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Reminder: Car-Parrinello Method |

Generalization of first principles electronic structure methods
invented 1985 by R. Car and M. Parrinello

Goals

e study molecular dynamics on the basis of
first principles electronic structure methods

e make structural optimization efficient

e handle large basissets efficiently

Principle
e solve classical equations of motion for nuclei
OE(R;, [¥y))
OR;
Density Functional Theory instead of empirical force field

MR, = F = —

e avoid selfconsistency iterations in each step by introducing
a fictitious dynamics for the wave functions.
B OE(R;, [V¥,])

metn(r) = =g )




Classical molecular dynamics

1. Start from a “force field”: Total energy is given as function
of all atomic positions

E(Ri,...,RN)
2. Newton’s equation of motion
MR, = F. = —Vp E(R,,...,Ry)
3. Discretization: Verlet algorithm:

e Replace derivative by differential quotient

M'R'i(t + A) — 2R;(t) + Ri(t — A)

1 A2 — E
e Resolve for R;(t + A)
2
Ri(t+A) = 2R;(t) — Ri(t — A) + FiM

e Short-hand notation
2

R(+) = 2R(0) — R(~) + F(0)



Stability of the Verlet Algorithm |

e Stability limit: Timestep must be smaller than a third of the
smallest oscillation period.
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e Accuracy: frequencies are overestimated by 1% of the time
step is a tenths of an oscillation period.
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Born Oppenheimer approximation

e DFT requires the wave function to be in the instantaneous
electronic ground state.
— no wave function dynamics!
— wave functions adapt to the changing atomic positions
adiabatically
e Born-Oppenheimer surface

— consider E(R,, ..., R;) obtained from an independent
self consistent electronic structure calculation at each set
of atomic positions

e Simple-minded approach (expensive):
1. perform fully self-consistent calculation for an atomic
structure {Ry, ..., R,}

2. calculate force_:s .

F =—-VE(Ry,...,R,)
3. propagate atomic positions

R(+) = 2R(0) — R(-) + F4;
4. continue with step 1



The Car-Parrinello way |

¢ Replace the time dependent Schridinger equation by a clas-
sical equation of motion

., d A
Zhal\]:’n(t)) Hl\I'n(t»

g () = —H|(0)

Dynamics does not matter as long as the Born-Oppenheimer
principle holds

e Atoms and wave functions are treated on equal footing

. dE
M = B |9))
dR;
. dE(R,|W¥))
\I’n n — \Ilm Am n
e Fictitious Lagrangian
L = _ZMR2+an<\I’n|m\II|‘II> E(Ra\I’»

‘|‘ Z (<\Iln|‘;[lm> nm)An,m

E(Ra\:[l» — %fn(‘j[’nl — §V2|‘I’n>
+;/d3r/d3r,n|irlnif|) Byon(r)]

n(r) = ¥ £a%(r)Ta(r)



Motivation for the fictitious Lagrangian |

e dynamics and optimization is treated on equal footing

e the electronic ground state is obtained,
when a small friction is added.

e all tricks of the trade from classical molecular dynamics
can be used. (e.g. thermostats)

¢ No self-consistency iterations during dynamics; fast!

Requirements:

¢ the total energy must be a unique functional
of wave function coefficients and atomic positions

e excludes potential dependent basis sets
asin LMTO and LAPW

e time scales of the dynamics must be under control



Historical context |

Historical context of eectronic structure methods

scattered \Waves empirical
(KKR, APW) pseudopotentials

energy independent ab-initio
basisfunctions (LMTO,LAPW) | pseudopotentials

energy- and potential independent
augmented waves (PAW)

PAW joins all-electron and pseudopotential methods

PAW built around a consistent transfor mation theory
v) =TI%)
(A) = (U|TTAT|T) = (B|A|T)
T(Ryy--+5 Rn) = 14+ 3(|¢i) — |9i))(Pil
Properties of PAW
e ab-initio molecular dynamics

e full all-electron wave functions
(accurate hyperfine parameters)

e simple force calculations
e “fast as pseudopotentials and accurate as LAPW”
¢ pseudopotentials as approximation of PAW

e rigorous mathematical basis (exact when converged)



