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Systematic tool for developing analytically controlled approximations
Diagrammatic representation — appealing physical interpretation
Microscopic understanding of physical phenomena

Modern approach — diagrammatic input into exact equations of motion

Long-range length scales only
Collective response and cooperative behavior
More advaced methods can be developed and explored



Layout

. Diagrammatic renormalizations

Thermodynamic quantities tn renormalized theories

One-particle (mass) renormalizations — Baym-Kadanoff
Two-particle renormalizations — non-self-consistent € self-consistent
. Parquet equations — charge renormalization

. Solution of simplified parquet equations

Conclusions & perspectives



Need for a renormalized perturbation expansion

X Fermi liquid — weak-coupling quasiparticle picture, " mass renormalization”

X Mean-field global bahavior — Hartree, Gutzwiller, DMFT

v" Non-Fermi-liquid behavior

v' Mott-Hubbard MIT

¢ Thermodynamic (quantum) phase transitions — phase stability

¢/ Formation and condensation of bound and resonant states



Demands and restrictions on diagrammatic renormalizations

Thermodynamic consistence — generating thermodynamic potential
Absence of unphysical behavior — no spurious poles

Macroscopic conservation laws should be obeyed

Causality should be acomplished

No double counting of diagrams

Controllable theory — anchor points (exact limits), “small parameters”



Model & input parameters

One-band model Hamiltonian

Hg => (e(k) —p+0B)cl,¢, +U Z Mt

ko
Multi-orbital Hubbard Hamiltonian

Hubb __ +
H > trary g Griv + D Uraw mRA Ry
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LMTO input (lattice structure)

LMTO 1/2 oy 1/2
Hgxwr/x = Crow ORR! + ARy Spyriv By

where A = (Lo) = (fmo) is the spinorbital index

Relevant input parameters:

t — hopping amplitude (kinetic energy, particle mass)
U — Coulomb interaction (particle charge squared)
1t — chemical potential (Fermi energy, particle number)
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(3)



Thermodynamic quantities and external perturbations

Grand potential

Q(t,U; T, u) = —kpgT In Trexp —ﬁ(ﬁ — ,UJ/\\T})

» External sources used to disturb equilibrium
» Stability with respect to small perturbations — linear response

» Quantum systems allow for “anomalous” nonconserving sources

AN
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n'l - conserving source (spin, charge density)
5” - adds spin and charge

nt - adds spin, preserves charge

¢+ - adds charge, preserves spin

complex fields - anomalous responses

(4)



Ao = [ d1d2{ S™ [nla, 2)el (e, (2)

g

+l(1,2)c,(1)e, (2) + €)1, 2)l (1)ef(2)]

+ [ (1, 2)ef(1)e, (2) + 7 (1, 2)ef (2)e; (1)
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where labels 1 = (ry, 71), 2 = (r2, 72), etc

Generalized susceptibilities — criteria for local stability from two-particle functions

~Q

82 D[ H ops]
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o — channel index

At instability (divergence in x®) — LRO sets in

Order parameters — Legendre conjugates to the relevant external sources H,,



Summation of diagrams

Diagrams summed term by term in powers of the interaction strength: unbiased PT
thermodynamic potential 2[G", U] — suitable in situations with large diagram cancellations

Naive: Closed connected diagrams, free of self-energy insertions, in the 1P renormalized
propagator directly for a thermodynamic potential — explicit generating Luttinger-
Ward functional ®[G, U]; thermodynamic ®-derivable approximations

Standard: One-particle irreducible diagrams: self-energy functional approximated

_ 89[G, U]

|G SO

Equation of motion — Dyson, diagrammatic input via X

gl =gW"_3




Baym-Kadanoff formal construction

Perturbation expansion in renormalized quantities only (one-particle level)

Free energy
Q{G<0>—1,U} — 3 1n[ {J GO~ UH
— 37! ln/DgzDDgo* exp {90* [G(‘”‘l — J] e+ U [, 90*]} (6)

Replacement in PT: G»~! — G~' + %, (Dyson equation) in €
Variational approach: new functional W[G, 3] defined from

56\:[! . 569 (0)_1 —1
55 sGqO-1 [G B E] (7)
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Explicit functional
UGS, U] =Q{G ' +2,U} — B trInG — B 'trln [G@)—l _— J] (9)




Variational conditions:

NAE 0 v G, X]

0G 0

Approximations expressed entirely in terms of renormalized quantities GG, 32

W[G, 32, U] not suitable for approximations — 32 to be excluded via Legendre transform
3G, U] :Q{G_1+E,U} _ ' InG + =G (10)

Theory is ®-derivable if &[G, U] is found explicitly in closed form, i.e., variational

equation
B 0P [G, U]

