Two-particle renormalizations in many-fermion perturbation theory

Václav Janiš
Institute of Physics, ASCR, Prague

Perturbaton theory

\square Systematic tool for developing analytically controlled approximations
\square Diagrammatic representation - appealing physical interpretation
\square Microscopic understanding of physical phenomena
\square Modern approach - diagrammatic input into exact equations of motion

Model calculations

\square Long-range length scales only
Collective response and cooperative behavior
\square More advaced methods can be developed and explored

Layout

1. Diagrammatic renormalizations
2. Thermodynamic quantities in renormalized theories
3. One-particle (mass) renormalizations - Baym-Kadanoff
4. Two-particle renormalizations - non-self-consistent 83 self-consistent
5. Parquet equations - charge renormalization
6. Solution of simplified parquet equations
7. Conclusions \& perspectives

Need for a renormalized perturbation expansion

© Effects of "irrelevant" (noncritical) part of PT

X Fermi liquid - weak-coupling quasiparticle picture, "mass renormalization"

X Mean-field global bahavior - Hartree, Gutzwiller, DMFT

〔 Strong dynamical fluctuations (without apparent thermodynamic order)
\checkmark Non-Fermi-liquid behavior
\checkmark Mott-Hubbard MIT
¢ Collective critical phenomena (in particular in low dimensions)
\checkmark Thermodynamic (quantum) phase transitions - phase stability
\checkmark Formation and condensation of bound and resonant states

Demands and restrictions on diagrammatic renormalizations

> Thermodynamic consistence - generating thermodynamic potential
> Absence of unphysical behavior - no spurious poles
> Macroscopic conservation laws should be obeyed
> Causality should be acomplished
$>$ No double counting of diagrams
> Controllable theory - anchor points (exact limits), "small parameters"

Model \& input parameters

One-band model Hamiltonian

$$
\begin{equation*}
\widehat{H}_{H}=\sum_{\mathbf{k} \sigma}(\epsilon(\mathbf{k})-\mu+\sigma B) c_{\mathbf{k} \sigma}^{\dagger} c_{\mathbf{k} \sigma}+U \sum_{\mathbf{i}} \widehat{n}_{\mathbf{i} \uparrow} \widehat{n}_{\mathbf{i} \downarrow} \tag{1}
\end{equation*}
$$

Multi-orbital Hubbard Hamiltonian

$$
\begin{equation*}
H^{\mathrm{Hubb}}=\sum_{\mathbf{R} \lambda, \mathbf{R}^{\prime} \lambda^{\prime}} t_{\mathbf{R} \lambda, \mathbf{R}^{\prime} \lambda^{\prime}} a_{\mathbf{R} \lambda}^{+} a_{\mathbf{R}^{\prime} \lambda^{\prime}}+\sum_{\mathbf{R}, \lambda, \lambda^{\prime}} U_{\mathbf{R} \lambda \lambda^{\prime}} n_{\mathbf{R} \lambda} n_{\mathbf{R} \lambda^{\prime}} \tag{2}
\end{equation*}
$$

LMTO input (lattice structure)

$$
\begin{equation*}
H_{\mathbf{R} \lambda, \mathbf{R}^{\prime} \lambda^{\prime}}^{\mathrm{LMTO}}=C_{\mathbf{R} \lambda \lambda^{\prime}} \delta_{\mathbf{R} \mathbf{R}^{\prime}}+\Delta_{\mathbf{R} \lambda}^{1 / 2} S_{\mathbf{R} \lambda, \mathbf{R}^{\prime} \lambda^{\prime}}^{\gamma} \Delta_{\mathbf{R}^{\prime} \lambda^{\prime}}^{1 / 2} \tag{3}
\end{equation*}
$$

where $\lambda=(L \sigma)=(\ell m \sigma)$ is the spinorbital index
Relevant input parameters:
t - hopping amplitude (kinetic energy, particle mass)
U - Coulomb interaction (particle charge squared)
μ - chemical potential (Fermi energy, particle number)

