- Kavli Institute for Theoretical Physics -

In University of California, Santa Barbara

17-21st December, 2007

Anisotropy of the upper critical field in Sr_2RuO_4

S. Kittaka, T. Nakamura, Y. Aono, S. Kusaba, S. Yonezawa, K. Ishida, and Y. Maeno

Kyoto University

Sample preparation

Best T_c sample !

Sample

We measure χ_{AC} in a vector magnet

Vector magnet system

Vector Magnet with a dilution refrigerator (Kelvinox 24)

- Two superconducting magnets + a rotating stage
- 3D control of the field direction.
- High-precision alignment.

Deguchi et al, Rev. Sci. Instrum., 75, 1188 (2004)

Field sweep

H-T phase diagram determined from the onset in χ '

Anisotropy ratio $\Gamma(=H_{c2//ab}/H_{c2//c})$

Anisotropy ratio is approximately 20 at low temperature

Summary

- 1. We study H_{c2} anisotropy in Sr_2RuO_4 using a "vector magnet".
- 2. H_{c2} suppression is evident for H//ab.

- 3. The anisotropy ratio $\Gamma = H_{c2//ab} / H_{c2//c}$ is approximately 20 at low temperatures.
- 4. The anisotropy ratio Γ increases toward T_c , but appears to remain much below 100 near T_c .