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. Topological defects in smectic and
hexagonal mesophases.

. Long wavelength description of
defect motion.

. Domain coarsening,.

. Non-adiabatic effects and pin-
ning.
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e Supercritical bifurcation to a lamellar
phase (smectic symmetry).

P

—_—__H

2

e Subcritical bifurcation to a hexagonal
phase (crystalline symmetry).

With Denis Boyer



RELAXATION OF MESOPHASES
e Decay controlled by the relaxation of the longest lived modes -
topological defects.

e Interaction and collective motion of topological defects (dislo-
cations, disclinations, and grain boundaries) in macroscopically
disordered structures.

e Long wavelength description of defect motion and microstructure
coarsening.

— In a block copolymer, only diffusive relaxation of monomer
concentration (no chain dynamics).

e Absence of nonvariational terms (sufficiently close to threshold).

— In a block copolymer, no flow.



SMECTIC SYMMETRY

e Broken translational symmetry in only one direction.




LAMELLAR PHASE

Disclin:




HEXAGONAL SYMMETRY

e Broken translational symmetry in two directions (2D crystal).
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HEXAGONAL PHASE
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ORDER PARAMETER MODEL

oY(r,t)
ot

2
= e~ (4 V) 0+l
0

To

Stationary solution gy = ()
e c<(0:y=0
o c > 0: ¢(F,t) = €2 Aysin(ky - 7) + O(e¥2).

Lamellar pattern oriented along an arbitrary k;) Smectic phase.

Stationary solution ¢, # 0

o —len(ge)] <€ < enl(g): Y(FEt) =30 A et 4.

Hexagonal pattern. Crystalline phase.



WEAKLY NONLINEAR ANALYSIS

Consider slowly varying modulations around linearly unstable solu-
tion (for g, = 0),

V(7 t) = AT, t)e™ + c.c.,

g 2
€+ & (ax—ZLkOaj) — 3|A)? | A(7,t)

(Ginzburg-Landau equation).

e This equation is a universal long wavelength description of a
stationary, supercritical bifurcation.

e Rotational invariance of the underlying governing equations lost.



AMPLITUDE EQUATION DESCRIPTION OF
DISLOCATION MOTION

(Siggia and Zippelius, 1981)
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Point defect in the envelope field, ﬁr/— I
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Climb velocity is found, Al
v o (k— k0)3/2, Phase 6 plays the role of the

displacement field wu.



AMPLITUDE EQUATION DESCRIPTION OF A GRAIN BOUNDARY

AX,T)
/\W
(%)
l 8-1}‘2
0
(9A . 2
—= €A + €2 (ax — 2%085) A — 3|APA — 6| B*A,
0B ' :
= = eB + & (ay — 2%083) B —3|B|’B — 6|A|’B.



GRAIN BOUNDARY MOTION
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GRAIN BOUNDARY MOTION
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e Linear relaxation rate o oc ¢?.

e Nonlinear uniform translation mode,

vp(t) = (53 ) (e/lkodz(t)]? Sr(tq K2

w2 ) T dz 0.4 + (0B~ Ve

=N

(@)

Time dependent driving force
Mobility

Vgy(t) =



DOMAIN COARSENING

e A time dependent length R(t) (characteristic domain size)
emerges, to which all other lengths scale.

e Ast — oo, R(t) — oo, and all other scales of microscopic
origin become irrelevant (cf. correlation length divergence near
a critical point).

e Scaling functions are introduced. For example for the domain
size distribution,

p(R,t) =G (g) R(t) ~ t*.

e Universality classes have been introduced according to the value
of x.
— Purely relaxational dynamics, x = 1/2.
— Relaxational dynamics with global conservation law, x = 1/3.
— Binary fluids (non-variational modes), = = 1.
— Smectic phases, x = 1/3.



