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| (2) Monopoles are gravi-
tationally bound to the galaxy, and account for

most of the halo mass. This assumption unambig-
uously implies velocities near 107 3c and can be
stretched (with difficulty, especially for magnetic
field survival) to Cabrera’s flux limit.

Mayflower Mine, Utah



D.J.Ficenec, S.P. Ahlen, A.A. Martin, J.A.
Musser, and G. Tarle, Phys. Rev. D 36, 311

Fig. 2 are two models which have been used in the past to
predict the scintillation response to very-low-energy parti-
cles. A sharp response threshold occurs in the model of
Ahlen-Tarlé!! at a velocity of 6x10 4. The model

The Monopole dL/dx “cutoff” dispute

(1987). e developed by Ritson? to estimate the response of scintil-
| o T T T lators to monopoles has been modified by us to be ap-
o T propriate for protons. It is apparent that both of these
- s ] models were overly conservative in their prediction, of
-0 —{ scintillation at low velocities. The best fit for the data is
R 1 obtained if we modify the Lindhard stopping with an adia-
- L ] batic correction factor of the form Fac(8)=1
Tt e 1 —exp(—B%/B4), where Bo=7x10 "% Fac, which indi-
3ol O= 1 cates the reduced efficiency for electronic excitation at low
- "t 10 { velocities, is shown in Fig. 2. The absence of a sharp
;’_—’ = [ 1 threshold in Fc is due either to level mixing effects or to
= T L 1 high-velocity tails in the electron momenta distributions. /I/
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FIG. 2. Light yield vs proton velocity for data taken at 2 and

24 keV. See text for explanation of the curves.

For LXe... issue is the struck xenon
atom and the response to that...

R

FIG. 14. Schematic correlation diagram showing pro-
posed transitions accounting for exponential energy de-
pendence of electron-ejection cross sections on electron
energy (see text),



LUX LXe Charge yield v. kinematic energy

(Brown — Rick G, J. Verbus... UCSB — Carmen Carmona, now Penn St.)
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Xenon

l.1.0leinik and N.M. Kuznetsov,
Khimicheskaya Fizika 12, 1339 (1993)
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Below: the actual measured uv emission cross
section in Xe+Xe collisions... using a gas jet as
source of Xe atoms. The lowest curve has the
resolutions unfolded. The threshold for
ionization in these units is 12.1 eV center-of-

mass energy, or, 24.2 eV beam energy. From
U.Buck, L.Mattera, D.Pust, and D. Haaks, Chem.

U.Buck et al. pps (et 62, 562 (1979)
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Fig. 2. Emisston cross seciion for Xe + Xe collisionsasa

funciion of the cenier-of-mass energy. The solid lines cor-
respond to cross sections given in eq. (3), convoluted with
the tareet motion and primary beam velocity distribution.
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Manhattan Project Low Background
Counting Facility — Pajarito Canyon, away
from radioactivity, noisy power, etc.
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Exploded view of the complete detector assem-
bly with the upper layer raised.




Back(grounds) to the Future

"Manhattan Projected Low Backgrodnd Counting
Facility — Pajarito Canyon, away from
radioactivity, noisy power, etc.

Long-lived radioactive chains

The 3 emanations (Radon,
Thoron, Actinon)
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" LOW TEMPERATURE DETECTORS FOR
NEUTRINO EXPERIMENTS AND DARK MATTER SEARCHES

B. Cabrera
Physics Department, Stanford University, Stanford, California 94305
D. Caldwell
Physics Department, UC Santa Barbara, Santa Barbara, California

and B. Sadoulet
Physics Department, UC Berkeley, Berkeley, California 94720

Abstract

‘We summarize the research efforts to build a new class of
particle detectors based on phonon propagation in insulating
crystals, such as silicon, and quasiparticle propagation in
superconductors. Such detectors in the 1 kilogram mass range
would be used for neutrino experiments, neutrinoless double beta
decay experiments and dark matter searches.

Introduction

During the last decade, innovative experiments have addressed
some of the most interesting questions in particle physics and at the
interface between particle physics and astrophysics. These include
searches for a finite neutrino mass through double beta decay,
neutrino oscillations and tritium end point experiments, as well as

earches for el y particle candidates for dark matter such as
magnetic monopoles, massive neutrinos, photinos and axions.

