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Nonequilibrium Physics: Simple Classical Systems

Even simple classical systems can lead to quite complicated physics:
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Derrida, Bouchaud, Domany ...
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Nonequilibrium Physics: Quantum Systems

Strong electric field:
e Arrays of quantum dots

- e Atoms in an optical lattice
r_' r—. e Correlated electrons in a solid
—
—
I I e Quantum wells

In mesoscopic systems mostly Keldysh formalism, also recent attempts with RG
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Quantum phase transition from a Mott phase to a superfluid phase:
N. Elstner and HM, PRB '99, T. D. Kihner, S. R. White, and HM, PRB '00
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M. Greiner, O. Mandel, T. Esslinger, T. W. Hansch and I. Bloch
Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms
Nature 415, 39-44 (3 January 2002)
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e

Experimental Motivation
Ogasawara et al. PRL 85, 2204 (2000)

Pump + probe experiment:
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pump + probe
(i) 0.7 +1.3[eV]

T=1.8ps
(i) 1.1 +0.9[eV]
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(iii) 1.55 + 0.4 [eV]
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T~10K

I I I
2 4 6

! [ps]

>

8



Hartmut Monien 5

e One-photon and two-photon processes nearly
degenerate in the special 1D material, different
from semiconductors!

— large dipole moment
— large nonlinearity

AT/T

e Spin excitations allow for non-radiative decay
channel (large bandwidth ~ 1eV)

— ultrafast recovery rate
Room Temperature

[ [ [ [ [
1 2 8 e (QQuestion:
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— limited to 1D compounds?
— coupling to spin excitations?
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Strongly correlated systems out of equilibrium:

| e nature of states very different from
mB noninteracting system

e strong external perturbation can create real
\ " states in the gap

! e photo-doping should be strongly nonlinear

/ e other possible relaxation channels (spin)
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Model:

Hubbard model in a time-dependent external potential:

10 j0

H = —thT C. —I—UZnZ-Tnu—I—FCOS(Qt)A

1j0

A “trivial” example is A = >..Ain;. In this case the ¢ = 0 component acts like a time
dependent chemical potential. For light we are mostly interested in the limit ¢ — 0O since

vp/c K 0.

e Since the Hamiltonian is explicitly time dependent the energy is not conserved. However there
“quasi-energy” FE.,, = E + nf2 is still conserved up to integer multiples of 2.

e The average energy, 2 fttH/Q dt'E(t"), is constant with time. This fact allows steady state
solutions.
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Schwinger-Keldysh formalism:

We assume that the time evolution can still be described by a density matrix!
("small deviations” from equilibrium)

We do not know the future: Keldysh-Schwinger contour . . . .

- ™
- W

t —

Green's functions with arguments on different can be related to the standard
retarded and advanced Green's function - with an additional Green’s function the
Keldysh component.

||
Q
_|_
_l_
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Gret
GW = Gt -G~
erld — G—l—-l— + G,

The sign, &, refers to the upper and lower branch of the Keldysh contour.
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Noninteracting case:

equation of motion:
ihatck:a(t) — |:Ck:0(t)) Hkinetic + Hti|
which has the solution:

t

—%(ekt—l—f dt1AcosQtq
cko(t) = €

> . io T i —% e +nhQ)t
Cko =— n HO) € Cko

n=—oo

where J,, are the Bessel functions. Note the appearance of sidebands, & = €, + n{2, which are
decaying with increasing n.. The energy is not conserved. Similar to the Bloch problem there is
still a conservation of “quasi-energy”, E = E' + n{).
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In general the Green's function of the system depends on two time arguments. In the case of a
single driving frequency the time dependence is simpler:

Gr(t,t) = Gp(t —t', t + t)
G is periodic in t + t’ with period so 1/€2 a new Green's function can be defined:
Grnm(w) = Gr(w — n2,w — m2)
In a more compact notation: (Gi(w))n.m = Grn.m(w).
Propagators (R = A/(Q2 — ¥ - q)):

JiI(R)J1—n(R)
w—¢€, —Il(Q—7T-q) +1in

gllj,k—nq(wﬁ W — ’I’I’LQ) = Odmn Z
l

Thpongw,w —mQ) = —2mi Y [1— 2f(er—ig)] JiI(R)Ji—n(R)
l
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Dyson equation for the nonequilibrium problem

The Dyson equation )
~ ~ —1 ~ —
Gk, w) = [Go ' (w) = 5(w)]

can be written as (D?/4 = [(G(lf/A) —ER/A] ):
Dy,
( ) [ DE D,]j{(Gé%) LGl (GAY L 4 Sk Id} pHA ]

with The selfenergy will be calculated using IPT which is complicated by the matrix form of the
propagator.

