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Nonequilibrium Physics: Simple Classical Systems

Even simple classical systems can lead to quite complicated physics:

linear chain:
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Derrida, Bouchaud, Domany ...
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Nonequilibrium Physics: Quantum Systems

Strong electric field:
• Arrays of quantum dots

• Atoms in an optical lattice

• Correlated electrons in a solid

• Quantum wells

• . . .

In mesoscopic systems mostly Keldysh formalism, also recent attempts with RG
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Quantum phase transition from a Mott phase to a superfluid phase:
N. Elstner and HM, PRB ’99, T. D. Kühner, S. R. White, and HM, PRB ’00

M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch and I. Bloch

Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms
Nature 415, 39-44 (3 January 2002)
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Experimental Motivation
Ogasawara et al. PRL 85, 2204 (2000)

Pump + probe experiment:
Sr

Cu

O
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• One-photon and two-photon processes nearly
degenerate in the special 1D material, different
from semiconductors!

– large dipole moment
– large nonlinearity

• Spin excitations allow for non-radiative decay
channel (large bandwidth ∼ 1eV)

– ultrafast recovery rate

• Question:

– limited to 1D compounds?
– coupling to spin excitations?
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Strongly correlated systems out of equilibrium:

• nature of states very different from
noninteracting system

• strong external perturbation can create real
states in the gap

• photo-doping should be strongly nonlinear

• other possible relaxation channels (spin)
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Model:

Hubbard model in a time-dependent external potential:

Ĥ = −t
∑
ijσ

c†iσcjσ + U
∑
i

ni↑ni↓ + Γ cos (Ωt) Â

A “trivial” example is Â =
∑

iAini. In this case the q = 0 component acts like a time

dependent chemical potential. For light we are mostly interested in the limit q → 0 since

vF/c� 0.

• Since the Hamiltonian is explicitly time dependent the energy is not conserved. However there

“quasi-energy” En = E + nΩ is still conserved up to integer multiples of Ω.

• The average energy, Ω
∫ t+1/Ω

t
dt′E(t′), is constant with time. This fact allows steady state

solutions.
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Schwinger-Keldysh formalism:

We assume that the time evolution can still be described by a density matrix!
(”small deviations” from equilibrium)

We do not know the future: Keldysh-Schwinger contour . . . .

t

Green’s functions with arguments on different can be related to the standard
retarded and advanced Green’s function - with an additional Green’s function the
Keldysh component.

Gret = G++ − G+−

Gav = G+− − G−−

Gkeld = G++ + G−−.

The sign, ±, refers to the upper and lower branch of the Keldysh contour.
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Noninteracting case:

equation of motion:

i~∂tckσ(t) =
[
ckσ(t), Ĥkinetic + Ĥt

]
which has the solution:

ckσ(t) = e
− i~

(
εkt+

t∫
dt1AcosΩt1

)
ckσ =

+∞∑
n=−∞

Jn

(
A

~Ω

)
e
− i~(εk+n~Ω)tckσ

where Jn are the Bessel functions. Note the appearance of sidebands, E = εk + nΩ, which are

decaying with increasing n. The energy is not conserved. Similar to the Bloch problem there is

still a conservation of “quasi-energy”, E = E′ + nΩ.
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In general the Green’s function of the system depends on two time arguments. In the case of a

single driving frequency the time dependence is simpler:

Gk(t, t
′
) = G̃k(t− t

′
, t+ t

′
)

G̃ is periodic in t+ t′ with period so 1/Ω a new Green’s function can be defined:

Gk,n,m(ω) = Gk(ω − nΩ, ω −mΩ)

In a more compact notation: (Ĝk(ω))n,m = Gk,n,m(ω).

Propagators (R = A/(Ω− ~v · ~q)):

g
R
k,k−nq(ω, ω −mΩ) = δmn

∑
l

Jl(R)Jl−n(R)

ω − εk − l(Ω− ~v · ~q) + iη

g
K
k,k−nq(ω, ω −mΩ) = −2πi

∑
l

[1− 2f(εk−lq)] Jl(R)Jl−n(R)
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Dyson equation for the nonequilibrium problem
The Dyson equation

Ĝ(k, ω) =
[
Ĝ0

−1
(ω)− Σ̂(ω)

]−1

can be written as (D̂R/A =

[(
Ĝ
R/A
0

)−1

− Σ̂R/A

]−1

):

Ĝ(k, ω) =

[
0 D̂A

k

D̂R
k D̂R

k

{
(ĜR

0 )−1Ĝkeld
0 (ĜA

0 )−1 + Σ̂keld
}
D̂A

]

with The selfenergy will be calculated using IPT which is complicated by the matrix form of the

propagator.

