Rheology of Liquid Crystalline Polymers:

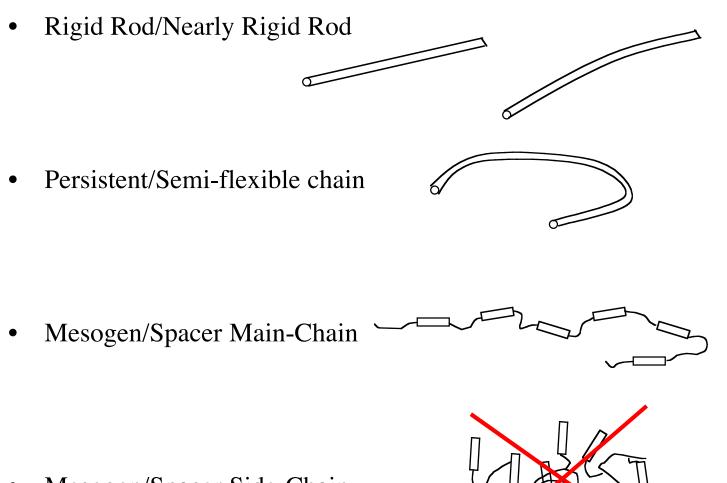
An Experimental View of Theoretical Needs

Pat Mather & Wes Burghardt

Outline

- Background
- Things we know: Lyotropic LCPs
 - Status of theory
 - Ongoing challenges
- Things we are learning: Thermotropic LCPs
 - Theoretical & computational opportunities
- New things we might want to know
 - Interfacial phenomena

LCP Molecular Architecture

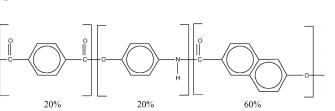


• Mesogen/Spacer Side-Chain

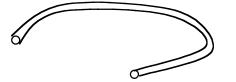
Typical LCP Molecules: Lyotropes **Commercial** $\lambda_{\rm p} = 29 \ \rm nm$ ♦ PPTA • rigid • chemically regular • won't melt ♦ PBZT $\lambda_{\rm p} = 20 \text{ nm}$ • aggressive acid solvents • moisture sensitive PBO ---(CH2)2онн _с_<u>т</u>м___] PBG 'Model' $\lambda_{\rm p} = 90 \text{ nm}$ R is • rodlike owing to helix formation • soluble in diverse ♦ HPC R is CH₂CH CH₃ | OH $\lambda_{\rm p} = 12 \text{ nm}$ organic solvents • stable CH OR ÔR

Typical LCP Molecules: Thermotropes

- $Xydar^{\mathbb{R}}$ $\begin{bmatrix} -e^{\circ} & -e^{-\circ} \end{bmatrix}_{x} \begin{bmatrix} -e^{\circ} & -e^{-\circ} \end{bmatrix}_{\frac{1 \cdot x}{2}} \begin{bmatrix} -e^{-\circ} & -e^{-\circ} \end{bmatrix}_{\frac{1 \cdot x}{2}}$
- Vectra A[®]
- Vectra B[®]



- /=_/^{CH}0]

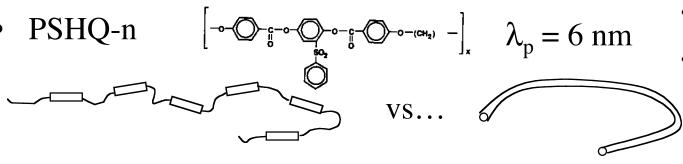


Commercial

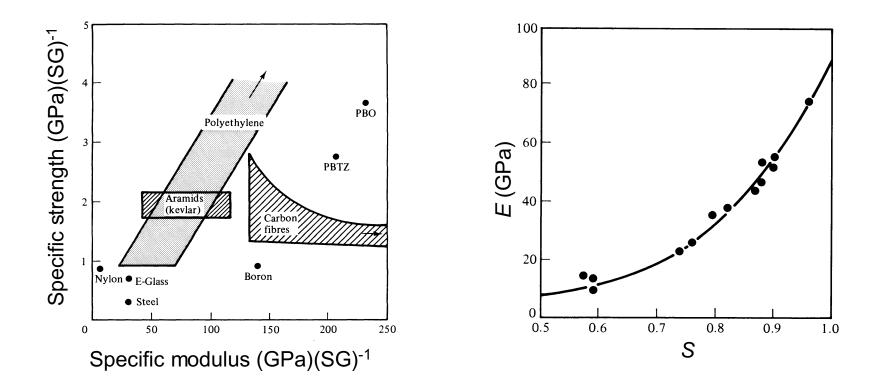
- copolymers to suppress melting point; melt at ~ 300°C
- inaccessible isotropic phase
- poor stability in melt phase

