Non-Equilibrium Structures in Block Copolymers

Kink Bands
Lamellae Contraction
Solvent-Induced Morphologies

Karen I. Winey

Department of Materials Science & Engineering
University of Pennsylvania
Philadelphia, PA 19104-6272

Acknowledgements

At UPENN
Daniel L. Polis (now of Goddard)
Lei Qiao (now of DuPont)

Collaborators
Prof. D. C. Morse, University of Minnesota
Prof. A. J. Ryan, University of Sheffield
Daresbury Laboratory, U.K.
Dr. C. Leibig, S. Hahn, S. Wu, Dow Chemical

Financial support
NSF-MRSEC
Dow Chemical Company
Non-Equilibrium Structures in Block Copolymers

- **Kink bands**
 - Initiation
 - Dynamics of kink bands -- lamellar rotation mechanism
 - ASIDE: rotation of lamellae matrix
 - Termination -- boundary transformation
 - Relaxation -- focal conics

- **Lamellae contraction in parallel lamellae**
 - Molecular weight and shear rate dependence
 - Correlation with applied shear stress

- **Solvent-induced morphologies in Triblock Copolymers**
 - Selective solvents and morphological transitions

Kink Bands

Diblock copolymers (PS-PEP), poly(styrene-co-ethylene propylene)

Intermediate to strong segregation.

\[\chi N = 35 \text{ to } 105 \] at 180°C

Steady shear rate.

Pre-aligned for **parallel orientation.**
Forward Kink Band

![Image](image.png)

Figure 1 a&b

SEP 40-70; FE-SEM of 1-2 plane; shear to right; Polis 1998

Initiation: Forward Kink Bands

Residual defects in predominately parallel starting state.

![Image](image2.png)

Starting State

(LAOS)

$\gamma = 1$

(180°C, 0.001 s$^{-1}$)

SEP 40-70; TEM of 1-2 plane; shear to right; Qiao 2000
Initiation: Forward Kink Bands

- Addition of silica spheres increases the volume of kink bands.

![Graphs showing intensity vs. azimuthal angle](image)

SEP 38-62; SAXS of 1*-2* plane; 180C, 0.005 s⁻¹; Polis 1999

Initiation: Forward Kink Bands

- Residual defects in predominately parallel starting state.
- A critical strain amplitude (~40%) is required to produce a kink band.
- At lower strains an S-shaped defect is found.

Starting State

- \(\gamma = 0.3 \)

(180C, 0.05 s⁻¹)

SEP 40-70; FE-SEM of 1-2 plane; shear to right; Polis 1998
Initiation: Conjugate Kink Bands

As molded starting state
Large Amplitude Oscillatory Shear:
12h, 150C, g=40%, 1 s⁻¹

Figure 5, 4, 6

Dynamics: Forward Kink Bands

Lamellar rotation
- Lamellae inside k.b. rotate w/ strain
- Constant k.b. width

Boundary migration
- Lamellae orientation inside k.b. fixed
- Increasing k.b. width w/ strain

SEP 40-70; FE-SEM of 1-2 plane; Polis 1996
In Situ SAXS - Rheology

(Synchrotron 16.1, Daresbury Laboratory, UK.)

- SEP(38-62), 100 kg/mol, 38% PS.
- Oscillatory shear
- Steady shear: 0.001, 0.01, and 0.1 s⁻¹

In situ SAXS-Rheology

Starting State

\[\gamma = 0 \]

TEM image after LAOS shows forward kink bands.

Starting State

\[\gamma = 0 \]

SAXS pattern shows an asymmetric peak along the 2° direction.

SEP 38-62; SAXS of 1°-2° plane; 180C; Qiao 2001
Kink Bands in Block Copolymer Lamellar Phases

SEP 38-62; SAXS of 1*-2* plane; 180C; Qiao 2001
Dynamics: Forward Kink Bands

- $\mu_k \uparrow$ w/ strain suggests lamellar rotation
- Rate of rotation \downarrow w/ strain
- Area under kink band peak \sim constant

SEP 38-62; SAXS of 1°-2° plane; 180°C; Qiao 2001

Assumptions:
- Idealized, well-defined kink bands in aligned layered matrix
- Homogeneous deformation across domains

Predictions:
- *Negligible tangential slip* for narrow boundaries — thus ruling out boundary migration mechanism
- Rate of rotation:
 $$ \mu = 2 \gamma \cos^2 (\mu/2) $$
Dynamics: Forward Kink Bands

For a given population of kink bands, the model predicts the development of kink bands with strain.

\[\dot{\mu} = 2 \gamma \cos^2 \left(\frac{\mu}{2} \right) \]

Qualitative Agreement
- \(\mu_b \uparrow \) w/ strain suggests lamellar rotation
- Rate of rotation \(\downarrow \) w/ strain
- Area under kink band peak \(\sim \) constant

SEP 38-62; SAXS of 1*-2* plane; 180C; Qiao 2001
\[\gamma = 0.1 \text{s}^{-1} \]

SEP 38-62; SAXS of 1*-2* plane; 180C; Qiao 2001
How do kink bands evolve w/ strain?

