocks. 1) OPE and doing the sum. 2) shadow formalism. 3) solving the di↵erential

equation

1)Define OPE operator, and apply. We just want an explicit form for this expression (of di↵erential

operators acting on the 3-pt function).

2) Simmons-Du�n defined monodromy conditions to pick out block. We just look at the expression.

Say how it should behave in the OPE limit.

3) Write down di↵ eq. and explain why they are correct. Point out that there are di↵erent way of

writing the same equation. For instance, for 5pt C(1, 2) or C(1, 2, 3).
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channels. In what order OPE is performed. We will compute the conformal blocks in the comb channel.

In Sec. 2 . In Sec. 3 we consider two dimensions, and compute the conformal blocks in the comb

channel, for any number of points. In Sec. 4 we turn to d dimensions. In Sec. ?? we compute the 5-point
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functional form of the correlators. Translational symmetry means correlators can only depend on the
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Conformal symmetry, in addition to translations has dilitations and special conformal transformations,
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operators acting on the 3-pt function).
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Say how it should behave in the OPE limit.

3) Write down di↵ eq. and explain why they are correct. Point out that there are di↵erent way of
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(b)

3. Two dimensions

{2d}
Say how to get from 1d to 2d. In terms of di↵ eq, obvious that blocks are just a product of two

SL2 blocks. In terms of integral for shadow rep, probably 2d integral also factorizes. (will show the di↵

eq. part later. Just state this as a fact for now).

State answer for n-point blocks, and define FK . Then, write explicitly, for 4, 5, 6 points. Also draw

picture for each.

Conformal partial wave,
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For n = 3 the leg factor is just a conformal three-point function,
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Another form for writing the leg factor (a trivial rewriting) is,
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The leg factors give the correct scaling in terms of dimension
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hi, for the correlator.
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Discuss that the form we wrote is time ordered. Trivial to do anti-time ordrered. Discuss other

regiemes of cross ratios (for 4-pt), and how flipping times transforms the cross-ratios.

3.1. Five-point block

Do 4-pt exactly, by change of variables, and explain. That can restrict integration to regions.
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variables, and not using previous result). Of course, trivial to change variables to cross-ratio, by just
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Figure 3: The (a) 4-point (b) 5-point (c) 6-point conformal partial waves. These are special cases
of Fig. 2 for n = 4, 5, 6, respectively.

will assume that they are ordered, z1 > z2 > . . . > zn.

A nice property of the conformal blocks in the comb channel is that they have a Z2 symmetry:

Fig. 2 can be read either from left to right, or from right to left. 5 They also have a shift symmetry.

Both of these symmetries are reflected in the formula.

2.1.4. Conformal blocks for small n

Let us write out the conformal blocks (2.7) for some small values of n. For the 4-point block,

n = 4, we recover the usual conformal block, see Fig. 3(a), 6

g
h1,h2,h3,h4

1
= � 1

1 FK


1+h12, 1�h34

2 1
; �1

�
. (2.9)

For the 5-point block, see Fig. 3(b), we have,

g
h1,h2,h3,h4,h5

1, 2
= � 1

1 � 2
2 FK


1+h12, 1+ 2�h3, 2 � h45

2 1, 2 2
; �1, �2

�
, (2.10)

and for the 6-point block, see Fig. 3(c), we have,

g
h1,h2,h3,h4,h5,h6

1, 2, 3
= � 1

1 � 2
2 � 3

3 FK


1+h12, 1+ 2�h3, 2+ 3�h4, 3�h56

2 1, 2 2, 2 3
; �1, �2, �3

�
, (2.11)

5
For the partial waves, one should draw the diagram with arrows on the internal lines. The arrows would all

point to the right, with the convention that an arrow leaves an operator and enter the shadow of an operator. The

arrows break the symmetry, but only by trivial shadow transform factors that can be accounted for.

6
Our 4-point block is written in a form that is slight di↵erent from the standard form, due to our choice of leg

factor. If one applies the identity for 2F1 in (2.21), then this gives the standard form of the block.

6

where the cross-ratios are (2.1),

�1 =
z12z34

z13z24
, �2 =

z23z45

z24z35
, �3 =

z34z56

z35z46
, (2.12)

and we have used short-hand hij ⌘ hi � hj.