Thermodynamic quantities and external perturbations

Grand potential

$$
\begin{equation*}
\left.\Omega(t, U ; T, \mu)=-k_{B} T \ln \operatorname{Tr} \exp -\beta(\widehat{H}-\mu \widehat{N}\}\right) \tag{4}
\end{equation*}
$$

- External sources used to disturb equilibrium
- Stability with respect to small perturbations - linear response
| Quantum systems allow for "anomalous" nonconserving sources

$$
\widehat{H} \longrightarrow \widehat{H}+\widehat{H}_{e x t}
$$

$\eta^{\|}$- conserving source (spin, charge density)
$\xi^{\|}$- adds spin and charge
η^{\perp} - adds spin, preserves charge
ξ^{\perp} - adds charge, preserves spin
complex fields - anomalous responses

$$
\begin{align*}
\widehat{H}_{e x t}=\int d 1 d 2\{ & \sum_{\sigma}\left[\eta_{\sigma}^{\|}(1,2) c_{\sigma}^{\dagger}(1) c_{\sigma}(2)\right. \\
& \left.+\bar{\xi}_{\sigma}^{\|}(1,2) c_{\sigma}(1) c_{\sigma}(2)+\xi_{\sigma}^{\|}(1,2) c_{\sigma}^{\dagger}(1) c_{\sigma}^{\dagger}(2)\right] \\
& +\left[\eta^{\perp}(1,2) c_{\uparrow}^{\dagger}(1) c_{\downarrow}(2)+\bar{\eta}^{\perp}(1,2) c_{\downarrow}^{\dagger}(2) c_{\uparrow}(1)\right] \\
& \left.\quad+\left[\bar{\xi}^{\perp}(1,2) c_{\uparrow}(1) c_{\downarrow}(2)+\xi^{\perp}(1,2) c_{\downarrow}^{\dagger}(2) c_{\uparrow}^{\dagger}(1)\right]\right\} \tag{5}
\end{align*}
$$

where labels $1=\left(\mathbf{r}_{1}, \tau_{1}\right), 2=\left(\mathbf{r}_{2}, \tau_{2}\right)$, etc

Generalized susceptibilities - criteria for local stability from two-particle functions

$$
\widehat{\chi}^{\alpha}=\frac{\delta^{2} \Phi\left[H_{e x t}\right]}{\delta H_{\alpha} \delta H_{\bar{\alpha}}} \geq 0
$$

α - channel index
At instability (divergence in χ^{α}) - LRO sets in
Order parameters - Legendre conjugates to the relevant external sources H_{α}

Summation of diagrams

Bare expansion in $G^{(0)}$

Diagrams summed term by term in powers of the interaction strength: unbiased PT thermodynamic potential $\Omega\left[G^{0}, U\right]$ - suitable in situations with large diagram cancellations

Renormalized summations in G - conserving approximations

Naive: Closed connected diagrams, free of self-energy insertions, in the 1P renormalized propagator directly for a thermodynamic potential - explicit generating LuttingerWard functional $\Phi[G, U]$; thermodynamic Φ-derivable approximations

Standard: One-particle irreducible diagrams: self-energy functional approximated

$$
\Sigma[G]=\frac{\delta \Phi[G, U]}{\delta G}
$$

Equation of motion - Dyson, diagrammatic input via Σ

$$
G^{-1}=G^{(0)-1}-\Sigma
$$

Baym-Kadanoff formal construction

Perturbation expansion in renormalized quantities only (one-particle level)

Free energy

$$
\begin{align*}
\Omega\left\{G^{(0)-1}, U\right\} & =-\beta^{-1} \ln \left[\mathrm{Z}\left\{J ; G^{(0)-1}, U\right\}\right] \\
& =-\beta^{-1} \ln \int \mathcal{D} \varphi \mathcal{D} \varphi^{*} \exp \left\{\varphi^{*}\left[G^{(0)-1}-J\right] \varphi+U\left[\varphi, \varphi^{*}\right]\right\} \tag{6}
\end{align*}
$$