- Kink bands evolve through **lamellar rotation**, the rate of rotation follows:
 \[
 \dot{\mu} = 2 \gamma \cos^2 (\mu / 2)
 \]

- The predicted rate of rotation shows an **accurate fit at the highest shear rate**.
- Deviations at lower rates are presumably due to the presence of spontaneous **domain relaxation**.

Dynamics: Forward Kink Bands

- Peak maximum moves in the anti-vorticity direction due to lamellae rotation and the consequent pile up.

SEP 38-62; SAXS of 1^*-2^* plane; 180C, 0.005 s⁻¹; Polis 1999
Termination: Forward Kink Bands

\(\gamma = 1 \)

Chevron boundary

\(\gamma = 3 \)

Omega boundary

SEP 40-70; TEM of 1-2 plane; 180°C, 0.001 s\(^{-1}\); Qiao 2000

Termination: Forward Kink Bands

\(\gamma = 5 \)

Omega boundary

\(\gamma = 10 \)

Broken boundary

SEP 40-70; TEM of 1-2 plane; 180°C, 0.001 s\(^{-1}\); Qiao 2000
Termination: Forward Kink Bands

Tilt Angle vs. Strain

SEP 40-70; TEM of 1-2 plane; 180C, 0.001 s⁻¹; Qiao 2000

Quiescent Tilt Boundary

- **Chevron**
- **Intermediate**
- **Omega**

Self-consistent field theory predicts **boundary transformation with decreasing tilt angle.**

Why? Reduce: interfacial energy, bending energy, and overall packing frustration.
Kink Bands in Block Copolymer Lamellar Phases

Evolution of Kink Bands and Tilt Boundaries in Block Copolymers at Large Strains

- Kink bands persist at large strains, and evolve by **lamellar rotation** and **boundary transformation**.
- Upon increasing strain, kink band boundary transforms from *chevron* boundary to **various omega** boundaries to *broken* omega boundaries.
- **PS** domains are the **weaker** domains, contributing to the broken boundaries at large strains

Relaxation: Conjugated Kink Bands

- As molded starting state
- Large Amplitude Oscillatory Shear: 12h, 150°C, g=40%, 1 s⁻¹
- Anneal: 150°C, 2h

SEP 40-70; FE-SEM of 1-2 plane; Polis 1996
Relaxation: Conjugated Kink Bands

- As molded starting state
- Large Amplitude Oscillatory Shear: 12h, 150°C, g=40%, 1 s⁻¹
- Anneal: 150°C, 48h

- As molded starting state
- Large Amplitude Oscillatory Shear: 12h, 150°C, g=40%, 1 s⁻¹
- Anneal: 150°C, 168h

SEP 40-70; FE-SEM of 1-2 plane; Polis 1996
Lamellae Contraction

Alignment by oscillatory shear

In situ SAXS-Steady shear
\(\gamma(\text{max}) = 80\% \); 180° C, RAPID detector

<table>
<thead>
<tr>
<th>Materials</th>
<th>(D_s) (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEP(39-24)</td>
<td>45</td>
</tr>
<tr>
<td>SEP(38-62)</td>
<td>70</td>
</tr>
<tr>
<td>SEP(111-83)</td>
<td>109</td>
</tr>
</tbody>
</table>

SEP; SAXS of 1*2* plane; 180C; Qiao 2002
Kink Bands in Block Copolymer Lamellar Phases

SEP(111-83)

- 0.001 s\(^{-1}\)
- 0.01 s\(^{-1}\)
- 0.1 s\(^{-1}\)

\[
\frac{D}{D_0} \sim \gamma
\]

\[
\sigma \sim \gamma
\]

Steady shear @ 0.1 s\(^{-1}\)

- SEP(39-24)
- SEP(38-62)
- SEP(111-83)
Contraction: Chain Conformation Distortion

- Lamellar spacing balances interfacial and stretching energy.
- Lamellar contraction requires distortion of chain conformation.
- As shear rate \uparrow \Rightarrow Less relaxation and less strain dissipation
 \Rightarrow More distortion, more contraction
- As molecular wt \uparrow \Rightarrow entanglements \uparrow, more distortion \uparrow
 \Rightarrow More distortion, more contraction

Constraints on Morphology:

Area per junction must be the same for both blocks
Stress should be approximately uniform perpendicular to the lamellae
Strain can vary perpendicular to the lamellae and even within a microdomain. This can lead to different amounts of contraction in the A and B microdomains.