‘We now believe that substantially more sensitive searches can
be mounted which utilize the properties of superconductors and
insulating crystals at temperatures below 1 K. The diverse
motivations for developing these detectors have come from ideas

- for improved neutrino experiments (Stanford group), form ideas

for dark matter searches for candidates which are weakly interacting
massive particles (LBL/UC Berkeley group), and from ideas for the
next generation of double beta decay experiments (UC Santa
Barbara group). Our three groups have started the development of
such detectors in the kilogram mass range. Their properties should
include thresholds as low as a hundred electron volts, resolution at
least an order of magnitude better than semiconductor detectors and
very low radioactive backgrounds. In this paper, we summarize
these research efforts.

1 NEUTRINO PHYSICS

Among these new areas of research would be low-energy
neutrino detection by means of coherent elastic scattering from
nuclei via the neutral weak current. This process, as yet undetected
but theoretically firmly based, gives the largest possible interaction
rates for a neutrino detector, but results in extremely small energy
transfers to the detector (~1-10 keV) [1]. Such energy transfers
should be easily detected only by the cryogenic schemes described
in Sec 4, such as the silicon crystal acoustic detectors (SiCADs)
[2]. Neutrino-electron scattering could also be detected in such
devices. The combination of these two processes makes
self-normalizing neutrino oscillation experiments possible and
provides sensitivity to smaller neutrino masses.

SiCADs would be sensitive to the purely neutral-current
process of coherent elastic scattering from nuclei, as well as the
mixed charged-plus-neutral-current process of neutrino scattering
from electrons. In the Standard Model, the neutral-current cross
section is independent of the neutrino's leptonic flavor, while the
charged current cross section is dependent upon the neutrino flavor.
The two processes can be experimentally distinguished by their

. very different energy depositions in the detector. For a reactor

neutrino energy spectrum, the coherent scattering from nuclei *
deposits the nuclear recoil energy in the SiCAD, at most ~8 keV at

the highest rector neutrino energies. The differential cross sections
as a function of recoil energy are shown in Fig 1 for a reactor
neutrino spectrum. Scattering from the much lighter electrons
results in transfer of an appreciable fraction of the neutrino energy,
0.5-10 MeV. Due to the kinematics, a monochromatic neutrino
spectrum gives rise to roughly a step-function energy deposition
spectrum for both processes, extending from zero to the maximum
energy transfers mentioned above.

1.1 Reactor Neutrinos

Nuclear reactors are a source of electron antineutrinos with
energies from 0.25 to 10 MeV, and fluxes as high as ~1013 cm?
s71 at the detector. Coherent scattering events with recoil energy >1
keV occur in silicon at a rate of about 100 kg™ day™, several orders
of magnitude greater than rates in present neutrino detectors [1,3].
The coherent scattering process is important in the dynamics of
energy transfer in supernovae, but it has never been observed in the
lab. A SiCAD with low-energy background count rate equal to that
currently achieved in above-ground double-beta decay experiments
using Ge semiconductor diode detectors, would permit a
measurement of the coherent scattering with a signal to background
ratio of exceeding unity (see Ref 3 for a more detailed consideration
of backgrounds in a reactor neutrino experiment).

Scattering of reactor neutrinos from electrons in silicon occurs
at a rate of about 4 kg! day™l. Detection of these recoil electrons
would permit a small, movable detector to be sensitive to neutrino
oscillations. The dominant charged current scattering process is
allowed only for electron-type neutrinos. Oscillations would
therefore result in a reduced rate of neutrino-electron scattering
events, and also a change in the energy dependence of the upper
part of the recoil energy spectrum (see Fig 1). The low neutrino
energy threshold of the acoustic detector would permit sensitivity to
lower values of Am? than in current experiments, perhaps as low
as 104 (eV/cH)2. The flavor-independent coherent nuclear elastic
scattering  process simultaneously provides an
oscillation-independent normalization of the total incident
antineutrino flux.
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Fig 1. Differential cross section versus recoil energy for elastic

scattering of neutrinos off of Si nuclei and electrons for
reactor flux and spectrum.
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the interaction with Ge (or, for the upper boundary, with the
Earth) using data from the present experiment. The larger
shaded region is excluded if the escape velocity is infinite; the

smaller region, if the escape velocity is 575 km/s. All limits are Ve Cto r CO U p | | ng
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tion as a function of mass for a Dirac neutrino. The short line
with the label cosmion shows the expected cross section for Later
cosmions with mass between 4 and 9 GeV/c2.



