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TOPOLOGICAL DEFECT MOTION AND
DOMAIN COARSENING IN MESOPHASES

Jorge Viñals
Florida State University

1. Topological defects in smectic and
hexagonal mesophases.

2. Long wavelength description of
defect motion.

3. Domain coarsening.

4. Non-adiabatic effects and pin-
ning.

• Supercritical bifurcation to a lamellar
phase (smectic symmetry).

• Subcritical bifurcation to a hexagonal
phase (crystalline symmetry).

With Denis Boyer
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RELAXATION OF MESOPHASES

• Decay controlled by the relaxation of the longest lived modes -
topological defects.

• Interaction and collective motion of topological defects (dislo-
cations, disclinations, and grain boundaries) in macroscopically
disordered structures.

• Long wavelength description of defect motion and microstructure
coarsening.

– In a block copolymer, only diffusive relaxation of monomer
concentration (no chain dynamics).

• Absence of nonvariational terms (sufficiently close to threshold).

– In a block copolymer, no flow.
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SMECTIC SYMMETRY

• Broken translational symmetry in only one direction.
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LAMELLAR PHASE
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HEXAGONAL SYMMETRY

• Broken translational symmetry in two directions (2D crystal).
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HEXAGONAL PHASE
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ORDER PARAMETER MODEL

τ0
∂ψ(r, t)

∂t
= εψ − ξ2

0

4k2
0

(
k2

0 +∇2
)2
ψ + g2ψ

2 − ψ3

Stationary solution g2 = 0

• ε < 0: ψ = 0

• ε > 0: ψ(~r, t) = ε1/2A0 sin(~k0 · ~r) +O(ε3/2).

Lamellar pattern oriented along an arbitrary ~k0. Smectic phase.

Stationary solution g2 6= 0

• −|εm(g2)| < ε < εM(g2): ψ(~r, t) =
∑6

n=1Ane
i~kn·~x + c.c..

Hexagonal pattern. Crystalline phase.
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WEAKLY NONLINEAR ANALYSIS

Consider slowly varying modulations around linearly unstable solu-
tion (for g2 = 0),

ψ(~r, t) = A(~r, t)eik0x + c.c.,

τ0
∂A(~r, t)

∂t
=

[
ε + ξ2

0

(
∂x −

i

2k0
∂2
y

)2

− 3|A|2
]
A(~r, t)

(Ginzburg-Landau equation).

• This equation is a universal long wavelength description of a
stationary, supercritical bifurcation.

• Rotational invariance of the underlying governing equations lost.



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

AMPLITUDE EQUATION DESCRIPTION OF
DISLOCATION MOTION

(Siggia and Zippelius, 1981)

Point defect in the envelope field,

ψ = Aei
~k·~x = ρ(~x)eiθ(~x)ei

~k·~x.∮
∇θ · ~dl = ±2π.

Climb velocity is found,

v ∝ (k − k0)
3/2
. Phase θ plays the role of the

displacement field u.
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AMPLITUDE EQUATION DESCRIPTION OF A GRAIN BOUNDARY

∂A

∂t
= εA + ξ2

0

(
∂x −

i

2k0
∂2
y

)2

A− 3|A|2A− 6|B|2A,

∂B

∂t
= εB + ξ2

0

(
∂y −

i

2k0
∂2
x

)2

B − 3|B|2B − 6|A|2B.
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GRAIN BOUNDARY MOTION

2π / 0

y

x

δx0 cos(qy)

AB q

k

F =

∫
d~r

{
−ε(|A|2 + |B|2) +

3

2
(|A|4 + |B|4) + 6|A|2|B|2+

ξ2
0|(∂x −

i

2k0
∂2
y)A|2 + ξ2

0|(∂y −
i

2k0
∂2
x)B|2

}
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GRAIN BOUNDARY MOTION

2π / 0

y

x

δx0 cos(qy)

AB q

k

• Linear relaxation rate σ ∝ q4.

• Nonlinear uniform translation mode,

vgb(t) =

(
ξ2

0

4k2
0
q4

)
(ε/4)[k0δx(t)]2∫ ∞

−∞ dx [(∂xA0)2 + (∂xB0)2]
∼ δx(t)2q4

√
ε
∝ κ2

√
ε

vgb(t) =
Time dependent driving force

Mobility



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

DOMAIN COARSENING

• A time dependent length R(t) (characteristic domain size)
emerges, to which all other lengths scale.

• As t → ∞, R(t) → ∞, and all other scales of microscopic
origin become irrelevant (cf. correlation length divergence near
a critical point).

• Scaling functions are introduced. For example for the domain
size distribution,

p(R, t) = G
(
R

tx

)
R(t) ∼ tx.

