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Perturbaton theory

p Systematic tool for developing analytically controlled approximations

p Diagrammatic representation – appealing physical interpretation

p Microscopic understanding of physical phenomena

p Modern approach – diagrammatic input into exact equations of motion

Model calculations

o Long-range length scales only

o Collective response and cooperative behavior

o More advaced methods can be developed and explored



Layout

1. Diagrammatic renormalizations

2. Thermodynamic quantities in renormalized theories

3. One-particle (mass) renormalizations – Baym-Kadanoff

4. Two-particle renormalizations – non-self-consistent & self-consistent

5. Parquet equations – charge renormalization

6. Solution of simplified parquet equations

7. Conclusions & perspectives



Need for a renormalized perturbation expansion

î Effects of ”irrelevant” (noncritical) part of PT

7 Fermi liquid – weak-coupling quasiparticle picture, ”mass renormalization”

7 Mean-field global bahavior – Hartree, Gutzwiller, DMFT

î Strong dynamical fluctuations (without apparent thermodynamic order)

3 Non-Fermi-liquid behavior

3 Mott-Hubbard MIT

î Collective critical phenomena (in particular in low dimensions)

4 Thermodynamic (quantum) phase transitions – phase stability

4 Formation and condensation of bound and resonant states
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Demands and restrictions on diagrammatic renormalizations

ä Thermodynamic consistence – generating thermodynamic potential

ä Absence of unphysical behavior – no spurious poles

ä Macroscopic conservation laws should be obeyed

ä Causality should be acomplished

ä No double counting of diagrams

ä Controllable theory – anchor points (exact limits), “small parameters”
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Model & input parameters

One-band model Hamiltonian

bHH =
X

kσ

(ε(k)− µ + σB) c
†
kσckσ + U

X

i

bni↑bni↓ (1)

Multi-orbital Hubbard Hamiltonian

H
Hubb

=
X

Rλ,R′λ′
tRλ,R′λ′ a

+
Rλ aR′λ′ +

X

R,λ,λ′
URλλ′ nRλ nRλ′ (2)

LMTO input (lattice structure)

H
LMTO
Rλ,R′λ′ = CRλλ′ δRR′ + ∆

1/2
Rλ S

γ

Rλ,R′λ′ ∆
1/2

R′λ′ (3)

where λ = (Lσ) = (`mσ) is the spinorbital index

Relevant input parameters:

t – hopping amplitude (kinetic energy, particle mass)

U – Coulomb interaction (particle charge squared)

µ – chemical potential (Fermi energy, particle number)
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Thermodynamic quantities and external perturbations

Grand potential

Ω(t, U ; T, µ) = −kBT ln Tr exp−β( bH − µ bN}) (4)

ç External sources used to disturb equilibrium

ç Stability with respect to small perturbations – linear response

ç Quantum systems allow for “anomalous” nonconserving sources

bH −→ bH + bHext

η|| - conserving source (spin, charge density)

ξ|| - adds spin and charge

η⊥ - adds spin, preserves charge

ξ⊥ - adds charge, preserves spin

complex fields - anomalous responses
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bHext =

Z

d1d2

(

X

σ

h

η
||
σ(1, 2)c

†
σ(1)cσ(2)

+ξ̄
||
σ(1, 2)cσ(1)cσ(2) + ξ

||
σ(1, 2)c

†
σ(1)c

†
σ(2)

i

+
h

η
⊥
(1, 2)c

†
↑(1)c↓(2) + η̄

⊥
(1, 2)c

†
↓(2)c↑(1)

i

+
h

ξ̄
⊥
(1, 2)c↑(1)c↓(2) + ξ

⊥
(1, 2)c

†
↓(2)c

†
↑(1)

i

)

(5)

where labels 1 = (r1, τ1), 2 = (r2, τ2), etc

Generalized susceptibilities – criteria for local stability from two-particle functions

bχ
α

=
δ2Φ[Hext]

