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The Sachdev-Ye-Kitaev Model

* Quantum mechanics of a large number N, of

anti-commuting variables with action
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e Random couplings j have a Gaussian
distribution with zero mean.

* The model flows to strong coupling and
becomes nearly conformal. sachdey, ve; Georges,

Parcollet, Sachdev; Kitaev; Polchinski, Rosenhaus; Maldacena, Stanford;
Jevicki, Suzuki, Yoon; Kitaev, Suh



e The simplest dynamical case is g=4.
* Exactly solvable in the large N, limit because

only the Feynman diagrams contribute
N N O N N .\

* Solid lines are fermion propagators, while
dashed lines mean disorder average.

e The exact solution shows resemblance with
physics of certain two-dimensional black holes.

Kitaev; Almheiri, Polchinski; Sachdev; Maldacena, Stanford, Yang; Engelsoy, Mertens,

Verlinde; Jensen; Kitaev, Suh; ...



* Spectrum for a single realization of N,,=32
mOdEI Wlth q=4 Maldacena, Stanford

 No exact degeneracies, but the gaps are
exponentially small. Large low T entropy.

400 Eigenvalues for N=32, plotted with 300 bins
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SYK-Like Tensor Quantum Mechanics

e E. Witten, “An SYK-Like Model Without
Disorder,” arXiv: 1610.09758.

 Appeared on the evening of Halloween:
October 31, 2016.

e [tis sometimes tempting to change the term
“melonic diagrams” to “pumpkinlike diagrams.”



O(N)3 Tensor Model

 Interactions of N3 Majorana fermions without
randomness IK, Tarnopolsky
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e Has O(N) XO(N), xO(N)_symmetry under
0 — MU MY Mge 0™ My, My, Mz € O(N)
e The SO(N) symmetry charges are
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e The 3-tensors may be
associated with

indistinguishable vertices
of a tetrahedron.

e This is equivalent to ] A
& %
Cobaz
 The triple-line Feynman
graphs are produced E E

using the propagator



e Leading correction has 3 index loops

e

* This “melon” insertion is of order 1 if \ = g/N?3/?
is held fixed in the large N limit.

e “Melonic graphs" obtained by Bonzom, Gurau, Rivasseau
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 The tetrahedral term is the unique dynamical
quartic interaction with O(N)3 symmetry.

e The other possible terms are quadratic
Casimirs of the three SO(N) groups

(l)
plllcm plllcm plll(m

ian (I] a b1b7 b]bz c1c2 (1(‘2
p1110\\ * Z Q] ’ plllou o Z Q plllou * Z Q

a1 < b < C1<C2

In the model where SO(N)3is gauged, they
vanish.



O(N)3 vs. SYK Model

e Using composite indices Ik = (aibicy)

1
H = EJA niL Yyl

The couplings take values 0,+1
Jh hizly — 5{..*1(!3 5{;‘3{!4 5€J]b3 55)2[?4 5(‘1.:‘4 5{:‘3(‘3 - 5:11@ 5{;3u4 6[)2b3 55)11)4 5("2(‘4 6(:'1('3 + 22 terms
e The number of distinct terms is
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e Much smaller than in SYK model with ~Ngyx = N3
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The tensor Hamiltonian is much sparser.
In the SYK model interactions are all-to-all.

In the corresponding tensor model they are
not (recent discussions with L. Susskind and E.
Witten).

The number of fermion species coupled to a

given one by the Hamiltonian grows only as

2/3
Nsyk

Nevertheless, the tensor qguantum mechanics
is also maximally chaotic in the large N limit.



Schwinger-Dyson Equations

e Some are the same as in the SYK model «itaev;

Polchinski, Rosenhaus; Maldacena, Stanford; Jevicki, Suzuki, Yoon; Kitaev, Suh

G(ty — ta) = Go(t1 — t2) + g*°N? / dtdt'Go(t; — t)G(t — )Gt —t,)
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* Neglecting the left-hand side in IR we find

_O_ =

1 )1/‘4 sgn(tl — tg)

G(t1 —t2) = _(47Tg2N3 [t — to]1/2



* Four point function

(@010 (1 )9 MO0 (1)) %2220 (£3)4h®2%2%2 (84)) = NOG(t12)G(ta4) + T'(ty, - - -, ty)
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e If we denote by 1, the ladder with n rungs
I'=> T,

Fn+1(t1, c ey t4) — / dtdt,K(tl, tQ, t, t,)Fn(t, t,, t3, t4)

