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Phase Behavior, Rheology, Erosion 
Kinetics and Biomedical Applications of 

Fluoroalkyl-Ended PEGs

Motivation: In-Situ Transforming Hydrogels

Proteins or Cells

1) Delivery Carrier: Immobilization of cells 
or controlled release of proteins

2) Soft Structural Support or
Barrier for Adhesion Prevention

solubilization

to

t1

t2

Applications Erosion type
Surface  vs.  Bulk 

desired
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Associative polymers

● With att racting groups

● Physical junctions :                                            
electrostatic                                                   
hydrogen bonding                                            
hydrophobic

● Model system :                                                  
End-group modified polymer in good solvent

Topo logy of Associative Network for 
“ Single Phase” Systems

superloops

superbridges

infinite clusters

C > CMC

C > C*

Increasing concentration(Annable, ‘93)
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Phase Behavior of End-Associating 
Polymers

sol weak physical gel

single phase solution

Conc.

(stickiness)-1

two phases

Phase behavior governed by
• attraction due to exchange entropy:

increases with aggregation number of core Nagg
• repulsion due to excluded volume interaction:
independent of chain length N

(Semenov, ‘95; Russel and coworkers, ‘98-’99)

Structure-Property Relations & 
Materials Design

● Phase behavior  
● Rheology 
● Erosion behavior 
● Triggered solidification

● Midblock type & length
● Hydrophobe type & length

● Midblock: PEG  
- why?       biocompatible
- length ∅ mesh size of gel

● Hydrophobe: fluoroalkyl, Rf

- why?       hydrophobic and biocompatible
- length ∅ strength of aggregation
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Materials and Phase Behavior

type of           equilibrium composition     equilibrium composition
Sample     behavior                 in water (wt %)             in PBS (wt %) 

Cgel.eq. Csol.eq. Cgel.eq. Csol.eq.

20KC8        1 phase                 
20KC10      1 phase

10KC8        2 phase      6.5±0.2     0.075±0.005         7.8±0.2     0.055±0.002
10KC10      2 phase      6.8±0.7     0.019±0.008         8.1±0.7     0.011±0.003 

6KC6        2 phase      9.5±0.5     0.066±0.006       10.5±0.6     0.038±0.002
6KC8        2 phase    11.0±0.3     0.042±0.007       12.5±0.3     0.017±0.001

6KC10      insoluble 

Csol.eq.

Cgel.eq.

at 25 oC

H
-C-N H

N-C-

=
O

=
O

Fluoroalkyl (Rf) :
-(CH2)2-CnF2n+1

PEG
IPDU (linker):

Dynamic moduli of “ single phase” species              
(20KC10)
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Dynamic moduli of the equilibrium gels of species 
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Nearly single relaxation behavior at Cgel,eq. (10KC10)
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Literature on Rheology
of Alkyl-ended “ Single Phase” Systems
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End-Dissociation Time and Apparent 
“ Effective Fraction” of Chains in the Gel
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Formation o f a new plateau at C > Cgel,eq.(10KC8) 

C ♠ Cgel.eq.

} C > Cgel.eq.; new plateau
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SANS (10KC8 at 25 oC)
Aggregation number

Ordering Transition in the Gel Phase
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Species (wt %)        Nagg

6KC8       (15) 32±4

10KC8       (  8) 32±4
10KC8       (12) 32±4        
10KC8       (17) 34±4

10KC10     (12) 50±6

20KC10     (12) 51±9

5KmC8    (0.5) 28 ±4 

5KmC10  (0.5) 48 ±5 

Implications for Theory

● Rheology of single-phase 
systems: 
» Annable’s could be improved by 

better description of bridge:loop 
and inclusion of micelle-micelle 
repulsion

● Phase behavior:
» Aggregation number is not the 

primary determinant of the phase 
behavior as Semenov and Russel
assume; deeper understanding of 
the effect of chain length on 
micelle-micelle repulsion is 
needed.
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Polymer matrix erosion

Surface(heterogenous)  vs.  Bulk(homogeneous) erosion

desired for the controlled release

to

t1

t2

solubilization

Dissolution characteristics of polymer 
matrix by SPR in a flow system
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Erosion Rates Correlate with Phase Behavior

phase                      composition    dissolution rate
Sample          behavior                  (wt %) (mg/cm2/hr) 

5K-M-C10      lyotropic gel             12.8 0.201     
20KC10         single phase             10.0                    0.168

6KC8           sol-gel coex.             11.0                           3.33 x 10-4

10KC8           sol-gel coex.               6.5                           1.67 x 10-3

10KC10         sol-gel coex.               6.8                           too slow to measure
by SPR

Summary of Gel Properties in the 
Sol-Gel Coexistence Regime

● Mechanical properties (modulus, viscosity) can be 
controlled by the manipulation of hydrophilic and 
hydrophobic parts.