'Model'

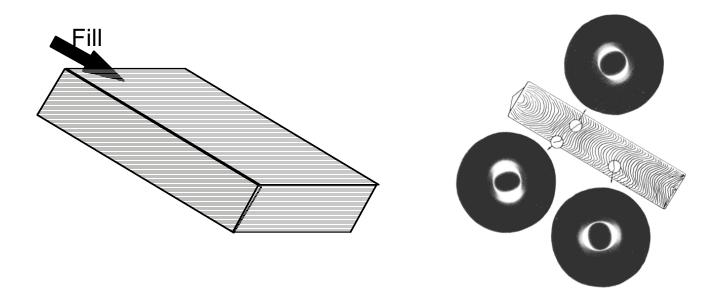
- accessible isotropic phase
- convenient T range (~120-100°C)
- thermally stable



Technology: high strength fibers



Technology: Complex flows, complex structure



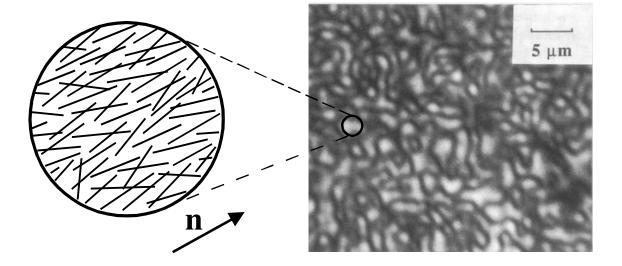
(Weng, et al., J. Mater. Sci., 21, 744, 1986)

LCP Structure

(a) Microscopic

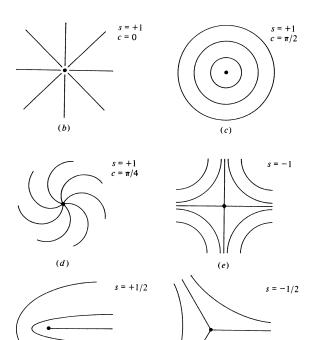
u = test molecule orientation

- (b) Mesoscopic
- n = director orientation



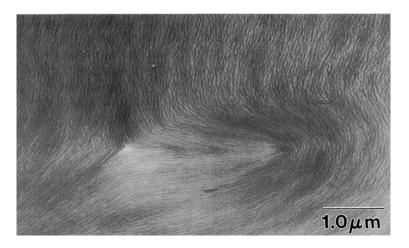
$\Psi(u)$	Orientation Distribution Function	$\overline{\Psi}(n)$
$S_m = \langle uu \rangle - I/3$	Order Parameter Tensor	$\overline{S} = \langle nn \rangle - I/3$
S_m	Scalar Order Parameter	\overline{S}

Disclinations in LCPs



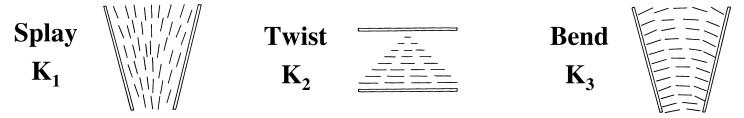
(g)

(f)

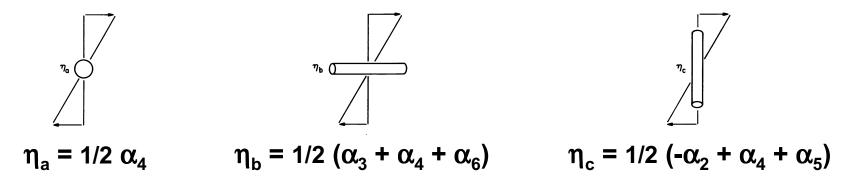


Fundamental LC Statics and Dynamics: Leslie-Ericksen Theory (nematics)

• 3 Elastic constants:



 ♦ 6 Viscosities: α₁ − α₆ eg, Miesowicz viscosities



Two levels of structure; Two sources of elasticity

- Gradient (distortional) elasticity
 - Free energy penalty for spatial variations in n(r)
 - Ericksen number:

$$Er = \frac{\eta Vh}{K} = \frac{\gamma \eta h^2}{K}$$

- Ratio of hydrodynamic torques on **n** to distortional elastic torques on **n**
- Distortional relaxation time:

$$\lambda_d = rac{\eta h^2}{K}$$

- Molecular elasticity
 - Flow-induced changes in local molecular organization (e.g. S)
 - Deborah number:

$$De = \lambda_m \gamma^{\kappa}$$

- λ_m = molecular relaxation time, ~ $1/D_r$.