Contraction vs. Shear Stress

The amount of lamellar contraction depends on the applied shear stress, which is influenced by either molecular weight or shear rate.
Contraction, stress and modulus:

Assumption:
- Elastic distortion
- Constant stress, uniform strain across lamellae

Prediction: \(\frac{D-D_0}{D_0} \sim \sigma^2/(\sigma^2+3G^2) \)
Solvent-Induced Non-Equilibrium Morphologies

<table>
<thead>
<tr>
<th>Solvent</th>
<th>δ (MPa$^{1/2}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polystyrene (PS)</td>
<td>19.0</td>
</tr>
<tr>
<td>Polysisoprene (PI)</td>
<td>15.1</td>
</tr>
<tr>
<td>Cyclohexane</td>
<td>16.8</td>
</tr>
<tr>
<td>Toluene</td>
<td>18.5</td>
</tr>
<tr>
<td>Dioxane</td>
<td>20.3</td>
</tr>
</tbody>
</table>

Solvent-casting (in air, 3 weeks; in vacuum, 80°C, 48hr)

Morphological characterization (TEM, SAXS) and mechanical testing (E).
Kink Bands in Block Copolymer Lamellar Phases

67-ISI, as-cast

![Graph showing scattering data for different solvents](image)

Cyclohexane | Toluene | Dioxane

After annealing: equilibrium structure

38-ISI
- Gyroid

![Graph showing scattering data for gyroid structure](image)

67-ISI
- Lamellae

![Graph showing scattering data for lamellar structure](image)
As-cast → **Annealed**

<table>
<thead>
<tr>
<th>Solvent</th>
<th>Solubility parameter, δ (MPa$^{1/2}$)</th>
<th>38-ISI</th>
<th>52-ISI</th>
<th>67-ISI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyclohexane</td>
<td>16.8</td>
<td>C → G</td>
<td>L → L</td>
<td>L → L</td>
</tr>
<tr>
<td>Toluene</td>
<td>18.5</td>
<td>G → G</td>
<td>L → L</td>
<td>L → L</td>
</tr>
<tr>
<td>Dioxane</td>
<td>20.3</td>
<td>L → G</td>
<td>L → L</td>
<td>C → L</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Solvent</th>
<th>Solubility parameter, δ (MPa$^{1/2}$)</th>
<th>38-SIS</th>
<th>52-SIS</th>
<th>67-SIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyclohexane</td>
<td>16.8</td>
<td>C → L</td>
<td>L → L</td>
<td>L → C</td>
</tr>
<tr>
<td>Toluene</td>
<td>18.5</td>
<td>L → L</td>
<td>L → L</td>
<td>C → C</td>
</tr>
<tr>
<td>Dioxane</td>
<td>20.3</td>
<td>L → L</td>
<td>L → L</td>
<td>C → C</td>
</tr>
</tbody>
</table>

Area per Junction

- Area per junction larger in as-cast samples.
- Effect of solvent is influenced by the solubility parameter and evaporation rate.
Kink Bands in Block Copolymer Lamellar Phases

Modulus vs. As-Cast Morphology, chain architecture

<table>
<thead>
<tr>
<th>ϕ_s (%)</th>
<th>Solvent</th>
<th>Morphology</th>
<th>SIS (ksi)</th>
<th>ISI (ksi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>38</td>
<td>Cyclohexane</td>
<td>C</td>
<td>10.1</td>
<td>5.4</td>
</tr>
<tr>
<td>38</td>
<td>Toluene</td>
<td>G</td>
<td>—</td>
<td>14.0</td>
</tr>
<tr>
<td>38</td>
<td>Toluene</td>
<td>L</td>
<td>19.8</td>
<td>—</td>
</tr>
<tr>
<td>38</td>
<td>Dioxane</td>
<td>L</td>
<td>21.0</td>
<td>7.8</td>
</tr>
<tr>
<td>52</td>
<td>Toluene</td>
<td>L</td>
<td>21.2</td>
<td>17.8</td>
</tr>
<tr>
<td>52</td>
<td>Dioxane</td>
<td>L</td>
<td>32.6</td>
<td>22.2</td>
</tr>
<tr>
<td>67</td>
<td>Toluene</td>
<td>C</td>
<td>102.9</td>
<td>—</td>
</tr>
<tr>
<td>67</td>
<td>Toluene</td>
<td>L</td>
<td>—</td>
<td>34.3</td>
</tr>
<tr>
<td>67</td>
<td>Dioxane</td>
<td>C</td>
<td>73.2</td>
<td>42.3</td>
</tr>
</tbody>
</table>

- $E \uparrow$ with ϕ_s: 38-SIS < 52-SIS < 67-SIS.
- $E \uparrow$ with domain connectivity:
 - PS cylinders < Lamellae < Double Gyroid.
 - Lamellae < PI cylinders.
- $E \uparrow$ with trapped entanglements: SIS > ISI.