Philosophy |

e Focus on a total energy functional and not on potentials

e All approximations are included
in the total energy functional

e Forces are analytic derivatives of the total energy

e Provide a well-defined language
for quantum mechanical calculations

e Transformation theory provides link between
numerically convenient and physical wave functions

e Use plane wave expansions and one-center expansions
e Only smooth functions in plane wave expressions

e Only one-center integrals from the one-center expansions



PAW Transformation theory |

e start with auxilary wave functions ¥, (r)
e define a transformation operator 7,
Uy(r) = 7A"~I'n("°)7

that maps the auxiliary wave functions ¥, (r)
onto true wave functions ¥, ()

e express total energy by auxiliary wave functions
E = E[U,(r)] = E[T¥,(r)]

e Schrodinger-like equation for auxiliary functions
(THHT — T1Ten)¥n(r) = 0

e Expectation values

(A) = S(Wn|A|®,) = S(| TTAT| W)

Find a transformation 7 so,
that the auxiliary wave function are well behaved



PAW Transformation operator |

Define a transformation from auxiliary (pseudo) wave functions
| W) to the true all-electron wave functions |¥).

) = W) + ;(chz-) — |$:)) (Bi| ¥n)
e indexi = R, 4, m,

e all-electron partial waves |¢;) are constructed
from true atomic potential

e pseudo partial waves |q~5,;) from a pseudopotential with
¢i(F) = ¢i(7) for |¥— R| > r,
e projector functions |p;) are chosen such that
[©) = 3 |6:) (Bl ) for |7~ R| < r.

(& (Bild;) = di;)

Transformation operator 7~

T = 1+ 3X(¢:) — |6)(Bil
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PAW Projector functions

s-type projector functions
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Rationale (1) |

e choose 7 = 1 + =i Sk as one plus atomic terms

e define the operator 1 + Sg by the mapping for a complete
set of basis functions

e choose a basisset of atomic orbitals |¢r.¢,m,a)-
Solve the radial Schrodinger equation for the isolated, self-
consistent atom for a set of energies.

e for each | g ¢.m.«) choose an auxiliary basis function | g e.m.q ),
so that they are identical outside some augmentation region

¢ define the operator Sg by

|?R,E,m,a> — (1 + SR)lq;R,ELm,a>
= SR|¢R,£,m,a> — |¢R,£,m,a> - |¢R,£,m,a>

e decompose auxiliary wave function locally into smooth par-
tial waves

|‘~I’> — Z |$Ra£7maa>cRa£9maa

R m,a

and obtain the transformation as

|‘I’> =1 + Z (|¢R,Z,m,a> - |d;R,£,m,a>)cR,£,m,a

R4 m,a

with yet unknown coefficients



Rationale (11)

|\II> =1 —|_ Z (|¢Ra£’maa> _ |q~5R,£,m,a>)CR,£,m,a

R4 m,a

e if 7 is to be a linear operator, the coefficients cr ¢,m,o have
the form of a linear functional of the auxiliary wave functi-

on, i.e.
Crema = (PRmalP)
thus
¥y =14+ ¥ (IPrema) — |PREma)) (PReEm.a|T)

Lym,a

e projector functions (Ppr ¢,m.«| Must obey

| ‘~I,> — Z | $R’£’m’a> <ﬁRae’maa | \i>

Rt m,a

= Vi : 9:) = X |b;)(Bil i)

J
= (Djld:) = 0i;



PAW Expectation values |

Expectation value for a “sufficiently local” one-particle operator
(A) = S(Ua|AE,) + > D; j{¢i|Alo;) — > D; (il Al ;)
+oS(wElAE) |
with a one-center density matrix
Dij = T(B; %) (Enli)

and the core states |W¢)!

Similarity to pseudopotentials:
(A) = S(Tn| A )
A=A+ 223 15i) ((pil Alp;) — (bil Alb;))(B;]
Pseudo-operator has the form of a separable pseudopotential.

= PAW providesaruleto obtain expectation values
In a pseudopotential calculation.