Replacement in PT: $G^{(0)-1} \rightarrow G^{-1}+\Sigma$, (Dyson equation) in Ω
Variational approach: new functional $\Psi[G, \Sigma]$ defined from

$$
\begin{align*}
\frac{\delta \beta \Psi}{\delta \Sigma} & =\frac{\delta \beta \Omega}{\delta G^{(0)-1}}+\left[G^{(0)-1}-\Sigma\right]^{-1} \tag{7}\\
\frac{\delta \beta \Psi}{\delta G} & =\frac{1}{G^{2}} \frac{\delta \beta \Omega}{\delta G^{(0)-1}}-G^{-1} \tag{8}
\end{align*}
$$

Explicit functional

$$
\begin{equation*}
\Psi[G, \Sigma, U]=\Omega\left\{G^{-1}+\Sigma, U\right\}-\beta^{-1} \operatorname{tr} \ln G-\beta^{-1} \operatorname{tr} \ln \left[G^{(0)-1}-\Sigma-J\right] \tag{9}
\end{equation*}
$$

Variational conditions:

$$
\frac{\delta \Psi[G, \Sigma]}{\delta G}=0 \quad \frac{\delta \Psi[G, \Sigma]}{\delta \Sigma}=0
$$

Approximations expressed entirely in terms of renormalized quantities G, Σ

Φ-derivability

$\Psi[G, \Sigma, U]$ not suitable for approximations $-\Sigma$ to be excluded via Legendre transform

$$
\begin{equation*}
\Phi[G, U]=\Omega\left\{G^{-1}+\Sigma, U\right\}-\beta^{-1} \operatorname{tr} \ln G+\Sigma G \tag{10}
\end{equation*}
$$

Theory is Φ-derivable if $\Phi[G, U]$ is found explicitly in closed form, i.e., variational equation

$$
\Sigma[G]=\frac{\delta \Phi[G, U]}{\delta G}
$$

must be resolved for Φ as a functional of the renormalized propagator G

$$
\text { Practically only weak-coupling theories are } \Phi \text {-derivable }
$$

Dynamical mean-field theory

Separation of site diagonal and off-diagonal parts

$$
G=G^{\text {diag }}\left[d^{0}\right]+G^{o f f}\left[d^{-1 / 2}\right], \quad \Sigma=\Sigma^{\text {diag }}\left[d^{0}\right]+\Sigma^{o f f}\left[d^{-3 / 2}\right]
$$

Mean-field functional

$$
\begin{equation*}
\Psi[G, \Sigma]=\Omega\left\{G^{\text {diag }-1}+\Sigma^{\text {diag }}\right\}-\beta^{-1} \operatorname{tr} \ln G^{\text {diag }}-\beta^{-1} \operatorname{tr} \ln \left[G^{(0)-1}-\Sigma^{\text {diag }}-J\right] \tag{11}
\end{equation*}
$$

where $G\left(\mathbf{k}, i \omega_{n}\right) \rightarrow G^{\text {diag }}\left(i \omega_{n}\right), \Sigma\left(\mathbf{k}, i \omega_{n}\right) \rightarrow \Sigma^{\text {diag }}\left(i \omega_{n}\right)$
Only local correlations matter in the generating functional
Lattice structure enters only due to the bare propagator:

$$
\begin{equation*}
G^{(0)-1}\left(\mathbf{k}, i \omega_{n}\right)=i \omega_{n}+\mu+\sigma B-\epsilon(\mathbf{k}) \tag{12}
\end{equation*}
$$

Application of DMFT:

$>$ Exact asymptotic formulas for $d \rightarrow \infty$ used in $d=3$
$>$ Only density of states (DOS) matters:

$$
\rho(E)=-\frac{1}{\pi N} \sum_{\mathbf{k}} \operatorname{lm} G\left(\mathbf{k}, E+i 0^{+}\right)
$$

$>$ Momentum summations in internal vertices independent
$>$ Nonlocal quantities irrelevant in the thermodynamic potential

What about correlation functions?