Let us also write out the leg factors (2.2) for some small values of n. For n = 3 the leg factor

is just a conformal three-point function,

L
h1,h2,h3 =

✓
z23

z12z13

◆h1
✓

z13

z12z23

◆h2
✓

z12

z13z23

◆h3

=
1

z
h1+h2�h3
12 z

h1+h3�h2
13 z

h2+h3�h1
23

. (2.13)

For n = 4 we may write the leg factor as,

L
h1,h2,h3,h4 =

1

z
h1+h2
12 z

h3+h4
34

✓
z23

z13

◆h12
✓

z24

z23

◆h34

, (2.14)

and for n = 5 we may write the leg factor as,

L
h1,h2,h3,h4,h5 =

1

z
h1+h2
12 z

h3
34z

h4+h5
45

✓
z23

z13

◆h12
✓

z24

z23

◆h3
✓

z35

z34

◆h45

. (2.15)

From the definition of the leg factors (2.2) one can trivially relate the n+1 point leg factor to the

n point leg factor,

L
h1,...,hn+1(z1, . . . , zn+1) = �

�hn
n�2

✓
zn�1,n

zn�1,n+1zn,n+1

◆hn+1

L
h1,...,hn(z1, . . . , zn) . (2.16)

This completes our summary of the results. The rest of the section is devoted to deriving the

conformal blocks (2.7).

2.2. Four-point block

We start by recalling the standard four-point conformal block, see Fig. 3(a). We will find it

by computing the integral defining the conformal partial wave. The definition of the conformal

partial wave is, (2.4),

 h1,h2,h3,h4

1
=

Z
d 1

|z12|
�h1�h2+ 1 |z34|

�h3�h4+1� 1

| 1 � z1|
1+h12 | 1 � z2|

1�h12 | 1 � z3|
1� 1+h34 | 1 � z4|

1� 1�h34
. (2.17)

We do a change of variables, 1 ! 1
�1 + z1,

 h1,h2,h3,h4

1
=

Z
d 1

|z12|
�2h2 |z34|

�h3�h4+1� 1 |z13|
�1+ 1�h34 |z14|

�1+ 1+h34

| 1 � z
�1
21 | 1�h12 | 1 � z

�1
31 |

1� 1+h34 | 1 � z
�1
41 |

1� 1�h34
. (2.18)

7

This  is the standard hypergeometric function of one 
variable, 2F1

O1, . . . ,O4 (0.25)

K�1,�2
[�3,J ]

= (�
1

2
)J (0.26)

hO(x1)O(x2)i =
1

|x12|
2� (0.27)

hO1O2O3i =
1

|x12|
�1+�2��3 |x13|

�1+�3��2 |x23|
�2+�3��1

(0.28)

Z

C

dh

2⇡i
e⇢(h) ch1h2h ch3h4h G

h1,h2,h3,h4
h (⌧i) (0.29)

Z

C

dha

2⇡i
e⇢(ha)

Z

C

dhb

2⇡i
e⇢(hb) ch1h2ha

chah3hb
chbh4h5

Gh1,h2,h3,h4,h5
ha,hb

(⌧i) (0.30)

L =
1

4
F j
µ⌫ iF

µ⌫ i
j +  

i �
i�µDµ �ma

�
 i (0.31)

2F1 (0.32)

4



We computed the n-point block, for any n, in the following 
channel, which we call the comb channel. 

The result is in terms of an n-3 variable hypergeometric 
function, which we call the comb function.

VR, ‘18

3. Two dimensions
{2d}

Say how to get from 1d to 2d. In terms of diff eq, obvious that blocks are just a product of two

SL2 blocks. In terms of integral for shadow rep, probably 2d integral also factorizes. (will show the diff

eq. part later. Just state this as a fact for now).

State answer for n-point blocks, and define FK . Then, write explicitly, for 4, 5, 6 points. Also draw

picture for each.