Ĝ
new

(ω) =

+∞∫
−∞

dερ(ε)
(
Ĝ0

−1

ε (ω)− Σ̂(ω)
)−1
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Derivation of the DMFT equations:

Action:

S =

∫
C

dt(
∑
iσ

[
ψiσ(t) (i∂t + µ)ψiσ(t) +

∑
δ

tδψiσ(t)ψi+δσ(t)

]

− U
∑
i

n̂i↑(t)n̂i↓(t)−
∑
iσ

Vi(t)n̂iσ(t))

with

Vi(t) =
A

2
(exp(−i~q · ~ri + iΩt) + exp(+i~q · ~ri − iΩt))

This problem has to be mapped to an effective impurity model.
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Integrating out one site:

G(ω, ω − nΩ)
−1

= (ω + µ)δn0 −
A

2
(δn1 + δn−1)−

∑
i,j

ti0tj0G
(0)
ij (ω, ω − nΩ)

G
(0)
ij is the Green’s function with one site removed (G

(0)
ij = Gij −Gi0G

−1
00G0,j).

G is the Weiss field.

i=0

Fourier transform of the second term yields

→
∑
k

εkεk−nq
[
Ĝ

(0)
q (k, ω)

]
0n

In the limit q → 0 this can be done:∫
dεN(ε)ε

2
(
ĝ
−1 − Σ̂

)−1
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Self consistency equations (q = 0)

The self energy matrix can be computed using IPT.

Ĝ(ω) :=

∫
dεN(ε)

[
ĝ
−1

(ε, ω)− Σ̂(ω)
]−1

D̃(ε) := −
1

π
ImG

R
00(ε, A = 0)

Dn1n2
(ε) := −

1

π
ImG

R
n1n2

(ε)

D
l
n1n2

(ε) := Jl−n1
(A/Ω)Jl−n2

(A/Ω)D̃(ε− lΩ)

Please note: Ĝ is the Hilbert transform of a non-symmetric matrix. The Hilbert transform has to

be calculated relatively efficiently.
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With these functions the spectral functions for the Weiss field can be constructed:

GR/A(ω) =
∫

dε
Dn1n2(ε)
ω − ε ± iη

GK(ω) = −2πi
∑
l

(1 − f((ω − lΩ) + µ)Dl
n1n2

(ω)

These Weiss fields have then to be put back in the effective impurity model.

Note: The impurity model which has to be solved is now a set of impurity models
coupled by the various Weiss fields. For practical purposes it is sufficient to keep
a relatively small number of Weiss fields (up to 15).
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Spectral function in the steady state
varying the amplitude
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Spectral function in the steady state
decomposition in sidebands
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Distribution function in the steady state
Amplitude = 1
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Excitonic Insulator under Time-Dependent External Field

H =
∑
i

(
Eaa

†
iai + Ebb

†
ibi

)
−
∑
<ij>

(
t
a
ija

†
iaj + t

b
ijb

†
ibj

)
− V

∑
i

a
†
ibib

†
iai + A(t)

∑
i

(
a
†
ibib †i ai

)

• Excitonic insulator:

– 2 orbitals per lattice site
– local attractive exchange interaction between carriers on different orbitals

• Time-dependent field:

– transitions between on-site orbitals
– A(t) = pump pulse (Gaussian, δ-function ...)
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Self-Consistency Equation

Ea = −Eb = E, ta = −tb = t

[
G−∞

]α,β (ω, ω′) = αδαβ{[ω + µ − Eτ3] δω, ω′ − A(ω − ω′)τ1}

− αβt2τ3G
αβ(ω, ω′)τ3

G, G are matrices in (a, b), Keldysh and frequency space

DMFT: local self energy: Σ(k, ω, ω′) = Σlocal(ω, ω′)

Identify local self energy with the impurity self energy

= +

GG g gαβ αβ αγ δβ
γδΣ

γ δ
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Response to Ultrashort Pulse: A(t) = Aδ(t)

frequency response:
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Fit: C cos(ωt)e−t/τ + ∆0
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Change in the Distribution Function
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Nonequilibrium with DMRG
M. Cazalilla and J. B. Marston, Phys. Rev. Lett. (2002)

Recipe:

• Use DMRG to truncate Hilbert space

• Do time development with truncated
Hamiltonian

i~∂t |Φ(t)〉 = [(Htrunc − E0) + H ′(t)] |Φ(t)〉

BUT: Only comparison to noninteracting
exact results

Comparison with exact results:
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Conclusions

• Extension of the DMFT to nonequilibrium models

• Two Problems:

– Periodically Driven Problem
– Short Pulse

• Future Problems:

– More realistic coupling to the external field
– Better understanding of the impurity problem in nonequilibrium
– Experimental realizations
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