> Correlation functions determine stability of a DMFT
> Generally nonolocal quantities (LRO exists) - cavity (loop) field
> Irreducible vertex functions - local but not unique
> Various (2P channel-dependent) leading-order corrections

Two-particle functions

Advanced scheme for PT: Approximations at the two-particle level: 2P irreducible vertices aproximated diagrammatically - cannot be disconnected by cutting a pair of 1P propagators

2P irreducibility three (independent) two-particle scattering channels - beyond static local theory (atomic limit)

Characterization of 2P channels

2nd variations in external sources lead to specific 2 P reducible functions:
$\eta^{\|}$- interaction ch. (bubble chain, polarization bubbles), longitudinal susceptibilities, LRO
η^{\perp} - electron-hole ch. (singlet e-h scatterings), transverse susceptibilities, (anomalous) LRO
ξ^{\perp} - electron-electron ch. (singlet e-e scatterings), superconductivity, anomalous GF

Labelling of two-particle functions in momentum space $\Lambda_{\sigma \sigma^{\prime}}\left(k, q, q^{\prime}\right)$:

four-vector notation: $k=\left(\mathbf{k}, i \omega_{n}\right), q=\left(\mathbf{q}, i \nu_{m}\right)$

Channel-dependent (linear) multiplication schemes

eh-channel (RPA)

$$
\begin{aligned}
& {[\widehat{X} G G \circ \widehat{Y}]_{\sigma \sigma^{\prime}}\left(k, k^{\prime} ; q\right)=\frac{1}{\beta \mathcal{N}} \sum_{q^{\prime \prime}} X_{\sigma \sigma^{\prime}}\left(k ; q^{\prime \prime}, q\right) G_{\sigma}\left(k+q^{\prime \prime}\right) G_{\sigma^{\prime}}\left(k+q+q^{\prime \prime}\right) } \\
& \times Y_{\sigma \sigma^{\prime}}\left(k+q^{\prime \prime} ; k^{\prime}-k-q^{\prime \prime} ; q\right)
\end{aligned}
$$

$e e$-channel (TMA)

$$
\begin{aligned}
{[\widehat{X} G G \bullet \widehat{Y}]_{\sigma \sigma^{\prime}}\left(k, k^{\prime} ; q\right)=\frac{1}{\beta \mathcal{N}} \sum_{q^{\prime \prime}} X_{\sigma \sigma^{\prime}}\left(k ; q^{\prime \prime}, q+q^{\prime}-q^{\prime \prime}\right) G_{\sigma}\left(k+q^{\prime \prime}\right) G_{\sigma^{\prime}}\left(k+q+q^{\prime}-q^{\prime \prime}\right) } \\
\times Y_{\sigma \sigma^{\prime}}\left(k+q^{\prime \prime}, q-q^{\prime \prime} ; q^{\prime}-q^{\prime \prime}\right)
\end{aligned}
$$

U-channel (shielded interaction, GWA)

$$
\begin{array}{r}
{[\widehat{X} G G \star \widehat{Y}]_{\sigma \sigma^{\prime}}\left(k, k^{\prime} ; q\right)=\frac{1}{\beta \mathcal{N}} \sum_{\sigma^{\prime \prime} k^{\prime \prime}} X_{\sigma \sigma^{\prime \prime}}\left(k ; q, q^{\prime \prime}\right) G_{\sigma^{\prime \prime}}\left(k+q^{\prime \prime}\right) G_{\sigma^{\prime \prime}}\left(k+q+q^{\prime \prime}\right)} \\
\times Y_{\sigma^{\prime \prime} \sigma^{\prime}}\left(k+q^{\prime \prime} ; q, k^{\prime}-k-q^{\prime \prime}\right)
\end{array}
$$