δHαδHᾱ

≥ 0

α – channel index

At instability (divergence in χα) – LRO sets in

Order parameters – Legendre conjugates to the relevant external sources Hα
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Summation of diagrams

Bare expansion in G(0)

Diagrams summed term by term in powers of the interaction strength: unbiased PT

thermodynamic potential Ω[G0, U ] – suitable in situations with large diagram cancellations

Renormalized summations in G – conserving approximations

Naive: Closed connected diagrams, free of self-energy insertions, in the 1P renormalized

propagator directly for a thermodynamic potential – explicit generating Luttinger-

Ward functional Φ[G, U ]; thermodynamic Φ-derivable approximations

Standard: One-particle irreducible diagrams: self-energy functional approximated

Σ[G] =
δΦ[G, U ]

δG

Equation of motion – Dyson, diagrammatic input via Σ

G−1 = G(0)−1 − Σ
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Baym-Kadanoff formal construction

Perturbation expansion in renormalized quantities only (one-particle level)

Free energy

Ω
n

G
(0)−1

, U
o

= −β
−1

ln
h

Z
n

J; G
(0)−1

, U
oi

= −β
−1

ln

Z

DϕDϕ
∗
exp

n

ϕ
∗
h

G
(0)−1 − J

i

ϕ + U
¢

ϕ, ϕ
∗£
o

(6)

Replacement in PT: G(0)−1 → G−1 + Σ, (Dyson equation) in Ω

Variational approach: new functional Ψ[G, Σ] defined from

δβΨ

δΣ
=

δβΩ

δG(0)−1
+

h

G
(0)−1 − Σ

i−1

(7)

δβΨ

δG
=

1

G2

δβΩ

δG(0)−1
−G

−1
(8)

Explicit functional

Ψ [G, Σ, U ] = Ω
¨

G−1 + Σ, U
©

− β−1tr ln G− β−1tr ln
h

G(0)−1 − Σ− J
i

(9)
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Variational conditions:

δΨ [G, Σ]

δG
= 0

δΨ [G, Σ]

δΣ
= 0

Approximations expressed entirely in terms of renormalized quantities G, Σ

Φ-derivability

Ψ[G, Σ, U ] not suitable for approximations – Σ to be excluded via Legendre transform

Φ[G, U ] = Ω
n

G
−1

+ Σ, U
o

− β
−1

tr ln G + ΣG (10)

Theory is Φ-derivable if Φ[G, U ] is found explicitly in closed form, i.e., variational

equation

Σ[G] =
δΦ[G, U ]

δG

must be resolved for Φ as a functional of the renormalized propagator G

Practically only weak-coupling theories are Φ-derivable
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Dynamical mean-field theory

Separation of site diagonal and off-diagonal parts

G = G
diag

h

d
0
i

+ G
off

h

d
−1/2

i

, Σ = Σ
diag

h

d
0
i

+ Σ
off

h

d
−3/2

i

Mean-field functional

Ψ [G, Σ] = Ω
n

G
diag −1

+ Σ
diag

o

−β
−1

tr ln G
diag−β

−1
tr ln

h

G
(0)−1 − Σ

diag − J
i

(11)

where G(k, iωn) → Gdiag(iωn), Σ(k, iωn) → Σdiag(iωn)

Only local correlations matter in the generating functional

Lattice structure enters only due to the bare propagator:

G
(0)−1

(k, iωn) = iωn + µ + σB − ε(k) (12)
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Application of DMFT:

ã Exact asymptotic formulas for d →∞ used in d = 3

ã Only density of states (DOS) matters:

ρ(E) = − 1
πN

P

k Im G(k, E + i0+)

ã Momentum summations in internal vertices independent

ã Nonlocal quantities irrelevant in the thermodynamic potential

What about correlation functions?