Conformal partial wave,

Ψh1,...,hn
h1,...,hn−3

(z1, . . . , zn) (3.1)

Conformal bock with leg factors,

Gh1,...,hn

1,..., n−3
(z1, . . . , zn) (3.2)

Conformal block without leg factors, just a function of cross- ratios,

gh1,...,hn

1,..., n−3
(χ1, . . . ,χn−3) (3.3)

Cross-ratios,

χi =
zi,i+1zi+2,i+3

zi,i+2zi+1,i+3
(3.4)

The comb channel is defined as (see Fig. ??),

Ψ
h1,...,hn,hn+1

1,..., n−3, n−2
(z1, . . . , zn+1) =

∫
d n−2 Ψ

h1,...,hn−1, n−2

1,..., n−3
(z1, . . . , zn−1, n−2) ⟨Õ n−2

( n−2)OnOn+1⟩ (3.5)

Gh1,...,hn

1,..., n−3
(z1, . . . , zn) = Lh1,...,hn(z1, . . . , zn) g

h1,...,hn

1,..., n−3
(χ1, . . . ,χn−3) (3.6)

where,

Lh1,...,hn(z1, . . . , zn) =

(
z23

z12z13

)h1
(

zn−2,n−1

zn−2,nzn−1,n

)hn n−2∏

i=1

(
zi,i+2

zi,i+1zi+1,i+2

)hi+1

(3.7)

and

gh1,...,hn

1,..., n−3
(χ1, . . . ,χn−3)

=

(
n−3∏

i=1

χ i
i

)
FK

[
h1 + 1 − h2 1 + 2 − h3 . . . n−4 + n−3 − hn−2 n−3 + hn − hn−1

2 1 . . . 2 n−3
;χ1 . . . χn−3

]

(3.8)

suppress zi dependence when writing latter on?
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2. One and Two Dimensions

In this section we compute n-point blocks in the comb channel, for any n, in one and two

dimensions. In Sec. 2.1 we establish notation and summarize the result. In Sec. 2.2 we review the

4-point block. In Sec. 2.3 we derive the 5-point block. In Sec. 2.4 we derive the n-point blocks

in the comb channel. In Sec. 2.5 we check that the blocks have the correct leading OPE behavior

and that they satisfy the appropriate Casimir di↵erential equations.

2.1. Summary

2.1.1. Definitions

We first discuss conformal blocks in one dimension. An n-point conformal block with ex-

ternal operators of dimensions hi and exchanged operators of dimensions i will be denoted by

G
h1,...,hn

1,..., n�3
(z1, . . . , zn). A n-point block can be decomposed into a function of the conformally

invariant cross ratios �i, of which there are n�3, and what we will refer to as the leg factor,

G
h1,...,hn

1,..., n�3
(z1, . . . , zn) = L

h1,...,hn(z1, . . . , zn) g
h1,...,hn

1,..., n�3
(�1, . . . , �n�3) , �i =

zi,i+1 zi+2,i+3

zi,i+2 zi+1,i+3
, (2.1)

where our notation is zij ⌘ zi,j ⌘ zi � zj. We will sometimes refer to g
h1,...,hn

1,..., n�3
(�1, . . . , �n�3) as

the bare conformal block. The leg factor only depends on the external dimensions. We take it to

be,

L
h1,...,hn(z1, . . . , zn) =

✓
z23

z12z13

◆h1
✓

zn�2,n�1

zn�2,n zn�1,n

◆hn n�2Y

i=1

✓
zi,i+2

zi,i+1 zi+1,i+2

◆hi+1

. (2.2)

The leg factor transforms as an n-point CFT correlation function and, in particular, has dimension
Pn

i=1 hi. The leg factor can of course be changed, by a function of the cross-ratios, at the expense

of changing the bare conformal block. The above leg factor will emerge naturally in the derivation

of the blocks, and leads to the bare blocks having a simple form.