Two-particle renormalizations

Two-particle irreducible vertices Λ^{α} approximated diagrammatically

Equations of motion for the full 2P vertex Γ

Bethe-Salpeter equations - channel dependent, generically

$$
\begin{equation*}
\Gamma\left(k ; q, q^{\prime}\right)=\Lambda^{\alpha}\left(k ; q, q^{\prime}\right)-\left[\Lambda^{\alpha} G G \odot \Gamma\right]\left(k ; q, q^{\prime}\right) \tag{13}
\end{equation*}
$$

used to calculate Γ from a known Λ
Schwinger-Dyson equation - Schrödinger equation for Green functions

$$
\begin{align*}
\Sigma_{\sigma}(k)= & \frac{U}{\beta N} \sum_{k^{\prime}} G_{-\sigma}\left(k^{\prime}\right) \\
& -\frac{U}{\beta^{2} N^{2}} \sum_{k^{\prime} q} G_{\sigma}(k+q) G_{-\sigma}\left(k^{\prime}+q\right) \Gamma_{\sigma-\sigma}\left(k+q ; q, k^{\prime}-k\right) G_{-\sigma}\left(k^{\prime}\right) \tag{14}
\end{align*}
$$

used to calculate Σ from Γ

Non-self-consistent 2P renormalizations - FLEX

Ring diagrams $\quad\left(\Lambda_{\uparrow \downarrow}^{U}=U\right)$

$$
\begin{align*}
& \Gamma_{\uparrow \downarrow}^{R i n g}\left(k ; q, q^{\prime}\right)=\frac{U}{1-U^{2} X_{\uparrow \uparrow}(q) X_{\downarrow \downarrow}(q)} \tag{15}\\
& X_{\sigma \sigma^{\prime}}(q)=\frac{1}{\beta \mathcal{N}} \sum_{k^{\prime \prime}} G_{\sigma}\left(k^{\prime \prime}\right) G_{\sigma^{\prime}}\left(k^{\prime \prime}+q\right)
\end{align*}
$$

Ladder diagrams $\quad\left(\Lambda_{\uparrow \downarrow}^{e h}=U \quad \vee \quad \Lambda_{\uparrow \downarrow}^{e e}=U\right)$

$$
\begin{align*}
& \Gamma_{\uparrow \downarrow}^{R P A}\left(k ; q, q^{\prime}\right)=\frac{U}{1+U X_{\uparrow \downarrow}\left(q^{\prime}\right)} \tag{16}\\
& \Gamma_{\uparrow \downarrow}^{T M A}\left(k ; q, q^{\prime}\right)=\frac{U}{1+U Y_{\uparrow \downarrow}\left(2 k+q+q^{\prime}\right)} \tag{17}\\
& Y_{\sigma \sigma^{\prime}}(q)=\frac{1}{\beta \mathcal{N}} \sum_{k^{\prime \prime}} G_{\sigma}\left(k^{\prime \prime}\right) G_{\sigma^{\prime}}\left(q-k^{\prime \prime}\right)
\end{align*}
$$

Self-consistent 2P renormalizations - Parquet approach

Completely 2P irreducible function I : irreducible in all 2 P channles (disconnected by cutting at least three fermion lines)

Parquet approach: I determined diagrammatically, Λ^{α} from defining equations
Topological nonequivalence of different 2P channels (beyond local static theory, atomic limit):

$$
\begin{equation*}
\Gamma=\Lambda^{\alpha}+\mathcal{K}^{\alpha}, \quad \Lambda^{\alpha}=I+\sum_{\alpha^{\prime} \neq \alpha} \mathcal{K}^{\alpha^{\prime}} \tag{18}
\end{equation*}
$$

Parquet equations: Reducible functions \mathcal{K}^{α} in (18) replaced by the solutions of the respective Bethe-Salpeter equations

Genuine charge renormalization $U \longrightarrow \Lambda$ in perturbation theory:

$$
\begin{equation*}
\Lambda^{\alpha}=L^{\alpha}[I[U ; G, \Lambda] ; \Lambda, G] \tag{19}
\end{equation*}
$$

Parquet method - simultaneous renormalization of m and U
>1P renormalization - 1 P irreducible function

$$
G=G_{0}+G_{0} \Sigma G
$$

$>2 \mathrm{P}$ renormalization - vertex function

$$
\Gamma=\Lambda^{\alpha}-\Lambda^{\alpha} G G \Gamma
$$

$\Lambda^{\alpha}-2 P$ irreducible vertex - ambiguously defined
> Parquet equations - topological nonequivalence of the choice of 2 P irreducibility completely $2 \mathrm{P}-\mathrm{IR}$ vertex I

$$
\Lambda^{\alpha}=I+\sum_{\alpha^{\prime} \neq \alpha}\left[\Gamma-\Lambda^{\alpha \prime}\right]
$$

