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[LLCP Molecular Architecture
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Typical LCP Molecules: Lyotropes
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Typical LCP Molecules: Thermotropes
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Technology: high strength fibers
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Technology: Complex tlows,
complex structure

(Weng, et al., J. Mater. Sci., 21, 744, 1986)



LLCP Structure

(a) Microscopic (b) Mesoscopic

u = test molecule orientation n = director orientation

‘Hu) Orientation Distribution ‘Hn)
Function
S, =<uu>-13 Order Parameter Tensor S =<nn>- I3

S, Scalar Order Parameter S



Disclinations in LCPs
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Fundamental LC Statics and Dynamics

Leslie-Ericksen Theory (nematics)
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Two levels of structure;
Two sources of elasticity

e Gradient (distortional)
elasticity

Free energy penalty for
spatial variations in n(r)

Ericksen number:

- nVh _ mh’
K K

Er

Ratio of hydrodynamic
torques on n to distortional
elastic torques on n

Distortional relaxation time:

2, =1

K

e Molecular elasticity

— Flow-induced changes in
local molecular
organization (e.g..S)

— Deborah number:

De =1 ¥

— A, = molecular relaxation
time, ~ 1/D.,.



Typical parameters for LCPs in
rheological testing & processing

1 ~ 1000 Poise; K ~ 10° dyne; A =0.1 cm

A, ~ 10,000,000 sec

A, ~0.1 sec
Shear Rate (1/s) Ericksen Number Deborah Number
0.001 10,000 0.0001
0.01 100,000 0.001
0.1 1,000,000 0.01
1 10,000,000 0.1
100 10

Here 1s an obvious problem for modeling

With thinner samples, can ‘tame’ Ericksen number somewhat, but...




Some theories

Leslie-Ericksen Theory
— Continuum

— Linear in velocity gradients; leading-
order distortional effects

— Er 1s critical parameter
Ericksen TIF theory

— L-E without distortional elasticity
— Effectively set Er = oo
Larson-Doi model

— Average of L-E theory over
distribution of domain orientations in
polydomain LCPs

Doi molecular model (many flavors)
— Rigid rod polymer solutions
— No distortional elasticity
— Molecular viscoelasticity

— De is critical parameter

e Extensions of theory:

— Effects of flexibility

e Rodlike: Subbotin; Marrucci
& Greco

e Flexible but extended: Long
& Morse (nematic Rouse)
e High flexibility limit
— Marrucci & Maffettone
(nematic dumbbell)

— Long & Morse (nematic
Rouse)

— Theories with gradient +
molecular elasticity
» Beris & Edwards
* Rey
* Feng
— Both De and Er



Tumbling vs. Flow Alignment

¢ L.Cs may be classified according to alignment behavior
under shear flow:

“/7

% =n-w+A(n-D— D: nnn) Ericksen’s Model

A = “tumbling parameter”
IAl>1 — “Flow Aligning” A= _(063 + 062)
M <1 — “Tumbling” o, -,

¢ To begin to understand rheology, texture & orientation
development under shear, or processing, this 1s the most
important question to answer.



Lyotropes: Complex Rheology

(All data for PBG)
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Lyotropes: We’re doing pretty well...

Stress oscillations in transient flows at low rates

Reversal
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1.6

e Origin: director tumbling at low De.
e Strain scaling: follows directly from L-E theory
 Dampening: distortional elastic effects within

polydomain structure
e Model: Larson-Doi polydomain
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Lyotropes: We’re doing pretty well...

Bizarre normal stresses...
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e Origin: Shear-induced decrease in local molecular order
in certain shear rate range (Marrucci & Matffettone)
e Associated with predicted dynamic sequence:
Tumbling --> “Wagging’ --> Flow alignment
e Model: Doi model (calculations of Larson et al.)



Lyotropes: We’re doing pretty well...

Slow evolution of dynamic moduli
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* Why does orientation go up? (It goes down in other
systems...) Larson-Doi predicts it goes down.