ä Correlation functions determine stability of a DMFT

ä Generally nonolocal quantities (LRO exists) – cavity (loop) field

ä Irreducible vertex functions – local but not unique

ä Various (2P channel-dependent) leading-order corrections
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Two-particle functions

Advanced scheme for PT: Approximations at the two-particle level: 2P irreducible vertices

aproximated diagrammatically – cannot be disconnected by cutting

a pair of 1P propagators

2P irreducibility three (independent) two-particle scattering channels – beyond static

local theory (atomic limit)

eh ladders � �� + � � �

ee ladders � �� + � � �

eh bubbles � +� + � � �

1
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Characterization of 2P channels

2nd variations in external sources lead to specific 2P reducible functions:

η|| - interaction ch. (bubble chain, polarization

bubbles), longitudinal susceptibilities, LRO

η⊥ - electron-hole ch. (singlet e-h scatterings),

transverse susceptibilities, (anomalous) LRO

ξ⊥ - electron-electron ch. (singlet e-e scatterings),

superconductivity, anomalous GF

Labelling of two-particle functions in momentum space Λσσ′(k, q, q′):

����
0

�0k + q0

�k

�0k + q + q0

�k + q

four-vector notation: k = (k, iωn), q = (q, iνm)
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Channel-dependent (linear) multiplication schemes

eh-channel (RPA)

h

bXGG ◦ bY
i

σσ′
(k, k

′
; q) =

1

βN
X

q′′
Xσσ′(k; q”, q)Gσ(k + q

′′
)Gσ′(k + q + q

′′
)

× Yσσ′(k + q
′′
; k

′ − k − q”; q)

ee-channel (TMA)
h

bXGG • bY
i

σσ′
(k, k

′
; q) =

1

βN
X

q′′
Xσσ′(k; q

′′
, q+q

′−q”)Gσ(k+q
′′
)Gσ′(k+q+q

′−q”)

× Yσσ′(k + q
′′
, q − q

′′
; q
′ − q”)

U -channel (shielded interaction, GWA)
h

bXGG ? bY
i

σσ′
(k, k

′
; q) =

1

βN
X

σ′′k′′
Xσσ′′(k; q, q”)Gσ′′(k+q

′′
)Gσ′′(k+q+q”)

× Yσ′′σ′(k + q
′′
; q, k

′ − k − q”)

CEM02 - KITP UCSB, October 2002 13



Two-particle renormalizations

Two-particle irreducible vertices Λα approximated diagrammatically

Equations of motion for the full 2P vertex Γ

Bethe-Salpeter equations – channel dependent, generically

Γ(k; q, q
′
) = Λ

α
(k; q, q

′
)− [Λ

α
GG¬ Γ] (k; q, q

′
) (13)

used to calculate Γ from a known Λ

Schwinger-Dyson equation – Schrödinger equation for Green functions

Σσ(k) =
U

βN

X

k′
G−σ(k

′
)

−
U

β2N2

X

k′q

Gσ(k + q)G−σ(k
′
+ q)Γσ−σ(k + q; q, k

′ − k)G−σ(k
′
) (14)

used to calculate Σ from Γ
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Non-self-consistent 2P renormalizations – FLEX

Ring diagrams (ΛU
↑↓ = U)

Γ
Ring
↑↓ (k; q, q

′
) =

U

1− U2X↑↑(q)X↓↓(q)
(15)

Xσσ′(q) =
1

βN
X

k′′
Gσ(k

′′
)Gσ′(k

′′
+ q)

Ladder diagrams (Λeh
↑↓ = U ∨ Λee

↑↓ = U)

Γ
RPA
↑↓ (k; q, q

′
) =

U

1 + UX↑↓(q′)
(16)

Γ
TMA
↑↓ (k; q, q

′
) =

U

1 + UY↑↓(2k + q + q′)
(17)

Yσσ′(q) =
1

βN
X

k′′
Gσ(k

′′
)Gσ′(q − k”)
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Self-consistent 2P renormalizations – Parquet approach