PAW Expectation values in detail |

¥) = %) +2(16) - 16) (5l ¥)
¥) = %) + @) — B

(L|A|D) | +(P|A[T) | —(F|A[E)

AT = g1 418) | 1wt Ay | — (w14l

—(U'A[P) | —(PA[T') | (P AT

(P|A|®) = (P|A|P) 4 (T'|A|P') — (T'A[P)
and a remainder, which is ignored
+ (\i — \§1|A|\If1 — \il) + (P! — @1|A|\i — \il)

Remainder vanishes if & = ¥, inside the augmentation region



PAW Electron Density |

Electron density n(r) turns into a plane wave part n(r) and
two one-center components n'(r) and ' (r)

n(r) = a(r) +n'(r) —
— %fn\i;:(r)@n(r) + n€
+ 7,2; @; (r)D;,j¢p;(r) + n°

Dij = S(Bil¥n) f(¥|5;)

Electron density divided (like the wave function) into
e plane wave part

e two expansions per atom in radial functions
times spherical harmonics



PAW Total energy |

Total energy divided into plane wave integral
and two one-center expansions per atom

E([¥,),R;) = E+ E' —
Plane wave part:
- - 1 -
E = 3 fa(¥nl — 5V2|\1:,,,>

b o far [arePOLE n<r:)_<i<7) + 7))

+ /d?’rﬁ(r)emc(r, [n]) + /d3'm—)(r)ﬁ(r)
One-center expansion of plane wave part
- 1_,, -~
= Y Dij{¢il — S V7I¢;)

b1 fatr far DS n<|>>_<n7) +A(r))

+ [ drit(r)es(r [@Y]) + [ dro(r)il(r)
One-center expansion of true density
1
E' = %Di,j<¢i| — §V2|¢j>
(n'(r) + Z(r))(n'(r') + Z(r))

+ %/d‘g?’/d?’r'
+ /d?’rnl(r)ewc(r, ['n,l])

| — 7]

Everything else (Hamiltonian, Forces) follows
from thistotal energy functional



PAW Approximations |

The following approximations have been made
e frozen core approximation (can be overcome)
e truncate plane wave expansion (basisset)

e truncate partial wave expansion (augmentation)

Convergence:

e plane wave convergence comparable to
ultrasoft pseudopotentials (£ pw =30 Ry)

e 1-2 partial waves per site and angular momentum sufficient

Charge and energy transferability problems
of the pseudopotential approach are under control
(High-spin atoms)



Implement LDA+U |

Let us define a functional F
F = (¥ - X (x]) kleﬁk>wk,l(ﬁl| (|®) —gilfmcj)

Minimize functional with recpect to c¢;

) = Z|>~<z'>(%(iilﬁkﬁvk,l(ﬁl|>2j>)z-_,j1(k2l(>~cj|ﬁk>wk,l<ﬁl|‘i’>)
27.7 9 9
Transform from auxiliary to the true wave functions

1T) = |x:)(P;|P)
P = ;m(ﬁﬂ

Q= Z(kzl(f(dﬁk)wk,l (BilX5))i; %(fcﬂﬁk)wk,l
J 3
Implement LDA+U by adding a total energy contribution
AE = QX |xi)(PilP)]



PAW options (CP-PAW Code)|

ab-initio molecular dynamics (Car-Parrinello)
all-electron wave functions and densities

electric field gradients(EFG), hyperfine parameters
gradient corrected density functionals (various forms)
spin unrestricted, non-collinear spin

isolated molecules and extended crystals

QM-MM coupling

activation energies

crystal orbital populations (local chemical bond analysis)

general k-points

e variable occupations and finite electron-temperature

e variable cell shape (Parrinello-Rahman)

LDA+U*

GW approximation*

object oriented program architecture (Fortran 90)
efficiently parallelized (MPI)

portable (Intel-Linux, IBM-AIX, Dec-Alpha-Linux)

*) Strasbourg version



Implementations of PAW|

e CP-PAW,; P. Blochl, Clausthal University of Technology
e PWPAW; A. Tackett, N. Holzwarth, Wake Forest U.

e M. Valiev, J.H. Weare. UC San Diego

e VASP Code; G. Kresse et al. Vienna University

e EStCoMPP; S. Bligel, Osnabrick University

e F. Mauri, University Pierre and Marie Curie, Paris

e DFT++; S. Ismail-Beigi, T. Arias, UC Berkeley, Cornell U.



Conclusion

e all-electron method for ab-initio molecular dynamics
e rigorous theoretical basis
e accurate, efficient, and simple

e extends and joins all-electron methods
with the pseudopotential approach

— Linear Methods as very “special case” of PAW
— Pseudopotentials as approximation of PAW

Projector Augmented Wave Method
P. Bochl, Phys. Rev. B 50, 17953 (1994)