COARSENING MECHANISM IN SMECTICS

e Grain boundary veloc-
ity,
v, X K* ~ R72

with the scale R set
by the distribution of
disclinations.

e Coarsening law,

R(t) ~ t'/3




DOMAIN COARSENING

Moments of the distribution of domain curvatures,

Ke(t)
mn(t):/ dk K"P(k,t) P(k,t) =t f(kt"/?)
0
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NON-ADIABATIC MOTION

For small € ~ 0.1, the decoupling between slowly varying amplitudes
and the phase of the lamellae already breaks down.
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NON-ADIABATIC EFFECTS AND PINNING

AT

?lv £ -1/2
0

For a grain boundary, we find,

Vg = € W2 p(e)

3k3D(e) D(e)
with GH(2)i(£) = (ks T/ D{e)Lyp)olt — ).

cos(2kox, + @) + 1,

The function D(e) is a friction coefficient, and

p(e) ~ e2e™VE,



NON-ADIABATIC EFFECTS AND PINNING
e Grain boundary located at potential minima - decoupling be-
tween grain boundary location and lamellar phase lost.
e Continuous motion only in the limit € — 0.
e Effective coarsening exponents when € is not sufficiently small.

e Lffective exponents change when random fluctuations added to
equations of motion (unlike phase ordering systems).

e (Glassy states at some €.



EFFECTIVE COARSENING EXPONENTS

e Elder, Vinals, and Grant, 1992.
— Structure factor: x = 1/5 (no noise), x = 1/4 (noise).
— Lamellar relaxation & = 1/4 crossing over to = = 1/2.

e Cross and Meiron, 1995.

— Structure factor (no noise): x = 1/5.
— Structure factor (non-gradient model and no noise): = = 1/5.

e Hou, Sasa, and Goldenfeld, 1997.

— Structure factor: x = 1/5 (no noise), = 1/4 (noise)

— Domain wall density: x = 1/4 (no noise), x = 0.3 (noise)
e Christensen and Bray, 1998.

— Structure factor: x = 1/5 (no noise), x = 1/4 (noise)

— Local director correlation function: x = 1/4 (no noise), z =
0.3 (noise).
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EFFECTIVE COARSENING EXPONENTS

X

A

£=04,F=001¢"
5/4

£=04 F=003¢

£=015 F=004¢>"

£=004, F=005¢>"
€e=04,F=0

0.1

1000 10000 100000

-1/5

-1/4

-1/3

-1/3



GLASSY CONFIGURATIONS

Characteristic pinning scale: Ry ~ Age~1/2e®/(2Ve)




RANDOM FLUCTUATIONS

e Approximate equation of grain boundary motion,

. (kF, , (koFo) 1 1 F\"
Ty = (ﬁ) R,k —( D ) i, cos(2k0x9b+¢)+@ (Rgb) &

2€

ith  F =
TR,

e Escape over a barrier. The Kramers rate of escape is,
( Fy Rgb)
re~exp|——7].

e The noise intensity to unpin a boundary of perimeter R,

FO R 1)62 _
F=Ry— ~ L Ve,
“Ra ko



HEXAGONAL PHASE
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SUBCRITICAL BIFURCATION TO A HEXAGONAL PHASE

D’Ugb = —Phex sin [2]6‘()339() SIH(Q/Z)] )

with (Peierls force),

Dhew ~ Aée—Qako sin(0/2)¢

e Lamellar phase,
g ~ 1/\/E Piam ™~ 6_1/\/2-

e Hexagonal phase,
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AMPLITUDE OF PINNING FORCE
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AMPLITUDE OF PINNING FORCE

0.0005 T T - T T T T
! \ l l
! 1
| ) — g,=015¢=003 .
0.0004 1 ; \_\ - gz=0.3,8=0.05 B
) " - \ g, = 0.3, € = 0.05 (numeric)
2N \
AN \ --0,=03,¢e=01
o I \ T
I ,’ \ \A\
i / \ \
0.0003 (—i ! \ \ =
[ \ \
. II \ \
Q{ié B : l’ \\ \‘
| \ \
i \ \
0.0002 -/ \ |
Fi \ \
Iy N \
i |
_l I \ \
if N \
0.0001 % \
i . .
J} \\\ \‘\_
f\ \\\ \.\
. I B I eelteiele A] Sl i S
10 20 30 40 50
0

o



SUMMARY

e In the limit € — 0, a lamellar microstructure coarsens in a self-
similar fashion, with an exponent x = 1/3.

e At small but finite €, non-adiabatic effects lead to pinning, to
effective coarsening exponents, and to glassy behavior.

e At a subcritical bifurcation (e.g., hexagonal lattice), pinning ef-
fects cannot be avoided. The resulting Peierls force can be de-
rived analytically from an order parameter model.

e Grain boundary mobility depends strongly on mis-orientation.
The dependence in a hexagonal phase is qualitatively similar to
that of a crystalline solid.



