Two-particle renormalizations in many-fermion perturbation theory

Václav Janiš Institute of Physics, ASCR, Prague

Perturbaton theory

S	etamatic	tool f	or day	Johning	analy	tically	controlled /	annrovima	tions
 ر ا	ystematic	LOOII	or ae	velopilig	allaly	yticany	Controlled	арргодина	LIOIIS

- □ Diagrammatic representation appealing physical interpretation
- Microscopic understanding of physical phenomena
- Modern approach diagrammatic input into exact equations of motion

Model calculations

- Long-range length scales only
- Collective response and cooperative behavior
- More advaced methods can be developed and explored

Layout

- 1. Diagrammatic renormalizations
- 2. Thermodynamic quantities in renormalized theories
- $\it 3. \ One\mbox{-}particle\ (mass)\ renormalizations Baym\mbox{-}Kadanoff$
- 4. Two-particle renormalizations non-self-consistent & self-consistent
- 5. Parquet equations charge renormalization
- 6. Solution of simplified parquet equations
- 7. Conclusions & perspectives

Need for a renormalized perturbation expansion

- Effects of "irrelevant" (noncritical) part of PT
 - Fermi liquid weak-coupling quasiparticle picture, "mass renormalization"
 - Mean-field global bahavior Hartree, Gutzwiller, DMFT
- Strong dynamical fluctuations (without apparent thermodynamic order)
 - ✓ Non-Fermi-liquid behavior
 - ✓ Mott-Hubbard MIT
- Collective critical phenomena (in particular in low dimensions)
 - ✓ Thermodynamic (quantum) phase transitions phase stability
 - ✓ Formation and condensation of bound and resonant states

Demands and restrictions on diagrammatic renormalizations

- > Thermodynamic consistence generating thermodynamic potential
- Absence of unphysical behavior no spurious poles
- Macroscopic conservation laws should be obeyed
- Causality should be acomplished
- No double counting of diagrams
- ➤ Controllable theory anchor points (exact limits), "small parameters"

Model & input parameters

One-band model Hamiltonian

$$\widehat{H}_{H} = \sum_{\mathbf{k}\sigma} \left(\epsilon(\mathbf{k}) - \mu + \sigma B \right) c_{\mathbf{k}\sigma}^{\dagger} c_{\mathbf{k}\sigma} + U \sum_{\mathbf{i}} \widehat{n}_{\mathbf{i}\uparrow} \widehat{n}_{\mathbf{i}\downarrow}$$
 (1)

Multi-orbital Hubbard Hamiltonian

$$H^{\text{Hubb}} = \sum_{\mathbf{R}\lambda, \mathbf{R}'\lambda'} t_{\mathbf{R}\lambda, \mathbf{R}'\lambda'} a_{\mathbf{R}\lambda}^{+} a_{\mathbf{R}'\lambda'} + \sum_{\mathbf{R},\lambda,\lambda'} U_{\mathbf{R}\lambda\lambda'} n_{\mathbf{R}\lambda} n_{\mathbf{R}\lambda'}$$
(2)

LMTO input (lattice structure)

$$H_{\mathbf{R}\lambda,\mathbf{R}'\lambda'}^{\mathrm{LMTO}} = C_{\mathbf{R}\lambda\lambda'}\,\delta_{\mathbf{R}\mathbf{R}'} + \Delta_{\mathbf{R}\lambda}^{1/2}\,S_{\mathbf{R}\lambda,\mathbf{R}'\lambda'}^{\gamma}\,\Delta_{\mathbf{R}'\lambda'}^{1/2} \tag{3}$$

where $\lambda = (L\sigma) = (\ell m\sigma)$ is the spinorbital index

Relevant input parameters:

t - hopping amplitude (kinetic energy, particle mass)

U – Coulomb interaction (particle charge squared)

 μ – chemical potential (Fermi energy, particle number)

Thermodynamic quantities and external perturbations

Grand potential

$$\Omega(t, U; T, \mu) = -k_B T \ln \operatorname{Tr} \exp -\beta (\widehat{H} - \mu \widehat{N})$$
(4)

