Peptide Self-Assembled Polymers

Sasha Semenov, Irena Nyrkova,
Dept. of Applied Mathematics
Amalia Aggelli, Mark Bell, Neville Boden, Peter Mawer
SOMS Centre
Sheena Radford
School of Biology
Tom McLeish, Alastair Smith
Polymer IRC, Dept. of Physics and Astronomy
University of Leeds
Geoge Fytas, Dimitris Vlassopoulos
FORTH, Herklio

Questions

● Why and when do peptides self-assemble?
● What is a good coarse-grained model for the energies of interaction?
● What limits fibre/bundle diameters?
● What are the slow kinetics?
● Do they constitute and example of tightly entangled stiff polymers?
●

Self-Assembled Peptide Tapes as Stiff Biopolymers
Peptide 1: K24 - organic solvent

Lys-Leu-Glu-Ala-Leu-Tyr-Val-Leu-Gly-Phe-Phe-Gly-Phe-Phe-Thr-Leu-Gly-Ile-Met-Leu-Ser-Tyr-Ile-Arg

Hydrophobic

did this at only 1% in water

Peptides 2 and 3: P_{11}-I and P_{11}-II; aqueous

I CH 3 CO-Gln-Gln-Arg-Phe-Gln-Trp-Gln-Phe-Glu-Gln-Gln-NH 2

… the same plus a hydrophobic side..

II CH 3 CO-Gln-Gln-Arg-Phe-Gln-Trp-Phe-Glu-Gln-Gln-NH 2
Self-Assembled Peptide Tapes as Stiff Biopolymers

They must have formed polymers...

Flexible β-sheet ribbons

Hydrogen bonding modified by electrostatics
Self-Assembled Peptide Tapes as Stiff Biopolymers

A standard biological motif

Lac-repressor

AFM:

Alastair Smith
Check with spectroscopy

Surely an example of 1-d self-assembly:

\[
\frac{F}{k_B T} = \sum_m N_m \ln \left(\frac{N_m v_0}{eV} \right) + \sum_m N_m \epsilon_m
\]

with \(\sum_m N_m m = N \)

So we need a model for
Famous example: wormlike micelles

\[\varepsilon_m = 2 \varepsilon_{cap} \]

\[\Rightarrow \langle m \rangle = c^{1/2} \varepsilon_{cap} \]

But the Spectroscopic self-assembly curves are S-shaped:

Not \(\sim c^{1/2} \)!
So modify the picture with a transition state...

Flexible β-sheet ribbons

Pseudo-helix free state

Now this gives:

\[
\langle m_{tape} \rangle = \left(\frac{c - c_{tape}^*}{c_{tape}} \right)^{1/2} e^{E_{trans}/2} \quad \text{with} \quad c_{tape}^* \equiv e^{-E_{tape} + E_{trans}}
\]

With increased concentration they go on self-assembling..
Self-Assembled Peptide Tapes as Stiff Biopolymers

So that, \(\epsilon \), e.g.

\[
\langle m_{\text{ribbon}} \rangle = \left(\frac{c - c_{\text{ribbon}}^*}{c_{\text{ribbon}}^*} \right)^{1/2} \epsilon^{(\epsilon_{\text{trans}} + \epsilon_{\text{tape}})/2}
\]

with

\[
c_{\text{ribbon}}^* \equiv c_{\text{tape}}^* + \epsilon_{\text{ribbon}}^{-2} \epsilon_{\text{tape}}^{-1}
\]

\(P_{11} \) looks like curly tapes
Self-Assembled Peptide Tapes as Stiff Biopolymers

P$_{11}$-II must be ribbons, then fibrils

- No isochroic point
- Single tapes too short
- Persistence ⁴₀~500nm

But what stabilises the fibrils?

$$\varepsilon_{\text{elast}} = \frac{1}{2} k_{\text{bend}} (\nu - \nu_0)^2 + \frac{1}{2} k_{\text{twist}} (\theta - \theta_0)^2$$

Twist-Stack Model

$$\nu = \gamma^2 \frac{\rho}{(1 + \gamma^2 \rho^2)}; \quad \theta = \gamma \frac{1}{(1 + \gamma^2 \rho^2)}$$

$$\varepsilon_{\text{fibril}} = \frac{p - 1}{2p} \varepsilon_{\text{fibril}}^{\text{attr}} - \varepsilon_{\text{elast}}$$
A structural phase diagram:

We can predict their formation quantitatively..

..and observe a nematic phase..
Self-Assembled Peptide Tapes as Stiff Biopolymers

P_{11-II} the story...

Parameter Summary

Dr. Tom McLeish, ITP & Leeds (ITP Complex Fluids Program 3/14/02)
Self-Assembled Peptide Tapes as Stiff Biopolymers

Dynamics and Rheology: K24 in 2chloroethanol

Plateau Modulus looks like stiff-entangled:

Estimate of $L_c \sim 100\text{nm}$ gives

$$G_{\text{curve}} \approx \frac{\rho k_B T}{L_c} \equiv 4\text{Pa}$$

at

$$\varphi = 5 \times 10^{-3}$$

so

$$\rho = 10^{14}\text{m}^{-2}$$
Self-Assembled Peptide Tapes as Stiff Biopolymers

Additional evidence from stiffness from DE-like spectrum

By fitting: \(L_p/L_e \sim 10 \)

More from Morse, Maggs and more….

Useful relation:

\[
\ln \left(\frac{\omega_{\text{min}}}{\tau_d} \right) = \frac{2}{3} \left[1 + \ln \left(\frac{L^2}{L_p L_e} \right) \right] \Rightarrow \frac{L}{L_e} \equiv 250 \equiv 100 \mu
\]
Self-Assembled Peptide Tapes as Stiff Biopolymers

Depolarised Light Scattering

$\mathbf{I_{VH}}$

... looks like rods locally

... $D(q) \sim q^0$

Relaxation rate with concentration

But L should only be at most 100nm down here

Strange slowing down

Anomalous semi-dilute exponent with c
Application: these structures resemble “amyloids”

C. Dobson and A. Hill (Oxford)

- Next step is to understand kinetics (months!)
- We may have a cleanish model system
- Physics may have more to say about biology when it goes