0G

%G

must be resolved for ® as a functional of the renormalized propagator G

Practically only weak-coupling theories are ®-derivable




Dynamical mean-field theory

Separation of diagonal and off-diagonal parts

aQ — Gdiag [do] 4 Goff [d—1/2] , > Zdiag [do] 4 Eoff [d—3/2]

Mean-field functional

@[G,Z]:S){Gmw‘44—2MW}—¢T4UMHGMW—B_HMn{Gm*4——2mw——J}
(11)
where G(k, iwy,) — G (iwy,), B(k, iwy,) — %9 (jw,)
Only correlations matter in the generating functional

Lattice structure enters only due to the bare propagator:

GOk, iwy) = iwn + p 4+ 0B — e(k) (12)



Application of DMFT:

Y

Exact asymptotic formulas for d — oo used in d = 3
Only density of states (DOS) matters:

p(E) = —& Y Im G(k, E + i0*)
Momentum summations in internal vertices independent

Y

Y

Y

quantities irrelevant in the thermodynamic potential

What about correlation functions?

Correlation functions determine stability of a DMFT
Generally nonolocal quantities (LRO exists) — cavity (loop) field

Irreducible vertex functions — local but not unique
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Various (2P channel-dependent) leading-order corrections



Two-particle functions

Advanced scheme for PT: Approximations at the two-particle level: 2P irreducible vertices
aproximated diagrammatically — cannot be disconnected by cutting
a pair of 1P propagators

2P irreducibility three (independent) two-particle scattering channels — beyond static
local theory (atomic limit)

eh ladders g - E z Lo
ee ladders g - E z Lo

o
eh bubbles E + ‘Lﬁﬂ‘ T




Characterization of 2P channels

2nd variations in external sources lead to specific 2P reducible functions:

77” - interaction ch. (bubble chain, polarization
bubbles), longitudinal susceptibilities, LRO

n - electron-hole ch. (singlet e-h scatterings),
transverse susceptibilities, (anomalous) LRO

£+ - electron-electron ch. (singlet e-e scatterings),

superconductivity, anomalous GF

Labelling of two-particle functions in momentum space A__/(k, q, ¢'):

ok ok +q

AUU’

o'k+¢q o'k+q+4

four-vector notation: k = (k, iw,), ¢ = (q, ivy,)



Channel-dependent (linear) multiplication schemes

eh-channel (RPA)

_ _ 1
[XGG 7 Y] (kK q) = BN D Xoor(k;a”,0)Go(k + ¢ )Gor(k + g+ ")
q//

XY, (k+ g kK —k—q"; q)

ee-channel (TMA)

> . 1
XGGeY| (kKiq) = S 2 Koo (k0" a+d =47)Go (k") G (kg +4'=q7)
q//

XY, (k+4d",9—9q"4d —q7)
U-channel (shielded interaction, GWA)
A ~ 1
[XGG * Y} o (k, k' q) = B—N Z X, . (k;q, CI”)Ggu(k’—l—q")GJ//(k—I—q—i—q”)

ol k!

X Y n(k + q”; q, E— k — q’)



Two-particle renormalizations

Two-particle irreducible vertices A* approximated diagrammatically

Bethe-Salpeter equations — channel dependent, generically
T'(k;q,q) = A(k;q,d) — [A"GG O T] (k;q,q) (13)
used to calculate I" from a known A

Schwinger-Dyson equation — Schrodinger equation for Green functions

(k) = ﬁ% D> G, (K)

U
B B2N?2

D> Golk+ )G o(K' + QToo(k +q; 0,k — k)G_o(K') (14)

k'q

used to calculate > from I'



Non-self-consistent 2P renormalizations — FLEX

Ring diagrams (ATUl =U)

U
1 —U?X11(q)X ()

Rin
FN I(k; g, q/) —

1 1/ 1/
XO'O'/<q) — 5—./\/- Z GU(k )Gal(k -+ q)

k.//

Ladder diagrams (A?i” =U Vv A} =U)

U
I‘RPA k; ’q/ _
1 ) 1+ UXq1(q')
U
TMA
Ty (ks g, q)

T 1+ UY(2k+q+ )

Y,,/(q) = BLN S™ Go(K")Gorlg — k)

k‘//

(15)

(16)

(17)



Self-consistent 2P renormalizations — Parquet approach

Completely 2P irreducible function I: irreducible in all 2P channles
(disconnected by cutting at least three fermion lines)

Parquet approach: I determined diagrammatically, A“ from defining equations

Topological nonequivalence of different 2P channels (beyond local static theory,
atomic limit):

D=A®+K% A=T1+4+> K (18)

o/ £a

Parquet equations: Reducible functions K% in (18) replaced by the solutions of the
respective Bethe-Salpeter equations

Genuine charge renormalization U —— A in perturbation theory:

A = LY[I[U; G, A]; A, G] (19)



— simultaneous renormalization of m and U

— 1P irreducible function

G = Gy + Go2G

— vertex function

' =A% — A°GGT

A — 2P irreducible vertex — ambiguously defined

— topological nonequivalence of the choice of 2P irreducibility —
completely 2P-IR vertex I

A =T 437 o[l — AY]

equation of motion

X =UG - UGI'GG

Close system of equations with a diagrammatic input
— completely 2P-IR function: I = U + AI[G, A]




Parquet diagrams — Bethe-Salpeter equations

ok ok +q
k, +qll
1—‘0'0” = Ag.};./ - (1 + 60—0—’) Ag.};./ Fg—g—l
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| Aee, Aee, |
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kl + qll
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Simplified parquet equations — approximate diagonalization

Each vertex (2P) function has three (four)-momentum variables — problem not tractable
(N. Bickers — high temperatures), approximations necessary

» Keep only relevant variables for which possible singularities may appear
» Incoming fermion variable (k) in the vertex function irrelevant

» Only spin-singlet potentially singular vertex functions (eh and U (noncrossed)
channels)

Us(z) + (MGG 1 (x, 9) |U8(x) — A1 (, q)]
1+ (A"G1GY) (2, q)

FL(CE7 Q) —

Us(z) — [1, (A"G,Go) pla, x) [ch(m) _ AUg(q, x)]
Ahp(q, z) = (21)
1 — Ho’ <AehGaGa>R(q> )

Only the first part Ud(x) — quasi-algebraic equations for one-variable vertex functions



One-variable simplified parquet equations

Two singlet eh channels — only the (conserving) variable in each channel kept,

analytic structure of the FLEX

horizontal transfer momentum for Aeh, vertical transfer momentum for AY

U

B UGTGT UGlGl
1 < +<AehG Gl (q) AehG G (q)
U

UGG |
1+ <1(AUGTGT>(AUGlGl)> (q)

(TG,G.)(q) = ﬁiN > PG (WG (k + 0

A (q) =

AY(q) =

Self-energy from the Schwinger-Dyson equation:

(22)

(23)

(24)



Solution of the simplified parquet equations (DMFT)

Weak-coupling U S w — very close to FLEX

Intermediate coupling U > w — new nonperturbative solution for 2P IR vertices A", AV
two real solutions split into the complex plane in an effort to avoid a nonintegrable pole in
BS-equations — complex conjugate solutions

Symmetry breaking at the two-particle level:  A(z) # A(z")"

Order parameters — anomalous 2P vertex: 'y, om(w) = (I'(w + i) — I'(w — in)) /2

Physical (measurable) quantities: I'.y(w) = (I'(w +in) + ' (w — in)) /2

[ Effective particle interaction A(0) gets complex! No divergence in the vertex functions! ]

Interpretation: resonant pair states
Im Ucry > 0 — absorption to bound state
Im Uc¢¢ < 0 — emission from bound state

QM analogy with tunneling (Ey;, < U, real — complex momentum)
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FLEX vs. Parquet equations

Straightforward approach — analytic solution accessible (Bethe-Salpeter equation
algebraic)

Good in d > 2 and weak coupling only

Fails in critical regions — singularity only in one channel

Nonintegrable singularities may exist

(Nonlinear integral) equations for irreducible vertex functions (effective interaction) —
only approximate solutions

Nonperturbative solutions — singularities and bifurcation points (new phases with 2P
order parameters)
Only integrable singularities — important in low dimensions

d > d; broken symmetry — 1P anomalous vertex > — condensation of bound pairs

d < d; breakdown of mirror symmetry A(q) # A™(q") — 2P anomalous vertices
— effective complex interaction A(0) — resonant pair states



Conclusions

Renormalized PT: diagrammatic (perturbative) input into a set of equations of motion

One-particle (mass) renormalizations: Fermi-liquid regime with dominant fermionic
excitations

Two-particle (charge) renormalizations: Critical regions with singularities in the
Bethe-Salpeter equations

Two-particle self-consistence (parquet): low-dimensional dynamical systems with
critical behavior (integrability of singularities not guaranteed)

Extrapolation only from weak to intermediate coupling

Not yet reliable (understood) in the strong-coupling regime —properties of the new 2P
phase, symmetry-breaking field, etc.

Conflict between Schwinger-Dyson & Ward — both cannot be obeyed simultaneously



Perspectives

Ward identity used for determining > from A (replacing Schwinger-Dyson)
More detailed analysis of the new 2P quantum phase

Disordered systems — new phase related to Anderson localization

FLEX generalized to multi-orbital Hubbard — U, J, various degrees of self-consistence

Parquet — not yet mature for applications, still to be explored at the model level