Lyotropes: Ongoing challenges
e Texture development in tumbling nematics

 Improved description of ‘scaling regime’



Texture development in tumbling LCPs
(borrowing from Larson & Mead)

Ericksen # cascade  ‘Scaling regime’ Deborah # cascade

down here, the same phenomena occur
in low MW nematics)

0.1 < Er < 10,000 Er> 10,000 Er huge
De << 1 De << 1 De > 1
: : 279

Leslie-Ericksen calcs - -tee >

very thin gaps & low shear

Access experimentally with T T arson-Doi1 model Molecular theOI'y
rates

Current simulations



Texture development: moderate Er

(a) -— Splitting propagates —

Er ~ 100s - 1000s

— Primary phenomenon is ‘roll-
cell’ instability, leading to defect
nucleation

e L-E Stability analyses by
Manneville & Larson
e L-E Simulations by Feng & Leal

e Experiments by Mather, Larson,
Srir_livasarao... _

FiGgure 12. Cell splitting and secondary breakup lead to irregular patterns and three pairs of +1
disclinations at t = 60. (a) The whole flow field; (b} the director field. The large arrows point to
two ridges. and the ellipses enclose pairs of defects. with open circles indicating —1 defect cores
and filled circles +1 ones. At defect cores and the top of the ridges, n is in the flow direction,
perpendicular to the page. The w-field in the neighbourhood of one pair of defects is sketched.
(c) Details of the flow field near the defects showing fast jet-like flows toward the +1 core.



Texture development: Issues

* L-E simulations can predict defect topology, but cannot give a
realistic accounting of defect cores
— Fix: Work with ‘complete’ models with molecular representation of
gradient elasticity
* Tsuji & Rey have worked along these lines; update?
* Feng & Leal in progress?

e The problem of length scales:
— Rheological testing: 7~ 1mm d ~ 10-20 u defect core: 0.1 W?

— Even in roll cell experiments, 2 ~ 100 . If we want to resolve order
parameter distribution within interior of defect core, need grid ~ 10 nm.

— What to do?

* No choice but to adopt unrealistically small gap sizes to bring characteristic
length/time scales into closer coincidence.

e Hopefully learn fundamental physics about defect generation, etc. Have to
figure out a way (multi-scale?) to feed this information into coarser models.



Texture development: Scaling regime

Director tumbling, flow instabilities, defect generation, etc,
lead to increasingly complex texture under shear (‘director
turbulence’).

Director & velocity are highly coupled, time-dependent and
fully three-dimensional functions of position.

As defects proliferate, ‘communication’ across sample via
distortional elasticity is screened; macroscopic flow length
scale no longer important (role of texture length scale).

Texture refinement: increasing shear rate drives down texture
size to maintain rough balance between hydrodynamic and
elastic torques at texture scale.

Er > 10% De << 1

Currently out of reach of detailed simulation; for now, left
with polydomain models (e.g. Larson-Doi).



[Larson-Doi1 Model: Status

Predicts orientation state is
independent of shear rate.

Predicts small positive orientation
angle at low rates (positive 1-2
component of average orientation
tensor)

Predicts biaxial orientation state at
low rates, with higher orientation in
vorticity than gradient direction
Predicts texture refinement
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(nn)

Orientation state in scaling regime

Larson— Doi
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Experiment ~—

e Larson-Doi model over predicts anisotropy
e Could be consequence of quadratic closure approximation
(Kawaguchi & Denn: ‘kinetic domain’ version of polydomain
model in two dimensions, without closure)
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-

e Low-hanging fruit: Evaluate the 3-D orientation state

predictions of the Larson-Doi without closure approximations?

0
0

0.177

—

 Moderate-hanging fruit: Try using Larson-Do1 model in more

complex flow field/structure calculations?



Future needs 1n scaling regime

Brute force? LE calculations might be pushed up in dimension &
sufficiently far in Ericksen number to enter scaling regime (can
evaluate <nn> to compare with data).

‘Complete’ models? Computers won’t be big enough anytime soon to
directly attack problem.

But...

— Remember that in scaling regime, LCP determines its own texture size;
macroscopic dimension irrelevant.

— Note that scaling regime ends when texture size approaches molecular
dimensions: this is exactly conditions under which ‘complete’ models
may be plausibly applied. Target high end of scaling regime directly.

— Proposal.

‘Complete’ theory. No director BCs (3-D computational cell with period BC).
Quench into nematic; allow to coarsen until defect density is reasonable
Apply shear flow. Fully couple 3-D director and 3-D velocity profiles.

Use this detailed information to develop improved phenomenology for
statistical polydomain models.