Typical parameters for LCPs in rheological testing & processing

 $\eta \sim 1000$ Poise; $K \sim 10^{-6}$ dyne; h = 0.1 cm $\lambda_d \sim 10,000,000$ sec $\lambda_m \sim 0.1$ sec

Shear Rate (1/s)	Ericksen Number	Deborah Number
0.001	10,000	0.0001
0.01	100,000	0.001
0.1	1,000,000	0.01
1	10,000,000	0.1
10	•••	1
100	•••	10

With thinner samples, can 'tame' Ericksen number somewhat, but...

Here is an obvious problem for modeling

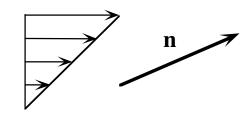
Some theories

- Leslie-Ericksen Theory
 - Continuum
 - Linear in velocity gradients; leadingorder distortional effects
 - Er is critical parameter
- Ericksen TIF theory
 - L-E without distortional elasticity
 - Effectively set $Er = \infty$
- Larson-Doi model
 - Average of L-E theory over distribution of domain orientations in polydomain LCPs
- Doi molecular model (many flavors)
 - Rigid rod polymer solutions
 - No distortional elasticity
 - Molecular viscoelasticity
 - *De* is critical parameter

- Extensions of theory:
 - Effects of flexibility
 - Rodlike: Subbotin; Marrucci & Greco
 - Flexible but extended: Long & Morse (nematic Rouse)
 - High flexibility limit
 - Marrucci & Maffettone (nematic dumbbell)
 - Long & Morse (nematic Rouse)
 - Theories with gradient + molecular elasticity
 - Beris & Edwards
 - Rey
 - Feng
 - Both *De* and *Er*

Tumbling vs. Flow Alignment

 LCs may be classified according to alignment behavior under shear flow:



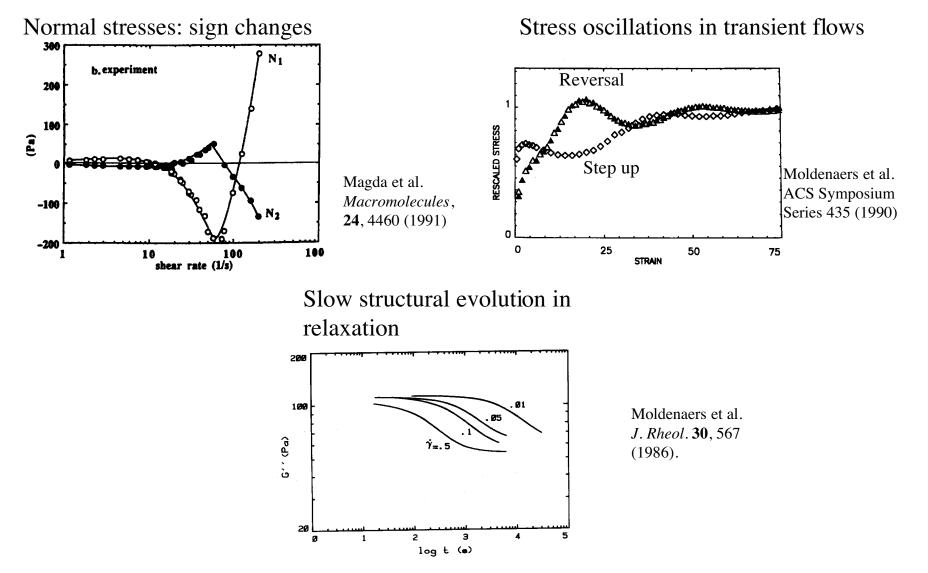
$$\frac{\partial \underline{n}}{\partial t} = \underline{n} \cdot \underline{\underline{\omega}} + \lambda(\underline{n} \cdot \underline{\underline{D}} - \underline{\underline{D}} : \underline{nnn})$$

Ericksen's Model

- λ = "tumbling parameter"
 - $|\lambda| > 1 \rightarrow \text{``Flow Aligning''} \qquad \lambda = \frac{-(\alpha_3 + \alpha_2)}{\alpha_3 \alpha_2}$ $|\lambda| < 1 \rightarrow \text{``Tumbling''} \qquad \lambda = \frac{-(\alpha_3 + \alpha_2)}{\alpha_3 \alpha_2}$
- To *begin* to understand rheology, texture & orientation development under shear, or processing, this is the most important question to answer.

