

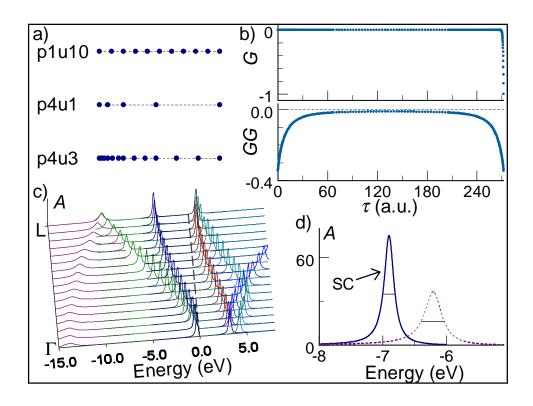
Motivation

- Non-conserving $G^{LDA}W^{LDA}$ has been successful in calculating quasi-particle (QP) band gap: Why?
 - Schindlmayr : $G^{LDA}W^{LDA}$ violates particle number conservation. [PRB 56, 3528 (1997)]
 - Schöne and Eguiluz: conserving GW overshoots the gap by the amount LDA underestimates it. [PRL 85, 2410 (2000)]
 - Do we have a conserving theory capable of producing good gap?
- Deep core electrons play almost no role: True?
- Polarization from 3d core states is responsible to switch Ge from direct gap (no gap) to indirect gap: True?
- Is pseudo-potential designed for performing QP calculation?

Baym-Kadanoff Conserving Scheme:

- Σ is Φ derivable.
- Dyson equation is solved self-consistently. ($\Sigma = \Sigma[G]$)
- All microscopic conservation laws are guaranteed!

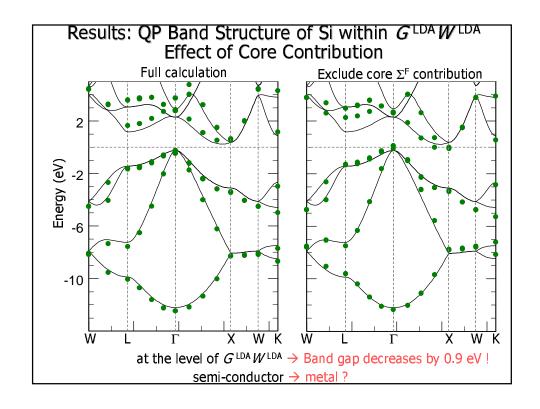
Ex: Shielded Interaction Approximation (SIA): (GW form)

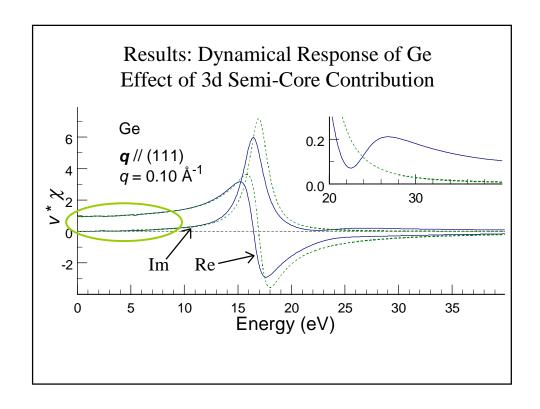

$$\Phi_{\text{SIA}}: \frac{1}{2} \longrightarrow -\frac{1}{2} \longrightarrow -\frac{1}{4} \longrightarrow -\frac{1}{6} \longrightarrow -\frac{1}{8} \longrightarrow -\cdots$$

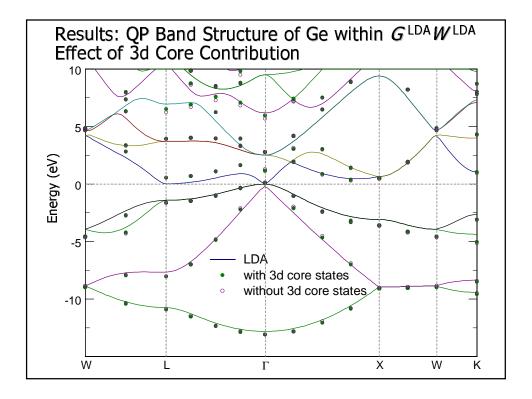
$$\Sigma_{\text{SIA}}$$
: \bigcirc - \bigcirc

$$W_{\text{SIA}}$$
: = +

New Implementation


- All-electron and full-potential:
 - Realistic wave functions (oscillations near atomic sites)
 - Core (and semi-core) states explicitly included in Σ
 - Applicable to systems with localized d-states (Physical temperature effect → finite temperature formalism)
- Matsubara time :
 - Bounded and continuous → cutoff- and modeling-free
 - Capable of treating shallow core states or highly excited states (no exponential growth)
 - Applicable beyond GW
 - real algorithms $\rightarrow \sim 5$ times more efficient




Results: QP Band Gap of Si within <i>GW</i> Effect of Self-consistency				
	abs. gap (eV)	direct gap (eV)	occupied bandwidth (eV)	
Landolt-Börnstein (exp)	1.17	3.4	12.5 ± 0.6	
present work (LDA, FLAPW)	0.52	2.53	12.22	
Hybertsen and Louie	1.29	3.35	12.04	
Schöne and Eguiluz	1.34	3.27	11.65	
Schöne and Eguiluz (SC)	1.91	4.02	13.10	
present work (all e)	0.85	3.12	12.15	
present work (all e ⁻ , SC)	1.03	3.48	13.53	

	absolute gap (eV)
Landolt-Börnstein (exp)	1.17
present work (LDA, FLAPW)	0.52
Hybertsen and Louie	1.29
Rohlfing, Krüger, and Pollmann	1.17
Rojas, Godby, and Needs	1.29
Fleszar and Hanke	1.19
Schöne and Eguiluz *	1.34
Arnaud and Alouani (~all e, PAW)	1.00
Hamada, Hwang, and Freeman (∼all e, LAPW)	1.01
present work (all e-, LAPW)	0.85

(N31.008, Z13.010)

Conclusion

- The success of non-conserving G^{LDA}W^{LDA} calculations is helped by large compensation between effects from Lack of:
 - core contribution to self-energy
 - oscillations in wave functions when evaluating $\langle k,j|\Sigma|k,j\rangle$
 - self-consistency
- Deep core states play an important role in defining the QP band gap through exchange process with the valence states.
- Omission of oscillations of the wave functions near the the atomic sites have sizeable impact on the QP band gap.
- Self-consistency is necessary in our conserving calculation to produce satisfactory gap.
- Polarization from 3d core states in Ge has almost no effect on the QP band structure within *GW* approximation.
- Further improvement requires processes beyond *GW* diagram.