● Erosion of the matrix is achieved from the surface 
(heterogeneous type).

● Dissolution rates are much slower (~10-3 times) than 
systems with no phase separation.

● Dissolution is an activated process governed by end 
group length (10KC10 vs. 10KC8). 
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Sol-Gel Transition with Water-Miscible, 
Bio-Tolerable Organic Solvent 

(N-methyl pyrrolidone (NMP))

Conc. solution in NMP 
(Injectible)  

Gel

NMP diffusion-out
& water absorption

Viscosity change at 37 oC
after exposing 50 % 10KC8 in NMP
to water reservoir.

For initial thickness d ~ 1.5 mm
transition occurs within 10 min.
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Human growth hormone (hGH)

● A single-chain polypeptide of 191 AAs with 2 disulfide 
bonds.  M.W. ~ 22 KD

● Synthesized and secreted into storage granules as dimer
with 2 Zn2+ ions and then released from the anterior 
pituitary.

● Deficiency prevents normal growth, so the recombinant 
form (rhGH) is used to treat hGH deficient children.

● Current clinical administration : daily injections for 
several years => need for sustained release systems.
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Release of hGH from In-Situ Forming Hydrogels of 
PEG with Fluorocarbon Ends

Protein precipitate

● The equilibrium gel phase of PEG modified with fluorocarbon 
ends shows slow, surface erosion.

● Injectible state by dissolving in NMP.

● Gelation after injection by diffusion of NMP out and water in.

● Sustained release of protein through the hydrogel.

Release experiment protocol 
for NMP formulation

• Dissolve PEG-Rf in NMP.

• Add protein powder 
(protein:PEG-Rf :NMP = 
1:10:10). 

• Inject the suspension 
into PBS

• Collect the supernatant 
at intervals and refill.

• Measure total protein 
concentration. Protein precipitate
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hGH-Zn release from injectible NMP formulation 
6KC8 at 37 oC to PBS buffer, thickness of gel at eq. ~ 0.25 cm

initial gel state of 1 :10:10 (weight) of hGH:Polymer:NMP

exchange of 
NMP for water

hGH standard
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Blood response to foreign materials

FOREIGN SURFACE
Flowing blood

PROTEIN ADSORPTION
Higher flow rate
; arterial

Lower flow rate
; venous

PLATELET AGGREGATION
(WHITE THROMBOSIS)

FIBRIN FORMATION
+

PLATELET AGGREGATION
+

TRAPPED RED CELLS
(RED THROMBOSIS)

Ref.; Hoffman, A.S., Polymeric Materials and Artificial Organs, 1984, p.27 
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Rf-PEGs as surface-modifying materials for PTFE

• Rf-PEGs with long enough Rf showed slow (6KC8, 10KC8, 
10KC10) or no (6KC10) erosion. → Adsorbed Rf-PEGs on 
PTFE can give a long-lasting surface-modifying coating.

• Suggests easy route to PEG surface layer on teflon:
• 1.Immerse PTFE part in a solution of Rf-PEG in ethanol (1 wt %).  
• 2. Remove to leave a viscous liquid film on the surface, and 
• 3. immerse in water to induce association of the Rf groups with each 

other and the PTFE surface.

• Observe that PTFE surface is hydrophilic after adsorption.

Capillarity of small PTFE tube

(a) Before Coating (Bare PTFE)
; Capillary Depression (Non-Wetting)

(b) After Coating
; Capillary Rise (Wetting)

Direction  of Tube Movement
h
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Change of capillary rise of modified PTFE tube with 
time under flow

(I.D =1.35 mm,varying shear rate (sec-1)) 
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Results for PTFE modification

• Surface adsorption of Rf-PEGs onto PTFE effectively modifies 
the surface from being hydrophobic to hydrophilic.

• Capillary rise method is a sensitive tool to monitor the change 
in the surface properties of a narrow tube. 

• Stability of this physisorption under flow correlates with the 
phase behavior and erosion rate of the bulk state of Rf-PEGs.  
In particular, an Rf-PEG that is insoluble in water provides the 
most stable modification.
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