Completely 2P irreducible function I: irreducible in all 2P channles

(disconnected by cutting at least three fermion lines)

Parquet approach: I determined diagrammatically, Λα from defining equations

Topological nonequivalence of different 2P channels (beyond local static theory,

atomic limit):

Γ = Λ
α

+Kα
, Λ

α
= I +

X

α′6=α

Kα′
(18)

Parquet equations: Reducible functions Kα in (18) replaced by the solutions of the

respective Bethe-Salpeter equations

Genuine charge renormalization U −→ Λ in perturbation theory:

Λ
α

= L
α
[I[U ; G, Λ]; Λ, G] (19)

CEM02 - KITP UCSB, October 2002 16



Parquet method – simultaneous renormalization of m and U

ä 1P renormalization – 1P irreducible function

G = G0 + G0ΣG

ä 2P renormalization – vertex function

Γ = Λα − ΛαGGΓ

Λα – 2P irreducible vertex – ambiguously defined

ä Parquet equations – topological nonequivalence of the choice of 2P irreducibility –

completely 2P-IR vertex I

Λα = I +
P

α′6=α[Γ− Λα′]

ä Schwinger-Dyson equation of motion

Σ = UG− UGΓGG

Close system of equations with a diagrammatic input

– completely 2P-IR function: I = U + ∆I[G, Λ]
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Parquet diagrams – Bethe-Salpeter equations

����0

�0k0

�k

�0k0 + q

�k + q

=��eh

��0 � (1 + ���0)�
k + q00

k0 + q00

�eh

��0 ���0

�
���0

�0k0

�k

�0k0 + q

�k + q

=�
�ee

��0

� (1 + ���0)�
k + q � q00

k0 + q00

�ee

��0 ���0
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����0

�0k0

�k

�0k0 + q

�k + q

= ��U

��0 + (1 + ���0)�k00 k00 + q

�U

��00

��00�0

+�k00

k00 + q

���0

�eh

�0�0

�k �k + q

�0k0 + q

�0k0 + �k00

k00 + q

�eh

��

���0

�0k0 �0k0 + q

�k + q

�k

��
k00

k00 + q

k000

k000 + q

�eh

��

���0

�eh

�0�0

�k + q

�k

�0k0 + q

�0k0
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Simplified parquet equations – approximate diagonalization

Each vertex (2P) function has three (four)-momentum variables – problem not tractable

(N. Bickers – high temperatures), approximations necessary

Approximations:

ä Keep only relevant variables for which possible singularities may appear

ä Incoming fermion variable (k) in the vertex function essentially irrelevant

ä Only spin-singlet potentially singular vertex functions (eh and U (noncrossed)

channels)

ΛU
L(x, q) =

Uδ(x) + 〈ΛehG↑G↓〉L(x, q)
h

Uδ(x)− Λeh
L(x, q)

i

1 + 〈ΛehG↑G↓〉L(x, q)
(20)

Λeh
R(q, x) =

Uδ(x)−
Q

σ 〈ΛehGσGσ〉R(q, x)
h

Uδ(x)− ΛU
R(q, x)

i

1−
Q

σ 〈ΛehGσGσ〉R(q, x)
(21)

Only the first part Uδ(x) – quasi-algebraic equations for one-variable vertex functions
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One-variable simplified parquet equations

Two singlet eh channels – only the (conserving) variable in each channel kept,

analytic structure of the FLEX

horizontal transfer momentum for Λeh, vertical transfer momentum for ΛU

Λ
eh

(q) =
U

1−
¼

UG↑G↑
1+〈ΛehG↑G↓〉

½

(q)

¼

UG↓G↓
1+〈ΛehG↑G↓〉

½

(q)

(22)

Λ
U
(q) =

U

1 +

¼

UG↑G↓
1−〈ΛUG↑G↑〉〈ΛUG↓G↓〉

½

(q)

(23)