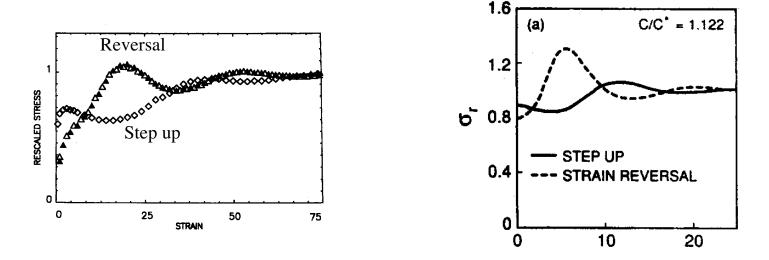
Lyotropes: Complex Rheology

(All data for PBG)



Lyotropes: We're doing pretty well...

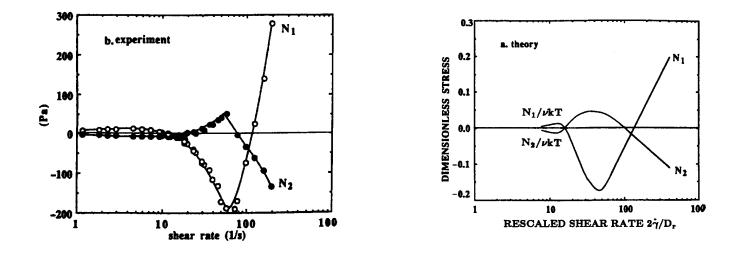
Stress oscillations in transient flows at low rates



- Origin: director tumbling at low De.
- Strain scaling: follows directly from L-E theory
- Dampening: distortional elastic effects within polydomain structure
- Model: Larson-Doi polydomain

Lyotropes: We're doing pretty well...

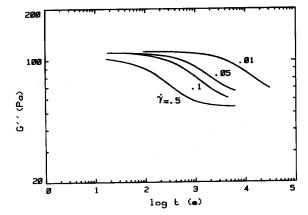
Bizarre normal stresses...



- Origin: Shear-induced *decrease* in local molecular order in certain shear rate range (Marrucci & Maffettone)
- Associated with predicted dynamic sequence: Tumbling --> 'Wagging' --> Flow alignment
- Model: Doi model (calculations of Larson et al.)

Lyotropes: We're doing pretty well...

Slow evolution of dynamic moduli

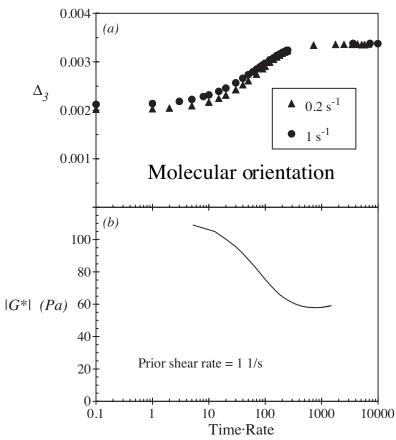


• Origin: Slow increase in average molecular orientation upon flow cessation.

• Relaxation scaling/Texture refinement:

$$\lambda_{d} = \frac{\eta d^{2}}{K}; \lambda \sim \frac{1}{\gamma} \Longrightarrow d \sim \gamma^{-1/2}$$

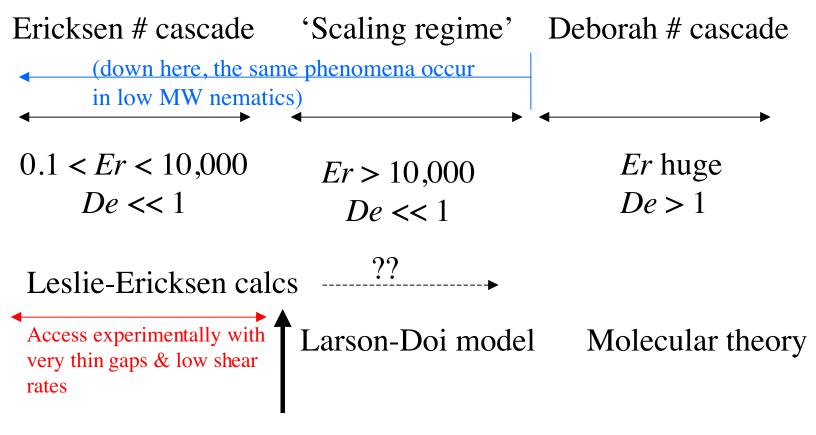
- d = texture length scale, *not* flow dimension
- Model: these scaling arguments of are built into Larson-Doi model, but...
- Why does orientation go up? (It goes down in other systems...) Larson-Doi predicts it goes down.