• Universality classes have been introduced according to the value
of x.

– Purely relaxational dynamics, x = 1/2.

– Relaxational dynamics with global conservation law, x = 1/3.

– Binary fluids (non-variational modes), x = 1.

– Smectic phases, x = 1/3.
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COARSENING MECHANISM IN SMECTICS

• Grain boundary veloc-
ity,

vn ∝ κ2 ∼ R−2

with the scale R set
by the distribution of
disclinations.

• Coarsening law,

R(t) ∼ t1/3
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DOMAIN COARSENING

Moments of the distribution of domain curvatures,

mn(t) =

∫ κc(t)

0
dκ κnP (κ, t) P (κ, t) = t1/zf (κt1/z)

1

10

100 1000 10000 100000

t

(mn(t)/m0)-1/n

P(0,t)
γ=0.3

γ=0.5



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

NON-ADIABATIC MOTION

For small ε ∼ 0.1, the decoupling between slowly varying amplitudes
and the phase of the lamellae already breaks down.
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Fig. 4
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NON-ADIABATIC EFFECTS AND PINNING

For a grain boundary, we find,

vgb =
ε

3k2
0D(ε)

κ2 − p(ε)

D(ε)
cos(2k0xgb + φ) + η̃,

with 〈η̃(t)η̃(t′) = (kBT/D(ε)Lgb)δ(t− t′).

The function D(ε) is a friction coefficient, and

p(ε) ∼ ε2e−α/
√
ε.
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NON-ADIABATIC EFFECTS AND PINNING

• Grain boundary located at potential minima - decoupling be-
tween grain boundary location and lamellar phase lost.

• Continuous motion only in the limit ε→ 0.

• Effective coarsening exponents when ε is not sufficiently small.

• Effective exponents change when random fluctuations added to
equations of motion (unlike phase ordering systems).

• Glassy states at some ε.
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EFFECTIVE COARSENING EXPONENTS

• Elder, Viñals, and Grant, 1992.

– Structure factor: x = 1/5 (no noise), x = 1/4 (noise).

– Lamellar relaxation x = 1/4 crossing over to x = 1/2.

• Cross and Meiron, 1995.

– Structure factor (no noise): x = 1/5.

– Structure factor (non-gradient model and no noise): x = 1/5.

• Hou, Sasa, and Goldenfeld, 1997.

– Structure factor: x = 1/5 (no noise), x = 1/4 (noise)

– Domain wall density: x = 1/4 (no noise), x = 0.3 (noise)

• Christensen and Bray, 1998.

– Structure factor: x = 1/5 (no noise), x = 1/4 (noise)

– Local director correlation function: x = 1/4 (no noise), x =
0.3 (noise).
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EFFECTIVE COARSENING EXPONENTS
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GLASSY CONFIGURATIONS

Characteristic pinning scale: Rgl ∼ λ0ε
−1/2eα/(2

√
ε)

ε = 0.5
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RANDOM FLUCTUATIONS

• Approximate equation of grain boundary motion,

ẋgb =

(
k0F0

2D

)
Rglκ

2−
(
k0F0

2D

)
1

Rgl

cos(2k0xgb+φ)+
1√
2D

(
F

Rgb

)1/2

ξ

with F0 =
2ε

3k3
0Rgl

• Escape over a barrier. The Kramers rate of escape is,

r ∼ exp

(
−F0

F

Rgb

Rgl

)
.

• The noise intensity to unpin a boundary of perimeter Rgb,

F = Rgb

F0

Rgl

∼ Rgbε
2

k0
e−α/

√
ε.
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HEXAGONAL PHASE
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SUBCRITICAL BIFURCATION TO A HEXAGONAL PHASE

Dvgb = −phex sin [2k0xgb sin(θ/2)] ,

with (Peierls force),

phex ∼ A4
0e
−2ak0 sin(θ/2)ξ

• Lamellar phase,

ξ ∼ 1/
√
ε plam ∼ e−1/

√
ε.

• Hexagonal phase,

ξ → ξ0 =
15λ0

8
√

6πg2
.
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AMPLITUDE OF PINNING FORCE
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AMPLITUDE OF PINNING FORCE
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SUMMARY

• In the limit ε → 0, a lamellar microstructure coarsens in a self-
similar fashion, with an exponent x = 1/3.

• At small but finite ε, non-adiabatic effects lead to pinning, to
effective coarsening exponents, and to glassy behavior.

• At a subcritical bifurcation (e.g., hexagonal lattice), pinning ef-
fects cannot be avoided. The resulting Peierls force can be de-
rived analytically from an order parameter model.

• Grain boundary mobility depends strongly on mis-orientation.
The dependence in a hexagonal phase is qualitatively similar to
that of a crystalline solid.