400

&™) = [ dep(e) (Go (@) = £@)

— 00
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Derivation of the DMFT equations:

Action:
S = /C dt(zw: [@w(t) (0: + p) Pio (t) + 25: tstiq (t)ivs0(t)
- UZ it (L)) (1) — Z Vi(t)7io (1))
with

A
Vi(t) = 5 (exp(—iq - 7; + iQt) 4+ exp(+iq - 7; — i§2t))

This problem has to be mapped to an effective impurity model.
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Integrating out one site:

13

_ A
G(w,w—nQ) ' = (w+ w)dno — 5(57@1 + Op—1) — Z tiotjoGg.))(w, w — n)

1,J

GZ(.;.)) is the Green's function with one site removed (Gg?) = G — GiOGaolGo,j).
G is the Weiss field.

Fourier transform of the second term vyields
2,0
- zk:: Tk [Gé )(k’ w)} on

In the limit ¢ — O this can be done:

1 > / deN ()€ (g‘l — fl) B
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Self consistency equations (¢ = 0)

The self energy matrix can be computed using IPT.

1

Glw) = /deN(e) 7 (e w) — B(w)|

~ 1
D(e) := ——ImGé%(e, A =0)
7T
1 R
Dn1”2(6) -= _;ImGnlnz(e)
D, .. (€) = Jin(A/Q)Ji n,(A/Q)D(e —IQ)

Please note: G is the Hilbert transform of a non-symmetric matrix. The Hilbert transform has to
be calculated relatively efficiently.
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With these functions the spectral functions for the Weiss field can be constructed:

G w) = dewDT: in)n
GH(w) = —2miy (1—f((w—1Q) +p)D} ()

l

These Weiss fields have then to be put back in the effective impurity model.

Note: The impurity model which has to be solved is now a set of impurity models
coupled by the various Weiss fields. For practical purposes it is sufficient to keep
a relatively small number of Weiss fields (up to 15).
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Spectral function in the steady state

varying the amplitude
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Spectral function in the steady state

decomposition in sidebands
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Distribution function in the steady state
Amplitude = 1

— A=1

o neff(w)
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Excitonic Insulator under Time-Dependent External Field
H = Z (Eaajai + Ebbzbi> — Z (t?jajaj —|—t?jbjbj>
) <13>

— VY albbla, + A(t) Y (a’;rbib Ti ai)

e Excitonic insulator:

— 2 orbitals per lattice site
— local attractive exchange interaction between carriers on different orbitals

e Time-dependent field:

— transitions between on-site orbitals
— A(t) = pump pulse (Gaussian, d-function ...)
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Self-Consistency Equation
E,=—FEy=Et,= —t, =1

20

(G (w, w)

= a5a5{[w + U — ETS] 5w, w! A(w _ w/)Tl}

— aﬁtQTgGo‘B(w, w!)T3

G, G are matrices in (a, b), Keldysh and frequency space

DMFT: local self energy: Y(k, w, w!) = Xjocar(w, wl)

|dentify local self energy with the impurity self energy
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Response to Ultrashort Pulse: A(t) = Ad(t)

frequency response: time response:

0.1
.......... 0.597 |
0
-0.1
< 0.595 |
(D)
-0.2 o
—— ReA(w)
"""""""" IMA(w) ] 0.593 |
-03 - — Results ReA
———- Fit
_04 1 1 1 1 1 N 1 N 1 N 1 1 .
-6 -4 -2 0 2 4 6 0'591—5 0 5. 10 15 20
W fime t

Fit: C cos(wt)e /™ + Ag
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Change in the Distribution Function

4
t (time)
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Nonequilibrium with DMRG
M. Cazalilla and J. B. Marston, Phys. Rev. Lett. (2002)

Recipe: Comparison with exact results:

e Use DMRG to truncate Hilbert space

0.065-
e Do time development with truncated

004-
Hamiltonian

0.03 F
0.02

0.02

10, |©(1)) = [(Hyrune — Fo) + H'(£)] | (1))

0.01

Exact solution
------ TdDMRG

transport current J(t)

0.00 |

0 4 8 12 16 20 24 28

BUT: Only comparison to noninteracting timet
exact results
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Conclusions

e Extension of the DMFT to nonequilibrium models

e Two Problems:

— Periodically Driven Problem
— Short Pulse

e Future Problems:

— More realistic coupling to the external field
— Better understanding of the impurity problem in nonequilibrium
— Experimental realizations
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