- External sources used to disturb equilibrium
- ▶ Stability with respect to small perturbations linear response
- Quantum systems allow for "anomalous" nonconserving sources

$$\widehat{H} \longrightarrow \widehat{H} + \widehat{H}_{ext}$$

 $\eta^{||}$ - conserving source (spin, charge density)

 $\xi^{||}$ - adds spin and charge

 η^{\perp} - adds spin, preserves charge

 ξ^{\perp} - adds charge, preserves spin

complex fields - anomalous responses

$$\widehat{H}_{ext} = \int d1d2 \left\{ \sum_{\sigma} \left[\eta_{\sigma}^{\parallel}(1,2)c_{\sigma}^{\dagger}(1)c_{\sigma}(2) + \bar{\xi}_{\sigma}^{\parallel}(1,2)c_{\sigma}(1)c_{\sigma}(2) + \xi_{\sigma}^{\parallel}(1,2)c_{\sigma}^{\dagger}(1)c_{\sigma}^{\dagger}(2) \right] + \left[\eta^{\perp}(1,2)c_{\uparrow}^{\dagger}(1)c_{\downarrow}(2) + \bar{\eta}^{\perp}(1,2)c_{\downarrow}^{\dagger}(2)c_{\uparrow}(1) \right] + \left[\bar{\xi}^{\perp}(1,2)c_{\uparrow}(1)c_{\downarrow}(2) + \xi^{\perp}(1,2)c_{\downarrow}^{\dagger}(2)c_{\uparrow}^{\dagger}(1) \right] \right\}$$
(5)

where labels $1=(\mathbf{r}_1,\tau_1)$, $2=(\mathbf{r}_2,\tau_2)$, etc

Generalized susceptibilities – criteria for local stability from two-particle functions

$$\widehat{\chi}^{\alpha} = \frac{\delta^2 \Phi[H_{ext}]}{\delta H_{\alpha} \delta H_{\bar{\alpha}}} \ge 0$$

 α – channel index

At instability (divergence in χ^{α}) – LRO sets in

Order parameters – Legendre conjugates to the relevant external sources H_{lpha}

Summation of diagrams

Bare expansion in $G^{(0)}$

Diagrams summed term by term in powers of the interaction strength: unbiased PT thermodynamic potential $\Omega[G^0,U]$ – suitable in situations with large diagram cancellations

Renormalized summations in G – conserving approximations

Naive: Closed connected diagrams, free of self-energy insertions, in the 1P renormalized propagator directly for a thermodynamic potential – explicit generating Luttinger-Ward functional $\Phi[G,U]$; thermodynamic Φ -derivable approximations

Standard: One-particle irreducible diagrams: self-energy functional approximated

$$\Sigma[G] = \frac{\delta\Phi[G, U]}{\delta G}$$

Equation of motion – Dyson, diagrammatic input via Σ

$$G^{-1} = G^{(0)-1} - \Sigma$$

Baym-Kadanoff formal construction

Perturbation expansion in renormalized quantities only (one-particle level)

Free energy

$$\Omega\left\{G^{(0)-1}, U\right\} = -\beta^{-1} \ln\left[Z\left\{J; G^{(0)-1}, U\right\}\right]
= -\beta^{-1} \ln\int \mathcal{D}\varphi \mathcal{D}\varphi^* \exp\left\{\varphi^* \left[G^{(0)-1} - J\right]\varphi + U\left[\varphi, \varphi^*\right]\right\} (6)$$

Replacement in PT: $G^{(0)-1} \to G^{-1} + \Sigma$, (Dyson equation) in Ω

Variational approach: new functional $\Psi[G,\Sigma]$ defined from

$$\frac{\delta\beta\Psi}{\delta\Sigma} = \frac{\delta\beta\Omega}{\delta G^{(0)-1}} + \left[G^{(0)-1} - \Sigma\right]^{-1} \tag{7}$$

$$\frac{\delta\beta\Psi}{\delta G} = \frac{1}{G^2} \frac{\delta\beta\Omega}{\delta G^{(0)-1}} - G^{-1} \tag{8}$$