Lyotropes: Ongoing challenges

- Texture development in tumbling nematics
- Improved description of 'scaling regime'

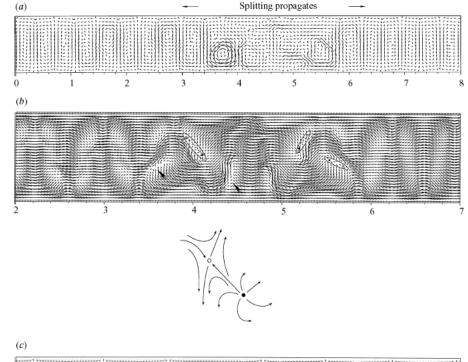
Texture development in tumbling LCPs (borrowing from Larson & Mead)



Current simulations

Texture development: moderate Er

- *Er* ~ 100s 1000s
 - Primary phenomenon is 'rollcell' instability, leading to defect nucleation
 - L-E Stability analyses by Manneville & Larson
 - L-E Simulations by Feng & Leal
 - Experiments by Mather, Larson, Srinivasarao...



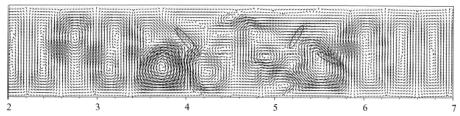


FIGURE 12. Cell splitting and secondary breakup lead to irregular patterns and three pairs of ± 1 disclinations at t = 60. (a) The whole flow field; (b) the director field. The large arrows point to two ridges, and the ellipses enclose pairs of defects, with open circles indicating -1 defect cores and filled circles +1 ones. At defect cores and the top of the ridges, n is in the flow direction, perpendicular to the page. The *n*-field in the neighbourhood of one pair of defects is sketched. (c) Details of the flow field near the defects showing fast jet-like flows toward the +1 core.

Texture development: Issues

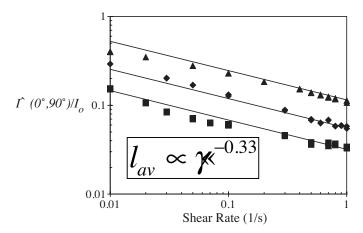
- L-E simulations can predict defect topology, but cannot give a realistic accounting of defect cores
 - Fix: Work with 'complete' models with molecular representation of gradient elasticity
 - Tsuji & Rey have worked along these lines; update?
 - Feng & Leal in progress?
- The problem of length scales:
 - Rheological testing: $h \sim 1 \text{mm}$ $d \sim 10-20 \,\mu$ defect core: $0.1 \,\mu$?
 - Even in roll cell experiments, $h \sim 100 \,\mu$. If we want to resolve order parameter distribution within interior of defect core, need grid ~ 10 nm.
 - What to do?
 - No choice but to adopt unrealistically small gap sizes to bring characteristic length/time scales into closer coincidence.
 - Hopefully learn fundamental physics about defect generation, etc. Have to figure out a way (multi-scale?) to feed this information into coarser models.

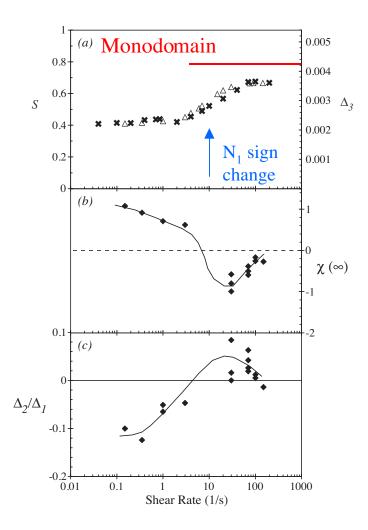
Texture development: Scaling regime

- Director tumbling, flow instabilities, defect generation, etc, lead to increasingly complex texture under shear ('director turbulence').
- Director & velocity are highly coupled, time-dependent and fully three-dimensional functions of position.
- As defects proliferate, 'communication' across sample via distortional elasticity is screened; macroscopic flow length scale no longer important (role of texture length scale).
- Texture refinement: increasing shear rate drives down texture size to maintain rough balance between hydrodynamic and elastic torques at texture scale.
- $Er \ge 10^4; De << 1$
- Currently out of reach of detailed simulation; for now, left with polydomain models (e.g. Larson-Doi).

