μSR data and search for spontaneous TRSB fields in PrOs₄Sb₁₂

Clifford Hicks, Kathryn Moler Stanford University

sample: Brian Maple

UC San Diego

squid: Martin Huber

University of Colorado Denver

Muon Knight shift: indicates spin-triplet pairing

W Higemoto et al, PRB 75 020510 (2007), fig 2

W Higemoto et el, PRB 75 020510 (2007), fig 3

Evidence for TRSB in the superconducting state:

Y Aoki et al, PRL 91 067003 (2003), fig 1

muon gyromagnetic ratio: .085 μsec⁻¹G⁻¹; *ie* a 74μsec oscillation period at 1G.

Y Aoki *et al*, PRL **91** 067003 (2003), fig 2 figure modified from original

Fits:
$$P_{\mu} = e^{-\Lambda t} G_{KT}(\Delta, t)$$
$$G_{KT} = \frac{1}{3} + \frac{2}{3} \left(1 - \Delta^2 t^2 \right) \exp\left(-\frac{1}{2} \Delta^2 t^2 \right)$$

Field distribution is more Gaussian than Lorentzian

TRSB vanishes quickly with Ru substitution, more slowly with La substitution:

L Shu et al, JMMM 310 551 (2007), fig 2

Moler group data: scanning 3µm squid.

z-bender calibration: 1V is approx. 2µm on a side.

x,y benders: 10V is approx. 140 μ m.

-6

-8

-10 V -10

-5

0

5

0.1003

0.097

10 Φ/Φ₀

N /I	\sim	n	n	\sim 11	nt
IVI	а		po	. H	
	_		~	•	

There is a second material showing few to several G-scale fields in muSR but nothing in scanning magnetic imaging!

- (1) Should we keep looking for edge magnetization and domain walls?
- (2) Could the muSR signal have a different origin than chiral domains?

Scanning 0.5µm Hall probe images of ErNi₂B₂C

H Bluhm et al, PRB 73 014514 (2006)