Explicit functional

$$\Psi[G, \Sigma, U] = \Omega\{G^{-1} + \Sigma, U\} - \beta^{-1} \operatorname{tr} \ln G - \beta^{-1} \operatorname{tr} \ln \left[G^{(0)-1} - \Sigma - J\right]$$
(9)

Variational conditions:

$$\frac{\delta \Psi [G, \Sigma]}{\delta G} = 0 \qquad \frac{\delta \Psi [G, \Sigma]}{\delta \Sigma} = 0$$

Approximations expressed entirely in terms of renormalized quantities G, Σ

Φ -derivability

 $\Psi[G,\Sigma,U]$ not suitable for approximations – Σ to be excluded via Legendre transform

$$\Phi[G, U] = \Omega\left\{G^{-1} + \Sigma, U\right\} - \beta^{-1} \operatorname{tr} \ln G + \Sigma G \tag{10}$$

Theory is Φ -derivable if $\Phi[G,U]$ is found explicitly in closed form, i.e., variational equation

$$\Sigma[G] = \frac{\delta\Phi[G, U]}{\delta G}$$

must be resolved for Φ as a functional of the renormalized propagator G

Practically only weak-coupling theories are Φ -derivable

Dynamical mean-field theory

Separation of site diagonal and off-diagonal parts

$$G = G^{diag} \left[d^0 \right] + G^{off} \left[d^{-1/2} \right], \qquad \Sigma = \Sigma^{diag} \left[d^0 \right] + \Sigma^{off} \left[d^{-3/2} \right]$$

Mean-field functional

$$\Psi\left[G,\Sigma\right] = \Omega\left\{G^{diag\;-1} + \Sigma^{diag}\right\} - \beta^{-1} \operatorname{tr} \ln G^{diag} - \beta^{-1} \operatorname{tr} \ln \left[G^{(0)-1} - \Sigma^{diag} - J\right] \tag{11}$$

where
$$G(\mathbf{k}, i\omega_n) \to G^{diag}(i\omega_n)$$
, $\Sigma(\mathbf{k}, i\omega_n) \to \Sigma^{diag}(i\omega_n)$

Only local correlations matter in the generating functional

Lattice structure enters only due to the bare propagator:

$$G^{(0)-1}(\mathbf{k}, i\omega_n) = i\omega_n + \mu + \sigma B - \epsilon(\mathbf{k})$$
(12)

Application of DMFT:

- ightharpoonup Exact asymptotic formulas for $d \to \infty$ used in d=3
- > Only density of states (DOS) matters:

$$\rho(E) = -\frac{1}{\pi N} \sum_{\mathbf{k}} \operatorname{Im} G(\mathbf{k}, E + i0^{+})$$

- > Momentum summations in internal vertices independent
- > Nonlocal quantities irrelevant in the thermodynamic potential

What about correlation functions?

- Correlation functions determine stability of a DMFT
- Generally nonolocal quantities (LRO exists) cavity (loop) field
- ➤ Irreducible vertex functions local but not unique
- ➤ Various (2P channel-dependent) leading-order corrections

Two-particle functions

Advanced scheme for PT: Approximations at the two-particle level: 2P irreducible vertices aproximated diagrammatically – cannot be disconnected by cutting a pair of 1P propagators

2P irreducibility three (independent) two-particle scattering channels – beyond static local theory (atomic limit)

Characterization of 2P channels

2nd variations in external sources lead to specific 2P reducible functions:

- $\eta^{||}$ interaction ch. (bubble chain, polarization bubbles), longitudinal susceptibilities, LRO
- η^{\perp} electron-hole ch. (singlet e-h scatterings), transverse susceptibilities, (anomalous) LRO
- ξ^{\perp} electron-electron ch. (singlet e-e scatterings), superconductivity, anomalous GF