$>$ Schwinger-Dyson equation of motion

$$
\Sigma=U G-U G \Gamma G G
$$

Close system of equations with a diagrammatic input

- completely 2P-IR function: $I=U+\Delta I[G, \Lambda]$

Parquet diagrams - Bethe-Salpeter equations

Simplified parquet equations - approximate diagonalization

Each vertex (2P) function has three (four)-momentum variables - problem not tractable (N . Bickers - high temperatures), approximations necessary

Approximations:

- Keep only relevant variables for which possible singularities may appear
$>$ Incoming fermion variable (k) in the vertex function essentially irrelevant
> Only spin-singlet potentially singular vertex functions ($e h$ and U (noncrossed) channels)

$$
\begin{align*}
& \left.\bar{\Lambda}_{L}(x, q)=\frac{U \delta(x)+{\overline{\left\langle\Lambda^{e h} G_{\uparrow} G_{\downarrow}\right\rangle}}_{L}(x, q)\left[U \delta(x)-\bar{\Lambda}^{e h}\right.}{L}(x, q)\right] \tag{20}\\
& {\overline{\Lambda^{e h}}}_{R}(q, x)=\frac{U \delta(x)-\prod_{\sigma}{\overline{\left\langle\Lambda^{e h} G_{\sigma} G_{\sigma}\right\rangle}}_{R}(q, x)\left[U \delta(x)-\bar{\Lambda}^{U}(q, x)\right]}{1-\prod_{\sigma}{\left.\overline{\langle\Lambda}{ }^{e h} G_{\sigma} G_{\sigma}\right\rangle}_{R}(q, x)} \tag{21}
\end{align*}
$$

Only the first part $U \delta(x)$ - quasi-algebraic equations for one-variable vertex functions

One-variable simplified parquet equations

Two singlet eh channels - only the (conserving) variable in each channel kept, analytic structure of the FLEX
horizontal transfer momentum for $\Lambda^{e h}$, vertical transfer momentum for Λ^{U}

$$
\begin{align*}
& \Lambda^{e h}(q)=\frac{U}{1-\left\langle\frac{U G_{\uparrow} G_{\uparrow}}{1+\left\langle\Lambda^{e h} G_{\uparrow} G_{\downarrow}\right\rangle}\right\rangle(q)\left\langle\frac{U G_{\downarrow} G_{\downarrow}}{1+\left\langle\Lambda^{e h} G_{\uparrow} G_{\downarrow}\right\rangle}\right\rangle(q)} \tag{22}\\
& \Lambda^{U}(q)=\frac{U}{1+\left\langle\frac{U G_{\uparrow} G_{\downarrow}}{1-\left\langle\Lambda^{U} G_{\uparrow} G_{\uparrow}\right\rangle\left\langle\Lambda^{U} G_{\downarrow} G_{\downarrow}\right\rangle}\right\rangle(q)} \tag{23}\\
& \quad\left\langle\Gamma G_{\sigma} G_{\sigma^{\prime}}\right\rangle(q)=\frac{1}{\beta N} \sum_{k} \Gamma(k) G_{\sigma}(k) G_{\sigma^{\prime}}(k+q) \tag{24}
\end{align*}
$$

Self-energy from the Schwinger-Dyson equation:

$$
\begin{equation*}
\Sigma_{\sigma}^{U}(k)=-U \sum_{q} \frac{G_{-\sigma}(k+q)\left\langle U G_{\uparrow} G_{\downarrow}\right\rangle(q)}{1+\left\langle\frac{U}{1-\left\langle\Lambda^{U} G_{\uparrow} G_{\uparrow}\right\rangle\left\langle\Lambda^{U} G_{\downarrow} G_{\downarrow}\right\rangle} G_{\uparrow} G_{\downarrow}\right\rangle(q)} \tag{25}
\end{equation*}
$$