Larson-Doi Model: Status

- Predicts orientation state is independent of shear rate.
- Predicts small positive orientation angle at low rates (positive 1-2 component of average orientation tensor)
- Predicts biaxial orientation state at low rates, with higher orientation in vorticity than gradient direction
- Predicts texture refinement





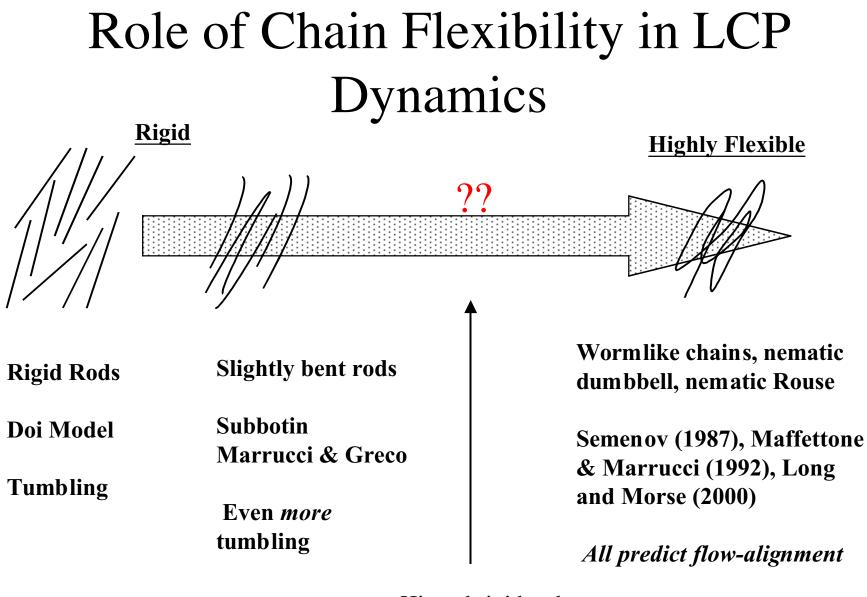
Orientation state in scaling regime

 $\langle \mathbf{nn} \rangle_{Larson-Doi} = \begin{bmatrix} 0.866 & 0.048 & 0 \\ 0.048 & 0.048 & 0 \\ 0 & 0 & 0.085 \end{bmatrix} \qquad \langle \mathbf{nn} \rangle_{Experiment} = \begin{bmatrix} 0.727 & 0.010 & 0 \\ 0.010 & 0.096 & 0 \\ 0 & 0 & 0.177 \end{bmatrix}$

- Larson-Doi model over predicts anisotropy
- *Could* be consequence of quadratic closure approximation (Kawaguchi & Denn: 'kinetic domain' version of polydomain model in two dimensions, without closure)
- <u>Low-hanging fruit</u>: Evaluate the 3-D orientation state predictions of the Larson-Doi without closure approximations?
- <u>Moderate-hanging fruit</u>: Try using Larson-Doi model in more complex flow field/structure calculations?

Future needs in scaling regime

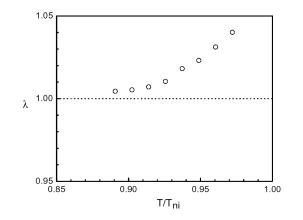
- Brute force? LE calculations might be pushed up in dimension & sufficiently far in Ericksen number to enter scaling regime (can evaluate <**nn**> to compare with data).
- 'Complete' models? Computers won't be big enough anytime soon to directly attack problem.
- But...
 - Remember that in scaling regime, LCP determines its *own* texture size; macroscopic dimension irrelevant.
 - Note that scaling regime ends when texture size approaches molecular dimensions: this is exactly conditions under which 'complete' models may be plausibly applied. Target *high* end of scaling regime directly.
 - Proposal:
 - 'Complete' theory. No director BCs (3-D computational cell with period BC).
 - Quench into nematic; allow to coarsen until defect density is reasonable
 - Apply shear flow. Fully couple 3-D director and 3-D velocity profiles.
 - Use this detailed information to develop improved phenomenology for statistical polydomain models.
 - Larson-Doi analog for 'complete' theories??