K(th tg; t3, t4) = —3g2N3G(t13)G(t24)G(t34)2



Spectrum of two-particle operators
e S-D equation for the three-point function cross,

Rosenhaus

thtlatQ _g dtSdt4K t15t27t35t4 t05t33t4

v(to, t1,t2) = <Og(t0)¢%c(t1)¢“bc(t2)) _ sgn(ty — t2)

[to — 1P|t — ta|P|tr — to|V/2H

e Scaling dimensions of operators 0Oj = ¢*°(D}y)**

3tan(3(h — 3))

g(h) = —=

— 1
2 h—1/2




* The first solution is h=2; dual to JT gravity.

g(h)
3|
i y=g(h)
2} ————— y=1
; h=2 h=3.77 h=5.68
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 The higher scaling dimensions are
h =~ 3.77, 5.68, 7.63, 9.60 approaching h, — n+;



Gauged Model

 To eliminate large degeneracies, focus on the
states invariant under SO(N)3.

 Their number can be found by gauging the
free th@Ory IK, Milekhin, Popov, Tarnopolsky
L = -a;f,-"r E")t-a;}"r + -z_,_-i-"r Ar v /

A=A'2101+1A2%21+1 1 A®
M/2

#singlet states = / d )\(‘« H ) ¢ 05(- A, /2)

a=1

- v — i\ v+ i\
. olog . \ Log A
dAso(2n) = H sin ( 5 j) sin ( 5 - ) dry...dx,

i<j - -




e There are no singlets for odd N due to a QM
anomaly for odd numbers of flavors.

e The number grows very rapidly for even N

N | # singlet states
4 36
6 595354780

Table 1: Number of singlet states in the O(N)? model

| N3 3N? __
#singlet states ~ exp (7 log 2 — 5 log N + O(N? ))

 The large low-temperature entropy suggests
tiny gaps for singlet excitations ~ "



Discrete Symmetries

Act within the SO(N)3 invariant sector and can
lead to small degeneracies.

Z, parity transformation within each group like

) 1be 1be

— —U
Interchanges of the groups flip the energy

PQ 3.?;_.;,(156 PQB _ '?;;"{mb ‘ PlQ'?__-‘i' abe Plg — b bac

PysH Py =—H . PoHPy=—-H

Z, symmetry generated by P = P3P, PP =
P_t.-;,abc PT _ _t_-;,cub ‘ PH PT — g



* At non-zero energy the gauge singlet states
transform under the discrete group A, x Z,.

® Sp@Ctrum for N=4. Pakrouski, IK, Popov, Tarnopolsky

:t\/ 32(447 £ V/125601)
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Energy Distribution for N=4
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e For N=6 there will be over 595 million states
packed into energy interval <1932. So, the
gaps should be tiny.



Tetrahedral Bosonic Tensor Model

e Action with a potential that is not positive
definite IK, Tarnopolsky; Giombi, IK, Tarnopolsky

S — / dd$ (laﬁqﬁabcaﬁ@abc 1+ lggbalblcl ¢a1b202 ¢agblcg¢agbgc1)
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* Schwinger-Dyson equation for 2pt function
Patashinsky, Pokrovsky
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e Has solution

Gp) = X2

(4m)4dT(3E)\1/4 1
-



Spectrum of two-particle spin zero
operators

e Schwinger-Dyson equation

/dd$3dd$4K($1,332;373,334)%(333,334) — g(h)vh(ﬂihﬂiz)

K(Iﬂl, Lo, I3, .’13'4) = SAQG(Q:lS)G(:I:le)G(ngl)Q
1

Vp(T1, To) =
(21, 22) (1 _xz)Q]%(g—h)

NG CEDINCE)
gbos(h) — _F(_%)F(%Td — %)F(%_’_ %)

e In d<4 the first solution is complex % +ia(d)




Complex Fixed Point in 4-¢ Dimensions

e The tetrahedron

Ot(;r.) _ G-'j{ublcl Gi]albgcg Gi]agblcg G-'ju.gbgq

mixes at finite N with the pillow and double-sum
operators

OP(I) _ (®a1blc1 @'aqblcgcbagbgcg @'agbgq + @'aﬂnq @a.gblq @'a.gbgcg @Glbgcg 4+ @(116101 @'albgq @a.gbwg @agbgcg) :