The conformal Casimir in two dimensions (discussed later in Sec. 2.5.2) factorizes into a sum

of two SL2 Casimirs, l
2 + l

2
, built out of z and z respectively, and the eigenvalues are a sum,

( �1)+ ( �1). As a result, the two-dimensional conformal blocks are simply a product of two

one-dimensional conformal blocks, one for the holomorphic sector and one for the antiholomorphic

sector, 1

G
h1,...,hn;h1,...,hn

1,... n�3; 1,..., n�3
(z1, . . . , zn; z1, . . . , zn) = G

h1,...,hn

1,..., n�3
(z1, . . . , zn) G

h1,...,hn

1,..., n�3
(z1, . . . , zn) . (2.3)

1
Sometimes it is natural to combine conformal blocks. For instance, for the 4-point block, if all external operators

are scalars, hi = hi, then one takes the sum of the block with exchanged operator ( 1, 1) and the block with

exchanged operator ( 1, 1), and refers to this as the conformal block. This is convenient because then the block

has z $ z symmetry.
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the 5-point partial wave,

 h1,h2,h3,h4,h5

1, 2
(z1, z2, z3, z4, z5) =

Z
d 1d 2 hO1O2O 1

( 1)ih eO
1
( 1)O3O 2

( 2)ih eO
2
( 2)O4O5i .

(2.6)

The conformal partial waves give a sum of a conformal block and shadow blocks. In particular,

the 4-point partial wave is a sum of two terms: the conformal block for exchange of an operator

of dimension 1 and the conformal block for exchange of the shadow operator of dimension e
1 =

1 � 1. The n-point block is a sum of 2n�3 terms, accounting for the blocks with exchanged

operator dimensions ( 1, . . . , n�3) and all possible shadows.

One can view the insertion of
R

d |O ( )ih eO ( )| as a conformally invariant projector onto

the exchange of the operator O , or its shadow, eO . The shadow formalism [12–14] is a useful way

of computing conformal blocks [15], and one we will exploit.

2.1.3. Result for n-point conformal blocks

Later in the section, we will compute the n-point conformal block in the comb channel, and

find it to be,

g
h1,...,hn

1,..., n�3
(�1, . . . , �n�3) =

n�3Y

i=1

� i
i

FK


h1+ 1�h2, 1+ 2�h3, . . . , n�4+ n�3�hn�2, n�3+hn�hn�1

2 1, . . . 2 n�3
; �1, . . . , �n�3

�
, (2.7)

where FK is a multivariable hypergeometric function, which we will refer to as the comb function.

The comb function is defined by the sum,

FK


a1, b1, . . . , bk�1, a2

c1, . . . , ck
; x1, . . . , xk

�

=
1X

n1,...,nk=0

(a1)n1
(b1)n1+n2

(b2)n2+n3
· · · (bk�1)nk�1+nk

(a2)nk

(c1)n1
· · · (ck)nk

x
n1
1

n1!
· · ·

x
nk
k

nk!
, (2.8)

where (a)n = �(a + n)/�(a) is the Pochhammer symbol. Some properties of the comb function

are derived in Appendix. A. 4

In the special case of two variables, the comb function reduces to the Appell function F2. It

will be convenient to define the one variable comb function to be the standard hypergeometric

function 2F1. The conformal blocks (2.7) are for the case that all the cross ratios are between zero

and one, 0 < �i < 1. This occurs if one takes all the positions to be ordered or antiordered. We

4
The comb function recently appeared in [16] in the computation of SL2 blocks for null polygon Wilson loops

[17, 18]. There may be a direct mapping between that result and ours, which would be interesting to understand.
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VR, ‘18

O1, . . . ,O4 (0.25)

K�1,�2
[�3,J ]

= (�
1

2
)J (0.26)

hO(x1)O(x2)i =
1

|x12|
2� (0.27)

hO1O2O3i =
1

|x12|
�1+�2��3 |x13|

�1+�3��2 |x23|
�2+�3��1

(0.28)

Z

C

dh

2⇡i
e⇢(h) ch1h2h ch3h4h G

h1,h2,h3,h4
h (⌧i) (0.29)

Z

C

dha

2⇡i
e⇢(ha)

Z

C

dhb

2⇡i
e⇢(hb) ch1h2ha

chah3hb
chbh4h5

Gh1,h2,h3,h4,h5
ha,hb

(⌧i) (0.30)

L =
1

4
F j
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j +  

i �
i�µDµ �ma

�
 i (0.31)
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The result in d=2 immediately follows, and is just a 
product of two d=1 blocks. (These are global blocks, 
not Virasoro). 