〈ΓGσGσ′〉(q) =
1

βN

X

k

Γ(k)Gσ(k)Gσ′(k + q) (24)

Self-energy from the Schwinger-Dyson equation:

Σ
U
σ (k) = − U

X

q

G−σ(k + q) 〈UG↑G↓〉 (q)

1 +

¼

U

1−〈ΛUG↑G↑〉〈ΛUG↓G↓〉
G↑G↓

½

(q)

(25)
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Solution of the simplified parquet equations (DMFT)

Weak-coupling U / w – very close to FLEX

Intermediate coupling U > w – new nonperturbative solution for 2P IR vertices Λeh, ΛU

two real solutions split into the complex plane in an effort to avoid a nonintegrable pole in

BS-equations – complex conjugate solutions

Symmetry breaking at the two-particle level: Λ(z) 6= Λ(z∗)∗

Order parameters – anomalous 2P vertex: Γanom(ω) = (Γ(ω + iη)− Γ∗(ω − iη))/2

Physical (measurable) quantities: Γreg(ω) = (Γ(ω + iη) + Γ∗(ω − iη))/2

Effective particle interaction Λ(0) gets complex! No divergence in the vertex functions!

Interpretation: resonant pair states

Im Ueff > 0 – absorption to bound state

Im Ueff < 0 – emission from bound state

QM analogy with tunneling (Ekin < U , real → complex momentum)
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Half-filled Hubbard model in the DMFT limit – simplified parquet (with symmetry
breaking) and FLEX
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Half-filled Hubbard model in the DMFT limit – simplified parquet (with symmetry
breaking) and FLEX
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Half-filled Hubbard model in the DMFT limit – simplified parquet (with symmetry
breaking) and FLEX
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Half-filled Hubbard model in the DMFT limit – simplified parquet (with symmetry
breaking) and FLEX
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Half-filled Hubbard model in the DMFT limit – simplified parquet (with symmetry
breaking)
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Half-filled Hubbard model in the DMFT limit – simplified parquet (with symmetry
breaking)
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FLEX vs. Parquet equations

FLEX

ä Straightforward approach – analytic solution accessible (Bethe-Salpeter equation

algebraic)

ä Good in d > 2 and weak coupling only

ä Fails in critical regions – singularity only in one channel

ä Nonintegrable singularities may exist

Parquet equations

4 (Nonlinear integral) equations for irreducible vertex functions (effective interaction) –

only approximate solutions

4 Nonperturbative solutions – singularities and bifurcation points (new phases with 2P

order parameters)

4 Only integrable singularities – important in low dimensions

d > dl broken symmetry – 1P anomalous vertex Σ – condensation of bound pairs

d ≤ dl breakdown of mirror symmetry Λ(q) 6= Λ∗(q∗) – 2P anomalous vertices

– effective complex interaction Λ(0) – resonant pair states
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Conclusions

4 Renormalized PT: diagrammatic (perturbative) input into a set of equations of motion

4 One-particle (mass) renormalizations: Fermi-liquid regime with dominant fermionic

excitations

4 Two-particle (charge) renormalizations: Critical regions with singularities in the

Bethe-Salpeter equations

4 Two-particle self-consistence (parquet): low-dimensional dynamical systems with

critical behavior (integrability of singularities not guaranteed)

> Extrapolation only from weak to intermediate coupling

> Not yet reliable (understood) in the strong-coupling regime –properties of the new 2P

phase, symmetry-breaking field, etc.

> Conflict between Schwinger-Dyson & Ward – both cannot be obeyed simultaneously
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Perspectives

Model

â Ward identity used for determining Σ from Λ (replacing Schwinger-Dyson)

â More detailed analysis of the new 2P quantum phase

â Disordered systems – new phase related to Anderson localization

Realistic

ã FLEX generalized to multi-orbital Hubbard – U, J , various degrees of self-consistence

ã Parquet – not yet mature for applications, still to be explored at the model level
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