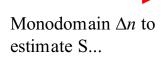
Hinged rigid rod (Leal)

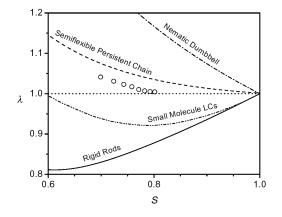
Mesogen-space main-chain LCPs appear to be

- Zhou & Kornfield
- Monodomain conoscopy
- Quantitative measurements of λ



DHMS-7,9

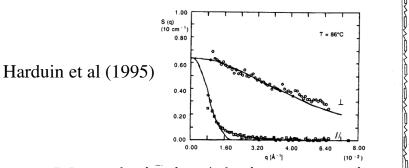




- Han & Mather; Ugaz & Burghardt
- Rheology, orientation, texture; *indirect* evidence of alignment

Specific needs for molecular theory

- Have theories at opposite ends of flexibility spectrum
- However, no real thermotropes seem to fit in these limits
- Specific issues: hairpin defects:

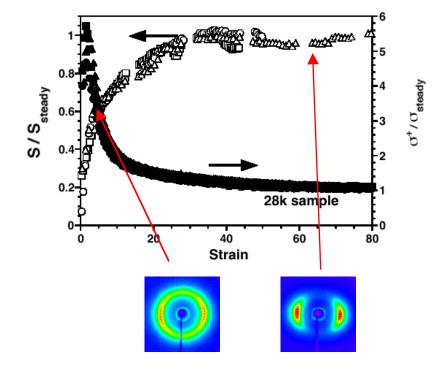


 Many hairpins/chain: nematic Rouse model (unentangled); Long & Morse

- 'Opportunities'
 - Does someone want to extend Semenov's semiflexible chain model to predict λ as one moves between rigid & high flexibility limits?
 - Does someone want to derive a molecular theory for λ for chains with 1 or 2 hairpin defects?
 - Are entanglements important?

Aligning LCPs are simpler!!

• Shear flow inception from random polydomain



- DHMS-7,9
 - Strain scaling (low *De*?)
 - Monotonic growth in orientation
 - Single shear stress overshoot

- Polydomain Ericksen modeling
 - Throw out everything *except* distribution of domain orientations.
 - Simulate initially random ensemble of director orientations
 - Compute orientation/stress from ensemble averages

$$\overline{S}_{11} - \overline{S}_{33} = \langle n_1^2 \rangle - \langle n_3^2 \rangle$$

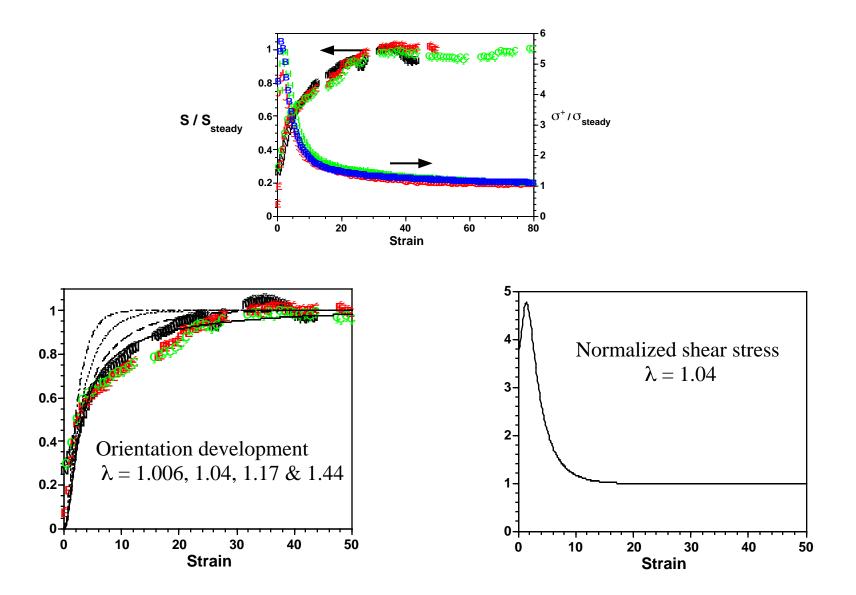
$$\sigma_{12} = \left[\mu + 2\mu_1 \langle n_1^2 n_2^2 \rangle + \frac{\mu_2}{2} \langle n_1^2 + n_2^2 \rangle \right] \not$$

$$N_1 = 2\mu_1 \left[\langle n_1^3 n_2 \rangle - \langle n_1 n_2^3 \rangle \right] \not$$