N\ — taibicr paibicy ragbaco razbace
Ogs(z) = @ ¢ ¢ ¢

e The renormalizable action is

1 1
G _ /dd:ﬂ(i@“@abc@#@a& 4 i(glot(xj + 320,(z) + gg()ds(;r)))



e The large N scaling is

_ (47)20 _ (47)2gs _ (47)%gs
=Nz T TN BTN

e The 2-loop beta functions and fixed points:
By = — €1 + 233 .
By =—€gg + (Ug? + Eﬂ%) — 24795 .
; ~ 4 ~ ~ | 5~2 9=2( A= -~
bgs = — €93 + (ggg +4gog3 + 35?:3) — 297 (492 + 593)
gt = (/Y2 g5 =%3i(e/2)Y2, G5 = Fi(3+V3)(e/2)!?
e The scaling dimension of @ﬂ'bc@ﬂbf is

Ao =d—2+2(G+ ) =2+ ivV6e + Ofe)



Prismatic Bosonic Tensor Model

e Large N limit dominated by the positive sextic
”prism" interaction Giombi, IK, Popov, Prakash, Tarnopolsky

S — /ddif' (;(QLLOQE}C)Q + %@Q.lblcl cIba.lbgcg q-')a.szjg @{13!}301 Oagb263oagb3c‘3>
* To obtain the large N solution

It IS convenient to rewrite

q — /ddﬂf (;(8#0(12)0)2 + ;‘!Oalblcl @a-lbzﬂqualeCz Xa.gbgcl o ;Xabcxabc>



e Tensor counterpart of a bosonic SYK-like model.
Murugan, Stanford, Witten

 The IR solution in general dimension:

BA(;;, -+ A)\ =d d/z — 1< A(__{) < d/()
I'(Ag)I'(d—Ay) ‘ ['(3A4)I'(d — 3A4)

C(§—Ag)T(=§+2Ay)  T(§—30s)T(—5§+3A)

* In d=3—c¢

1 e, 208 (412 22\ 12692 5672\ | 6
Be=g gt 3 +(9 +3)t @ -5 — =5 ) +0()

e For d=2.9 find numerically

A, = 0.456264 . A, =1.53121



 Dimensions of bilinear operators in d=2.9 and 2.75
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* The first root has expansion
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* For 16799 <d<28056 A, becomescomplex
d P



Complex Fixed Points

May appear after two real fixed points have

mergEd . Dymarsky, IK, Roiban; Rastelli, Pomoni; Kaplan, Lee, Son,
Stephanov: Gorbenko, Rychkov, Zan

Correspond to (weakly) first-order transitions.

Theories where operator dimensions are
formally complex recently dubbed “complex

CFTs.” Gorbenko, Rychkov, Zan

For large N an operator of dimension %+-ia—:(d)

corresponds in dual AdS to a scalar violating

the Breitenlohner-Freedman stability bound:
m* < —d*/4



Bipartite Fermionic Model

A model with a complex tensor and O(N)?3

sym met I'Y IK, Tarnopolsky (based on a similar model by Gurau).

S — fdt (I-]I/abcar wabc 4 1gW¢‘1b1€1 walbzq wazblq Wazbgcl + lg—]’—yalblcl ]]‘Ualbzcz I’Tlazblcz l,_Uazbzcl)
4 4

 Two types of vertices

* Propagator connects different vertices



Schwinger-Dyson Equations

 The 2-point function satisfies arxiv:1808.09434

Gt — 1) = Golr —tg)+ggN3/drdz’Go(n )Gt —1)’G({ —1)

—>—O—>— = = +

* Scaling dimensions of (5 — gabegmyabe
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For even and odd n, we find, respectively

3tan( (h+ )) 3tan(%(h—%))

z I
ssth) = 3= 2172 salh) =317

The n=0 scaling dimension is complex:

1
h~ E +1.5251i

This signals an instability of the conformal
phase of the large N bipartite model.

The true phase of the theory appears to be
gapped, with no ground state entropy.



Two-Flavor O(N)3 Model

e Interaction of two rank-3 Majorana tensors
with O(N)”*3 symmetry, with a parameter a

e Jaewon Kim, Princeton Senior Thesis (2018),
arXiv:1811.04330; Kim, IK, Tarnopolsky, paper
In preparation.

