Multiple component order parameter (and nodes) from ultrasound velocity (attenuation)

Experiments (Univ. of Toronto)

Christian Lupien, Andrew MacFarlane, Cyril Proust, Louis Taillefer

Samples

Z. Q. Mao, Y. Maeno (Kyoto Univ.)

Plan

- Ultrasound Technique
- Sound velocity (multi-components)
- Ultrasound attenuation (nodes)

Ultrasound Technique

f = 20-500 Mhz echo spacing 2L/v ~1-3 μ s λ = 5 - 300 μ m

- Send pulses from one end
- Pulse propagates and echoes
- Detect the echoes at either ends
- Extract amplitude of echoes: Attenuation
- Extract time between echoes: Coarse sound velocity
- •Extract phase of echoes vs original pulse: fine sound velocity
- •Other techniques are available to extract just the sound velocity.

Signal

Samples

Grown by floating zone method (image furnace)

- Large crystals (diameter ~3mm)
- Very high quality
- Oriented, cut, polished to have crystals for sound propagation along 100, 110 and 001

Velocity Theory

- Sound velocity \leftrightarrow Elastic constants $v_s = \begin{bmatrix} \overline{c} \\ \hline \end{bmatrix}$
- For Tetragonal symmetry there are 6 independent elastic tensor elements (C_{11} , C_{33} , C_{12} , C_{13} , C_{44} and C_{66})
- •They combine differently for different measurement geometry: L100 = C_{11} , L110 = $\frac{1}{2}$ ($C_{11} + C_{12} + 2C_{66}$), T100 = C_{66} , T110 = $\frac{1}{2}$ ($C_{11} C_{12}$). For in-plane polarisation
- \bullet (1=xx, 2=yy, 3=zz, 4=xz, 6=xy)

Velocity theory

 Coupling with superconductivity near Tc (jump and change of slope

$$\Box C_{ij} = C_{ij}^{S} - C_{ij}^{N} = -\frac{\Box C_{e}}{T_{c}} \frac{\partial T_{c}}{\partial s_{i}} \frac{\partial T_{c}}{\partial s_{j}}$$

$$\frac{\partial C_{ij}^{S}}{\partial T} \left[\frac{\partial C_{ij}^{N}}{\partial T} \right] \left[\frac{\partial C_{ij}^{N}}{\partial T} \right] \left[\frac{\partial C_{e}}{\partial s_{i} \partial s_{j}} \right]$$

- ΔC_e is specific heat jump, s_i is strain
- But + and shear strain (s₆) have to give the same answer → Jump absent in linear order
- Unless we have multiple components

Longitudinal Velocity L110

Transverse velocity T100

T100 transverse mode Normal vs SC data

There is a 0.2 ppm jump

Predicted for Upt3 but not seen (not sensitive enough?: Bruls et al. PRL 65, 2294).

Other velocities

Attenuation theory

Need to be in low frequency (the hydrodynamic limit, $\alpha \sim \omega^2$, $q\ell < 1$) where electronic attenuation is related to electronic viscosity tensor. Other is quantum limit and $\alpha \sim \omega$

J. Moreno and P. Coleman, PRB 53 (1996) R2995

UPt₃ example

Ellman, Taillefer and Poirier PRB (96)

Line of nodes in basal plane of UPt₃

Ultrasound attenuation

Large normal state anisotropy

Power laws down to 40 mK

→ Nodes

Weak power law anisotropy

→ gap structure?

Note that zero of attenuation is set by extrapolation and not measured

Lupien et al. PRL 86 (2001) 5986.

Angular variation of viscosity

For η_{66} Require better than 1° alignment

Power law anisotropy

Weak anisotropy

Power law fits

Zhitomirsky and Rice model, PRL **87** 057001 (2001):

p-wave on γ band and line nodes on α , β bands

Conclusions

- There is a jump in transverse sound velocity
 - Requires Multi-components order parameter
- Attenuation shows power laws and anisotropy
 - Power laws can mean nodes, small power law anisotropy is related to gap structure (horizontal?, ...)