 Parameters from nematic dumbbell/Rouse:

$$\frac{\mu_1}{\mu} = \frac{2\lambda}{\lambda - 1} \qquad \frac{\mu_2}{\mu} = -2$$

Polydomain Modeling: Shear Flow Inception



Polydomain Ericksen model: Heuristics for flow inception

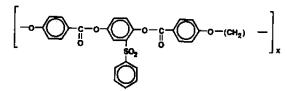
- Flow aligning dynamics:
 - Single shear stress overshoot
 - Monotonic orientation development
- At steady state, in flowaligned condition
 - Using viscosity predictions of a wide range of molecular theories for LCPs:

$$\frac{N_1}{\sigma}\Big|_{SS} = \frac{2}{\sqrt{\lambda^2 - 1}}$$

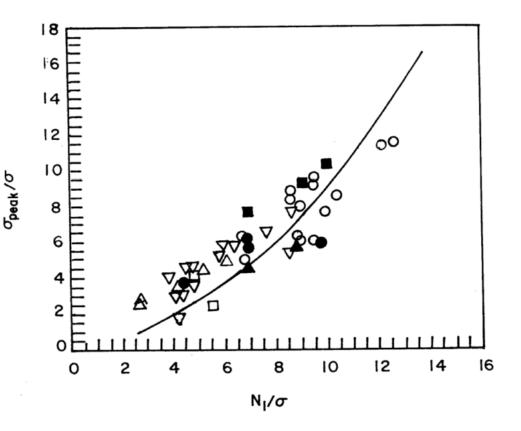
- At same time, relative magnitude of predicted stress overshoot also depends on λ:
 - As $\lambda \rightarrow 1$, shear stress overshoot becomes bigger.
- This suggests 'universal' correlation....

Polydomain Model in Inception: Broad Test in Other Polymers

- Collaboration with C.D. Han
- 'PxHQn' polymers of mesogenspacer type



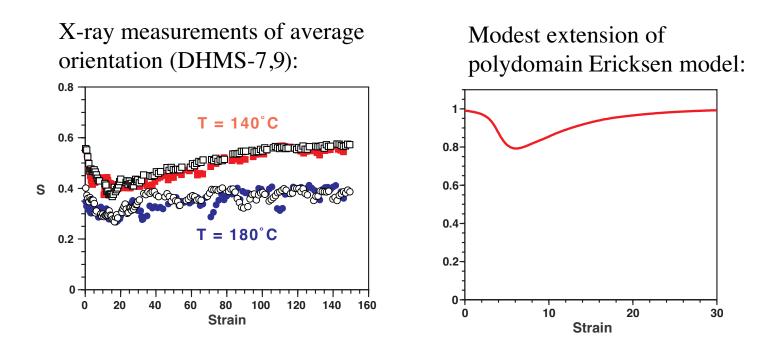
- Solid line is polydomain model prediction; no adjustable parameters
- Suggests that...
 - Shear aligning dynamics are typical of this architecture
 - Polydomain model captures basic physics of stress overshoot
 - Also supports nematic dumbbell/Rouse predictions



Opportunities for modeling

- Problems: Need real treatment of distortional elasticity and defects (for instance, bad N_1 predictions upon startup).
- Ideal opportunity for 'complete' models
 - Unlike tumbling systems, here the orientation evolves towards a final state that is *simple*.
 - Simulations in restricted dimension (e.g. 2-D) are probably *much* more realistic here than in texture development in tumbling lyotropes.
 - Fate of pre-existing defects when exposed to orienting effect of hydrodynamic torques in shear-aligning nematic?
 - How about an extended nematic dumbbell model with molecular description of gradient elasticity?
 - Quench into nematic phase; let defects form & anneal until you're happy
 - Start-up shear flow --> watch & see what happens!
 - Dare we hope for 3 regions?

Reversals: More complex, more need for detailed texture simulations



Reversal in main-chain thermotropes:

- Single undershoot in average orientation (but, see below!)
- Polydomain models capture undershoot, but fail to predict long duration of transient
- Re-orientation hindered by texture?

Reversal of TLCPs: Flow-aligning PSHQ10