Larson-Doi analog for ‘complete’ theories??



Role of Chain Flexibility in LCP
Dynamics

Rigid Highly Flexible

W vl 27

77

Wormlike chains, nematic

Rigid Rods Slightly bent rods dumbbell, nematic Rouse
Doi Model Subbotin Semenov (1987), Maffettone

Marrucci & Greco & Marrucci (1992), Long
Tumbling and Morse (2000)

Even more

tumbling

All predict flow-alignment

Hinged rigid rod
(Leal)



Mesogen-space main-chain LCPs appear to be

Wshear aligning as rule
\/‘Zléj

e /Zhou & Kornfield

e Monodomain conoscopy
e Quantitative measurements of A

DHMS-79 [0 ],
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 Han & Mather; Ugaz &

o - Burghardt
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Rheology, orientation, texture;

indirect evidence of alignment



Specific needs for molecular theory

* Have theories at opposite ends e ‘Opportunities’
of flexibility spectrum — Does someone want to extend
e However, no real thermotropes Semenov’s semiflexible chain

model to predict A as one
moves between rigid & high
flexibility limits?

seem to fit in these limits

e Specific issues: hairpin defects:

1.
S (a) L

rewe | — Does someone want to derive a
= ] molecular theory for A for

chains with 1 or 2 hairpin
defects?
) EEEONC — Are entanglements important?
* Many hairpins/chain: nematic
Rouse model (unentangled);
Long & Morse

Harduin et al (1995)




Aligning LCPs are simpler!!

* Shear flow inception from e Polydomain Ericksen modeling
random polydomain

— Throw out everything except
distribution of domain
orientations.

— Simulate initially random
ensemble of director
orientations

steady

otso

— Compute orientation/stress
from ensemble averages

N, =2u, [<n13n2> — <nln23 >]}¢<

e DHMS-7,9 — Parameters from nematic
— Strain scaling (low De?) dumbbell/Rouse:
— Monotonic growth in orientation o 21 M,

=2

— Single shear stress overshoot u B 2-1 u



Polydomain Modeling: Shear Flow Inception

steady
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Polydomain Ericksen model: Heuristics for
flow inception

e Flow aligning dynamics: e At same time, relative
_ Single shear stress magnitude of predicted
overshoot stress overshoot also
— Monotonic orientation depends on A:
development — As A --> 1, shear stress

e At steady state, in flow- overshoot becomes bigger.
aligned condition

— Using viscosity predictions o

, This suggests ‘universal’
of a wide range of

molecular theories for correlation....
LCPs:
Ny 2

O Iss =1



Polydomain Model in Inception: Broad
Test in Other Polymers

Collaboration with C.D. Han

‘PxHQn’ polymers of mesogen-
spacer type

[_O'O_E-O‘Q—O— ¢ 0—(cH,) —
o o
6 x

Solid line is polydomain model
prediction; no adjustable
parameters

Suggests that...

— Shear aligning dynamics are
typical of this architecture

— Polydomain model captures
basic physics of stress
overshoot

— Also supports nematic
dumbbell/Rouse predictions
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Opportunities for modeling

e Problems: Need real treatment of distortional elasticity
and defects (for instance, bad N, predictions upon startup).

e Ideal opportunity for ‘complete’ models

Unlike tumbling systems, here the orientation evolves towards a
final state that is simple.

Simulations in restricted dimension (e.g. 2-D) are probably much
more realistic here than in texture development in tumbling
lyotropes.

Fate of pre-existing defects when exposed to orienting effect of
hydrodynamic torques in shear-aligning nematic?

How about an extended nematic dumbbell model with molecular
description of gradient elasticity?

* Quench into nematic phase; let defects form & anneal until you’re

happy
e Start-up shear flow --> watch & see what happens!

e Dare we hope for 3 regions?



Reversals: More complex, more need
for detailed texture simulations

X-ray measurements of average Modest extension of
orientation (DHMS-7.9): polydomain Ericksen model:
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Reversal in main-chain thermotropes:

e Single undershoot in average orientation (but, see below!)

e Polydomain models capture undershoot, but fail to predict long duration
of transient

e Re-orientation hindered by texture?



Reversal of TLCPs: Flow-aligning PSHQ10

-;‘s l'* {__

JL._‘! *ﬁ Kty 115