Tangent: Simple Majorana Neutrino WIMP
(old, 2006, CDMS-II)
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Tangent - More recent plot (2017)
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Xenon — best for
generalized EFT
couplings, except
proton-specific
(PICO)

Compare... Argon

® 9 ‘stable’ isotopes

® 2 with unpaired neutron

® \Would love to deplete
136Xe
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God made the bulk; the devil
sneaked the surfaces in

CDMS-II (2009) - Soudan
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Sanford Underground Research Facility

Davis Cavern 1480 m
4200 mwe
LUX Water Tank
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Sneaky demons on the surfaces
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Outer Detectors Tag Background




LZ Titanium Cryostat
super low background (Pawel Majewski)

e Fabrication complete at
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Cryostat is at the lab in South Dakotal!




LZ Low Radon Clean Room at
Sanford Lab in South Dak

Low radon, class 100-1000 cleanroom N
ready at SURF for first parts ;

Radon reduction system installed

Underground improvements started, tc
finish by May




LZ titanium cryostat in that clean




LZ Background table... t1:Ar e e s oo s

U early U late Th early Th late Co60 K40

(mBgkg) (mBa/kg) (mBg/kg) (mBgkg) (mBakg) (mBakg) "Y' ER(CtS) NR(cts)

Background Source Mass (kg)

Detector COmponents

TPC PTFE 184 0:02 0 02 0. 03 0. 03 0. 00 0 12 22. 5 0. 04 0:006

Grid Wires and Rings 96 7.39 2.76 2.49 2.28 10.0 28.0 16.3 3.64 0.005
'§ Field Shaping Rings 92 5.49 1.14 0.72 0.65 0.00 2.00 41.0 0.65 0.011
3 TPC Sensors and Thermometers 5 218 582 2.29 1.88 1.32 61.0 6.75 0.06 0.001
5 PMT Conduits, HX and Tubing 215 3.18 0.46 0.46 0.56 1.23 1.39 5.87 0.03 0.001
§ HV Condulh and Cables
§ Surface Contamlnatlon
i} Dust (intrinsic activity, 500 ng/cm2) 0.2 0.05
Plate-out 50 nBg/cm2 . - 0.05
T T Surface devils — dust, radon daughters 4.0 .
lon-misreconstruction (50 nBa/cm2) -
210Pb (in bulk PTFE, 10 mBg/kg -
Laboratory and Cosmogenics 5
Laboratory Rock Walls 4.6
Muon Induced Neutrons - .
Cosmogenic Activation 0.2 -
g 222Rn (1.81 ,Bq/kg) - ‘ 678 3
e ,fggnmgggmg Surface devils — getters, cables, plumbing 2is :
X
g 136Xe 2vBp 67 0
y Solar neutrinos (pp+7Be+13N) . ; 255 0
= Difuse supemova neutrinos Surface devils — earth’s atmosphere 0 0.05
Atmospheric neutrinos 0

1192 103

Total (with 99.5% ER discrimination, 50% NR efficiency) 5.96 0.51
6.48




Rate [counts/kg/day/keV]

Plots of the expected LZ background

from screening measurements, physics calcs, simulations

Nuclear recoils Electron recoils
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Plot of the SCDMS background
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ER Calibration: LUX CH,T Injection
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SI WIMP-nucleon cross section [cm?]
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SD WIMP-neutron cross section [cm?]

107
107
107"
107
107%
107
10
107+

107*
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5.6 tonnes — start early 2020
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The LXe future (other than expansion)

® Dope with Helium or Neon

® Dope with CH,

® Study/improve S2-only

® Further Suppress Radon etc
Would love to deplete 13°Xe
(cost requires Ovpp
cooperation, or, a detection)



LOW energy/mass — Liquid nelium
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Energy Spectrum of the Excitations in Liquid Helium*
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Image Plane

A wave function previously used to represent an excitation (phonon or roton) in liquid helium, inserted
M k Pl into a variational principle for the energy, gave an energy-momentum curve having the qualitative shape
as ane suggested by Landau; but the value computed for the minimum energy A of a roton was 19.1°K, while
thermodynamic data require A=9.6°K. A new wave function is proposed here. The new value computed for

NvI A is 11.5°K. Qualitatively, the wave function suggests that the roton is a kind of quantum-mechanical

y on analog of a microscopic vortex ring, of diameter about equal to the atomic spacing. A forward motion of

--------------- single atoms through the center of the ring is accompanied by a dipole distribution of returning flow far

. from the ring.

SO| |d N 2 In the computation both the two-atom and three-atom correlation functions appear. The former is known
from x-rays, while for the latter the Kirkwood approximation of a product of three two-atom correlation
functions is used. A method is developed to estimate and correct for most of the error caused by this

Therm a| Sh ieIdS approximation, so that the residual uncertainty due to this source is negligible.
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