Labelling of two-particle functions in momentum space $\Lambda_{\sigma\sigma'}(k,q,q')$:

four-vector notation: $k = (\mathbf{k}, i\omega_n), q = (\mathbf{q}, i\nu_m)$

Channel-dependent (linear) multiplication schemes

eh-channel (RPA)

$$\left[\widehat{X}GG \circ \widehat{Y}\right]_{\sigma\sigma'}(k, k'; q) = \frac{1}{\beta \mathcal{N}} \sum_{q''} X_{\sigma\sigma'}(k; q'', q) G_{\sigma}(k + q'') G_{\sigma'}(k + q + q'')$$
$$\times Y_{\sigma\sigma'}(k + q''; k' - k - q''; q)$$

ee-channel (TMA)

$$\left[\widehat{X}GG \bullet \widehat{Y}\right]_{\sigma\sigma'}(k,k';q) = \frac{1}{\beta\mathcal{N}} \sum_{q''} X_{\sigma\sigma'}(k;q'',q+q'-q") G_{\sigma}(k+q'') G_{\sigma'}(k+q+q'-q")$$

$$\times Y_{\sigma\sigma'}(k+q'',q-q'';q'-q")$$

U-channel (shielded interaction, GWA)

$$\left[\widehat{X}GG \star \widehat{Y}\right]_{\sigma\sigma'}(k,k';q) = \frac{1}{\beta\mathcal{N}} \sum_{\sigma''k''} X_{\sigma\sigma''}(k;q,q'') G_{\sigma''}(k+q'') G_{\sigma''}(k+q+q'')$$

$$\times Y_{\sigma''\sigma'}(k+q'';q,k'-k-q'')$$

Two-particle renormalizations

Two-particle irreducible vertices Λ^{α} approximated diagrammatically

Equations of motion for the full 2P vertex Γ

Bethe-Salpeter equations - channel dependent, generically

$$\Gamma(k;q,q') = \Lambda^{\alpha}(k;q,q') - [\Lambda^{\alpha}GG \odot \Gamma](k;q,q')$$
(13)

used to calculate Γ from a known Λ

Schwinger-Dyson equation – Schrödinger equation for Green functions

$$\Sigma_{\sigma}(k) = \frac{U}{\beta N} \sum_{k'} G_{-\sigma}(k')$$

$$-\frac{U}{\beta^2 N^2} \sum_{k'q} G_{\sigma}(k+q) G_{-\sigma}(k'+q) \Gamma_{\sigma-\sigma}(k+q;q,k'-k) G_{-\sigma}(k')$$
(14)

used to calculate Σ from Γ

Non-self-consistent 2P renormalizations – FLEX

Ring diagrams $(\Lambda^U_{\uparrow\downarrow}=U)$

$$\Gamma_{\uparrow\downarrow}^{Ring}(k;q,q') = \frac{U}{1 - U^2 X_{\uparrow\uparrow}(q) X_{\downarrow\downarrow}(q)} \tag{15}$$

$$X_{\sigma\sigma'}(q) = \frac{1}{\beta \mathcal{N}} \sum_{k''} G_{\sigma}(k'') G_{\sigma'}(k'' + q)$$

Ladder diagrams $(\Lambda^{eh}_{\uparrow\downarrow}=U \ \lor \ \Lambda^{ee}_{\uparrow\downarrow}=U)$

$$\Gamma_{\uparrow\downarrow}^{RPA}(k;q,q') = \frac{U}{1 + UX_{\uparrow\downarrow}(q')} \tag{16}$$

$$\Gamma_{\uparrow\downarrow}^{TMA}(k;q,q') = \frac{U}{1 + UY_{\uparrow\downarrow}(2k+q+q')} \tag{17}$$

$$Y_{\sigma\sigma'}(q) = \frac{1}{\beta \mathcal{N}} \sum_{k''} G_{\sigma}(k'') G_{\sigma'}(q - k")$$

Self-consistent 2P renormalizations – Parquet approach

Completely 2P irreducible function I: irreducible in all 2P channles (disconnected by cutting at least three fermion lines)