For n-point blocks with n > 5 there are channels other 
than the comb channel. This is work in progress. The 
answer may not be as simple.

In dimensions d>2, there are more cross ratios than in 2 
dimensions. For the 5-point block there are 5 cross-
ratio. The result is significantly more involved.  



Part II: SYK



In Part I, we saw that a CFT n-point function can be 
expanded in a complete basis of n-point conformal 
blocks. The n-point conformal blocks can in turn be 
found by gluing together 3-point functions (the shadow 
formalism). 

The next question is when would actually be able to 
compute a CFT n-point function?



An obvious case is QFT in AdS 

These Witten diagrams give CFT correlation 
functions. If we were to compute the above 
diagram, it could be expressed in terms of the 5-
point blocks we found. 



However, we would like an actual CFT computation. 

We could imagine the bulk particle as a composite of 
two particles on the boundary. 

The Witten diagram for the two point function translates 
into a CFT 4-point function of fundamentals (2-point 
function of bilinears)



We could imagine there being a CFT in which higher-
point correlation functions are built out of four-point 
functions. Something that parallels tree level Witten 
diagrams in the bulk. 



We can compute all large N correlation functions in SYK by 
summing all Feynman diagrams. 

(the lines on the higher-point functions are 
really dressed propagators)

2-pt: Melons -> Conformal in IR

4-pt: Ladders: geometric sum

6-pt: glue three 4-pt functions

8-pt: glue 4-pt functions

Sachdev & Ye

Kitaev; Polchinski & V.R.; Maldacena & Stanford Gross & V.R.

+ cross-channels 
- no exchanged melons 
+ 4-pt contact



One can derive a simple formula for the diagrams 
appearing in the higher point functions. 
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• These are simple rules for summing an infinite number of 
diagrams. It doesn’t matter that the four-point function is 
made up of ladders. These apply to any four-point 
functions.  

• This is not just an OPE expansion. The                are the 
analytically extended OPE coefficients of the single-trace 
operators. The four-point function is a sum of conformal 
blocks of single-trace operators and double-trace 
operators. This emerges upon closing the contour.
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The planar diagram contribution

The melons are not important here. What is important is 
that we are gluing three 3-point functions. 

Three-point function of bilinears in SYK



In the notation from before, with each vertex 
denoting a three-point function, 

=



The functional form of a three-point function is fixed by 
conformal symmetry. We can extract the coefficient by 
contracting with a (bare) three-point function of 
shadow operators, 

This is a tetrahedron: a 6j symbol 

, =



The overlap of two partial waves - a group theoretic 
quantity-  and the planar Feynman diagrams in an 
SYK correlation function - a dynamical quantity- are 
just two different ways of splitting a tetrahedron

, =

, =



Summary 
SYK is a solvable, strongly coupled, large N CFT. 

It serves as a model of AdS/CFT, of black holes, and 
as a model of strange metals, among other 
applications. This is something we have not 
discussed, but has been discussed in many of the 
other talks. 

SYK is solvable because i) as a CFT, all n-point 
correlation functions are expressed in terms of n-point 
conformal blocks. ii) The  Feynman diagrams for n-point 
functions are built out of 4-point functions glued 
together. 



The new CFT techniques entering the solution are in 
themselves interesting, and should have a number of 
applications.

Every solvable model is simple when viewed in a 
particular way.

Our formula for the n-point functions encodes the 
simplicity of SYK.

More generally, our formula applies to any conformal 
theory where the Feynman diagrams for n-point functions 
are built by gluing together 4-point functions. 



Future 
A mystery of AdS/CFT that remains is a clear 
understanding of how the bulk emerges from the CFT. 
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   =4 Super Yang-Mills is integrable, so it would seem one 
should be able to answer the question in that context. 
Indeed, significant progress has been made.  But the fact 
that it is not easily solvable, or in a direct way (by summing 
Feynman diagrams) seems to be a limitation. 

SYK is easily solvable, as we saw in this talk. However, the 
solution doesn’t seem to tell us what the bulk theory is, or if 
there even is one. 

It would be useful to have a solvable model that is harder 
than SYK, but easier than                                      , and 
preferably related to string theory.
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