H _ g ( aibiey g aibace jasbico ,Z,-"a‘szCil + ,z,-"alblcl,z..-"aleCQ ,z..-'102'5102 ?:.-‘agbgcl)

fyaibaca,
2
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D) U

 Reduces to the bipartite model for a = -1

e Melonic S-D equations give 2-pt function

1
1 * sgn(ty — ty)

Gty —t;) = — ‘ =
(t2 —11) (47?(3@2 + 1)ggf\r3) [ty — tq|1/2

h?25281)



Bilinear Operators

 Even under Z, symmetry  y§" — —yg

2n+1 2n+1 2n+1 2n+1 2n+1 2n+1
O™ =010, "y + 1020, e O3 = 0107 Ty — 207"

e Odd

2 2 2 2n+1 2n+1 2n+1
O3" =110, "y —10;" 1 O = 10" + 0, iy

e Scaling dimensions determined from

_§ta11(%(h—1/2)) go(h) = 3 —a? + 1tan(5(h —1/2))

g1(h) =

9 h—1/2 S 23a2+1 h—1/2

3a? — 3atan(mwh/2 + w/4) g1(h) = _3052 + 3a tan(mwh/2 — 7 /4)
g3(h) = el 1 1 302 + 1 h—1




Duality

Use transformation

Find equivalence

g

!/

3o+ 1)g

Uy

2

/
a}

= %('@’1 +1hg), g =

(9, @) ~ (g, )

—a + 1

T

S

(V1 — 1)

Apart from overall scaling of energies, can
restrict to —1<a <

For « <0 operator ¥{*vs™
dimension L+ if(a) where ftanh(rf/2) =

For small «

has complex

30?2 — 3«

3a2 +1



Coupled SYK Models

To study low-energy properties numerically,
replace the two-flavor tensor model by its SYK
counterpart.

Double SYK model with a quartic coupling

H = i (XXAXTX +XXXGX: + Baxixixsxe)

A generalization of the Gross-Rosenhaus two-

flavor model.

Gives the same large N S-D equations and
scaling dimensions as the tensor model.



Gapped Spectrum

e For a single realization of random couplings
and N.,,=16 observe for o= -1




e Zoom in to show that a gap is present near the
ground state:
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e Spectrum for a=-0.5

e And for a=0




Symmetry Breaking

 These results suggest that, in the large N limit,
there is spontaneous breaking of the Z,
symmetry w5 — —ys* via formation of
expectation value of operator ¢{*ys™

* This leads to spontaneous mass generation
and should connect to the work of Maldacena
and Qi where the Z, symmetry was broken
explicitly.



Dual of a Wormhole?

e Tempting to interpret the gapped phase with

small low-T entropy as the dual of a wormhole
geOmetry. Maldacena, Qi

e [t appears only for one sign of the coupling:
a <0

e Similar to the Gao-Jafferis-Wall model.



Conclusions

 The O(N)3 fermionic tensor quantum
mechanics seems to be the closest
counterpart of the basic SYK model for
Majorana fermions.

e Solution of S-D equations indicates a (nearly)
conformal phase with real scaling dimenions.

e Bosonic or fermionic generalizations can lead
to complex scaling dimensions with real part
d/2, indicating an instability of the conformal
phase.



Studied quantum mechanics of rank-3

Majorana tensors with O(N)3 symmetry and
guartic terms coupling the two, and its SYK
counterpart.

A complex scaling dimension appears only for
sign of the coupling, where numerical
calculation also indicates a

Relation to the Gao-Jafferis-Wall wormhole
construction?

Relation to Juan Maldacena’s talk?
Relation to Cenke Xu’s talk?
Physical applications?




	Instability of the Conformal Phase in Some Tensor and SYK Models
	The Sachdev-Ye-Kitaev Model
	Slide Number 3
	Slide Number 4
	SYK-Like Tensor Quantum Mechanics
	O(N)3 Tensor Model
	Slide Number 7
	Slide Number 8
	Slide Number 9
	O(N)3 vs. SYK Model
	Slide Number 11
	Schwinger-Dyson Equations
	Slide Number 13
	Spectrum of two-particle operators
	Slide Number 15
	Gauged Model
	Slide Number 17
	Discrete Symmetries
	Slide Number 19
	Energy Distribution for N=4
	Tetrahedral Bosonic Tensor Model 
	Spectrum of two-particle spin zero operators
	Complex Fixed Point in 4-e Dimensions
	Slide Number 24
	Prismatic Bosonic Tensor Model
	Slide Number 26
	Slide Number 27
	Complex Fixed Points
	Bipartite Fermionic Model
	Schwinger-Dyson Equations
	Slide Number 31
	Two-Flavor O(N)3 Model
	Bilinear Operators
	Duality
	Coupled SYK Models
	Gapped Spectrum
	Slide Number 37
	Slide Number 38
	Symmetry Breaking
	Dual of a Wormhole?
	Conclusions
	Slide Number 42