Parquet approach: I determined diagrammatically, Λ^{α} from defining equations

Topological nonequivalence of different 2P channels (beyond local static theory, atomic limit):

$$\Gamma = \Lambda^{\alpha} + \mathcal{K}^{\alpha}, \qquad \Lambda^{\alpha} = I + \sum_{\alpha' \neq \alpha} \mathcal{K}^{\alpha'}$$
 (18)

Parquet equations: Reducible functions \mathcal{K}^{α} in (18) replaced by the solutions of the respective Bethe-Salpeter equations

Genuine charge renormalization $U \longrightarrow \Lambda$ in perturbation theory:

$$\Lambda^{\alpha} = L^{\alpha} \left[I[U; G, \Lambda]; \Lambda, G \right] \tag{19}$$

Parquet method – simultaneous renormalization of m and U

> 1P renormalization – 1P irreducible function

$$G = G_0 + G_0 \Sigma G$$

> 2P renormalization – vertex function

$$\Gamma = \Lambda^{\alpha} - \Lambda^{\alpha} GG\Gamma$$

 Λ^{α} – 2P irreducible vertex – ambiguously defined

ightharpoonup Parquet equations – topological nonequivalence of the choice of 2P irreducibility – completely 2P-IR vertex I

$$\Lambda^{\alpha} = I + \sum_{\alpha' \neq \alpha} [\Gamma - \Lambda^{\alpha'}]$$

Schwinger-Dyson equation of motion

$$\Sigma = UG - UG\Gamma GG$$

Close system of equations with a diagrammatic input – completely 2P-IR function: $I=U+\Delta I[G,\Lambda]$

Parquet diagrams – Bethe-Salpeter equations

Simplified parquet equations – approximate diagonalization

Each vertex (2P) function has three (four)-momentum variables – problem not tractable (N. Bickers – high temperatures), approximations necessary

Approximations:

- Keep only relevant variables for which possible singularities may appear
- \triangleright Incoming fermion variable (k) in the vertex function essentially irrelevant
- \blacktriangleright Only spin-singlet potentially singular vertex functions (eh and U (noncrossed) channels)

$$\overline{\Lambda^{U}}_{L}(x,q) = \frac{U\delta(x) + \overline{\langle \Lambda^{eh}G_{\uparrow}G_{\downarrow} \rangle}_{L}(x,q) \left[U\delta(x) - \overline{\Lambda^{eh}}_{L}(x,q) \right]}{1 + \overline{\langle \Lambda^{eh}G_{\uparrow}G_{\downarrow} \rangle}_{L}(x,q)}$$
(20)

$$\frac{\overline{\Lambda^{eh}}_{R}(q,x) = \frac{U\delta(x) - \prod_{\sigma} \overline{\langle \Lambda^{eh}G_{\sigma}G_{\sigma} \rangle}_{R}(q,x) \left[U\delta(x) - \overline{\Lambda^{U}}_{R}(q,x) \right]}{1 - \prod_{\sigma} \overline{\langle \Lambda^{eh}G_{\sigma}G_{\sigma} \rangle}_{R}(q,x)}$$
(21)

Only the first part $U\delta(x)$ – quasi-algebraic equations for one-variable vertex functions

One-variable simplified parquet equations

Two singlet eh channels – only the (conserving) variable in each channel kept, analytic structure of the FLEX

horizontal transfer momentum for Λ^{eh} , vertical transfer momentum for Λ^{U}

$$\Lambda^{eh}(q) = \frac{U}{1 - \left\langle \frac{UG_{\uparrow}G_{\uparrow}}{1 + \left\langle \Lambda^{eh}G_{\uparrow}G_{\downarrow} \right\rangle} \right\rangle (q) \left\langle \frac{UG_{\downarrow}G_{\downarrow}}{1 + \left\langle \Lambda^{eh}G_{\uparrow}G_{\downarrow} \right\rangle} \right\rangle (q)} \tag{22}$$

$$\Lambda^{U}(q) = \frac{U}{1 + \left\langle \frac{UG_{\uparrow}G_{\downarrow}}{1 - \langle \Lambda^{U}G_{\uparrow}G_{\uparrow}\rangle\langle \Lambda^{U}G_{\downarrow}G_{\downarrow}\rangle} \right\rangle(q)} \tag{23}$$

$$\langle \Gamma G_{\sigma} G_{\sigma'} \rangle (q) = \frac{1}{\beta N} \sum_{k} \Gamma(k) G_{\sigma}(k) G_{\sigma'}(k+q)$$
 (24)