Solution of the simplified parquet equations (DMFT)

Weak-coupling $U \lesssim w$ - very close to FLEX
Intermediate coupling $U>w$ - new nonperturbative solution for 2P IR vertices $\Lambda^{e h}, \Lambda^{U}$ two real solutions split into the complex plane in an effort to avoid a nonintegrable pole in BS-equations - complex conjugate solutions

Symmetry breaking at the two-particle level: $\Lambda(z) \neq \Lambda\left(z^{*}\right)^{*}$
Order parameters - anomalous 2P vertex: $\Gamma_{\text {anom }}(\omega)=\left(\Gamma(\omega+i \eta)-\Gamma^{*}(\omega-i \eta)\right) / 2$
Physical (measurable) quantities: $\Gamma_{\text {reg }}(\omega)=\left(\Gamma(\omega+i \eta)+\Gamma^{*}(\omega-i \eta)\right) / 2$
Effective particle interaction $\Lambda(0)$ gets complex! No divergence in the vertex functions!
Interpretation: resonant pair states
Im $U_{\text {eff }}>0$ - absorption to bound state
Im $U_{\text {eff }}<0$ - emission from bound state
QM analogy with tunneling ($E_{\text {kin }}<U$, real \rightarrow complex momentum $)$

Half-filled Hubbard model in the DMFT limit - simplified parquet (with symmetry breaking) and FLEX

Half-filled Hubbard model in the DMFT limit - simplified parquet (with symmetry breaking) and FLEX

Half-filled Hubbard model in the DMFT limit - simplified parquet (with symmetry breaking) and FLEX

Half-filled Hubbard model in the DMFT limit - simplified parquet (with symmetry breaking) and FLEX

Half-filled Hubbard model in the DMFT limit - simplified parquet (with symmetry breaking)

Half-filled Hubbard model in the DMFT limit - simplified parquet (with symmetry breaking)

FLEX vs. Parquet equations

FLEX

> Straightforward approach - analytic solution accessible (Bethe-Salpeter equation algebraic)
$>$ Good in $d>2$ and weak coupling only

- Fails in critical regions - singularity only in one channel
> Nonintegrable singularities may exist

Parquet equations

\checkmark (Nonlinear integral) equations for irreducible vertex functions (effective interaction) only approximate solutions
\checkmark Nonperturbative solutions - singularities and bifurcation points (new phases with 2P order parameters)
\checkmark Only integrable singularities - important in low dimensions
$d>d_{l} \quad$ broken symmetry - 1P anomalous vertex Σ - condensation of bound pairs
$d \leq d_{l} \quad$ breakdown of mirror symmetry $\Lambda(q) \neq \Lambda^{*}\left(q^{*}\right)-2 \mathrm{P}$ anomalous vertices - effective complex interaction $\Lambda(0)$ - resonant pair states

Conclusions

\checkmark Renormalized PT: diagrammatic (perturbative) input into a set of equations of motion
\checkmark One-particle (mass) renormalizations: Fermi-liquid regime with dominant fermionic excitations
\checkmark Two-particle (charge) renormalizations: Critical regions with singularities in the Bethe-Salpeter equations
\checkmark Two-particle self-consistence (parquet): low-dimensional dynamical systems with critical behavior (integrability of singularities not guaranteed)
\$ Extrapolation only from weak to intermediate coupling
\$ Not yet reliable (understood) in the strong-coupling regime -properties of the new 2 P phase, symmetry-breaking field, etc.
\# Conflict between Schwinger-Dyson \& Ward - both cannot be obeyed simultaneously

Perspectives

Model

$>$ Ward identity used for determining Σ from Λ (replacing Schwinger-Dyson)
> More detailed analysis of the new 2 P quantum phase
> Disordered systems - new phase related to Anderson localization

Realistic

$>$ FLEX generalized to multi-orbital Hubbard $-U, J$, various degrees of self-consistence

- Parquet - not yet mature for applications, still to be explored at the model level