Self-energy from the Schwinger-Dyson equation:

$$\Sigma_{\sigma}^{U}(k) = -U \sum_{q} \frac{G_{-\sigma}(k+q) \langle UG_{\uparrow}G_{\downarrow} \rangle (q)}{1 + \left\langle \frac{U}{1 - \langle \Lambda^{U}G_{\uparrow}G_{\uparrow} \rangle \langle \Lambda^{U}G_{\downarrow}G_{\downarrow} \rangle} G_{\uparrow}G_{\downarrow} \right\rangle (q)}$$
(25)

Solution of the simplified parquet equations (DMFT)

Weak-coupling $U \lessapprox w$ – very close to FLEX

Intermediate coupling U>w – new nonperturbative solution for 2P IR vertices Λ^{eh},Λ^U two real solutions split into the complex plane in an effort to avoid a nonintegrable pole in BS-equations – complex conjugate solutions

Symmetry breaking at the two-particle level: $\Lambda(z) \neq \Lambda(z^*)^*$

$$\Lambda(z) \neq \Lambda(z^*)^*$$

Order parameters – anomalous 2P vertex: $\Gamma_{anom}(\omega) = (\Gamma(\omega+i\eta) - \Gamma^*(\omega-i\eta))/2$

Physical (measurable) quantities: $\Gamma_{reg}(\omega) = (\Gamma(\omega + i\eta) + \Gamma^*(\omega - i\eta))/2$

Effective particle interaction $\Lambda(0)$ gets complex! No divergence in the vertex functions!

Interpretation: resonant pair states

Im $U_{eff} > 0$ – absorption to bound state

Im $U_{eff} < 0$ – emission from bound state

QM analogy with tunneling $(E_{kin} < U$, real \rightarrow complex momentum)

FLEX vs. Parquet equations

FLEX

- ➤ Straightforward approach analytic solution accessible (Bethe-Salpeter equation algebraic)
- ightharpoonup Good in d>2 and weak coupling only
- ➤ Fails in critical regions singularity only in one channel
- Nonintegrable singularities may exist

Parquet equations

- (Nonlinear integral) equations for irreducible vertex functions (effective interaction) –
 only approximate solutions
- Nonperturbative solutions singularities and bifurcation points (new phases with 2P order parameters)
- ✓ Only integrable singularities important in low dimensions
 - $d>d_l$ broken symmetry 1P anomalous vertex Σ condensation of bound pairs
 - $d \leq d_l$ breakdown of mirror symmetry $\Lambda(q) \neq \Lambda^*(q^*)$ 2P anomalous vertices effective complex interaction $\Lambda(0)$ resonant pair states

Conclusions

- ✓ Renormalized PT: diagrammatic (perturbative) input into a set of equations of motion
- ✓ One-particle (mass) renormalizations: Fermi-liquid regime with dominant fermionic excitations
- ✓ Two-particle (charge) renormalizations: Critical regions with singularities in the Bethe-Salpeter equations
- ✓ Two-particle self-consistence (parquet): low-dimensional dynamical systems with critical behavior (integrability of singularities not guaranteed)
- † Extrapolation only from weak to intermediate coupling
- Not yet reliable (understood) in the strong-coupling regime –properties of the new 2P phase, symmetry-breaking field, etc.
- † Conflict between Schwinger-Dyson & Ward − both cannot be obeyed simultaneously.

Perspectives

Model

- \succ Ward identity used for determining Σ from Λ (replacing Schwinger-Dyson)
- ➤ More detailed analysis of the new 2P quantum phase
- ➤ Disordered systems new phase related to Anderson localization

Realistic

- \triangleright FLEX generalized to multi-orbital Hubbard U, J, various degrees of self-consistence
- > Parquet not yet mature for applications, still to be explored at the model level