Interpreting limits from direct detection experiments

Martin Hoferichter

Institute for Nuclear Theory University of Washington

INSTITUTE for NUCLEAR THEORY

KITP Program on

The Small-Scale Structure of Cold(?) Dark Matter

Santa Barbara, June 4, 2018

PLB 746 (2015) 410, PRD 94 (2016) 063505, PRL 119 (2017) 181803 with P. Klos, J. Menéndez, A. Schwenk

PRD 97 (2018) 103532 with A. Fieguth, P. Klos, J. Menéndez, A. Schwenk, C. Weinheimer

Direct detection of dark matter: scales

BSM scale Λ_{BSM} : \mathcal{L}_{BSM}

Effective Operators: $\mathcal{L}_{SM} + \sum_{i,k} \frac{1}{\Lambda_{BSM}^i} \mathcal{O}_{i,k}$

Integrate out EW physics

● Hadronic scale: nucleons and pions → effective interaction Hamiltonian H_I

3 Nuclear scale: $\langle \mathcal{N} | H_l | \mathcal{N} \rangle$

 \hookrightarrow nuclear wave function

Direct detection of dark matter: schematics

• Schematically:

$$\frac{\mathrm{d}\sigma_{\chi N}}{\mathrm{d}q^2} = \frac{\sigma_{\chi N}^{\mathsf{SI}}}{4\mu_N^2 \mathbf{v}^2} |\mathcal{F}(q^2)|^2 \qquad \mu_N = \frac{m_N m_\chi}{m_N + m_\chi}$$

- Rate after convolution with halo velocity distribution (not covered here)
- Information about BSM physics encoded in $\sigma_{\chi N}^{SI}$

- Traditionally, consider spin-independent (SI) and spin-dependent (SD) limits
- SI scattering:
 - Coherence: $\mathcal{F}(0) = A$
 - Underlying operator: $\bar{\chi}\chi\bar{q}q, \,\bar{\chi}\gamma^{\mu}\chi\bar{q}\gamma_{\mu}q, \,\ldots$
- SD scattering:
 - Response dominated by unpaired nucleons: $\mathcal{F}(0)\propto \langle \bm{S}_{p/n}\rangle$
 - Underlying operator: $\bar{\chi}\gamma^{\mu}\gamma_5\chi\bar{q}\gamma_{\mu}\gamma_5q$, ...
- This talk: take a look at the assumptions that go into these scenarios

From quarks and gluons to nucleons

Applications: q-dependence, σ_p^{SD} from Xe, Higgs Portal dark matter

Effective WIMP Lagrangian

• Starting point: take a spin-1/2 WIMP $\hookrightarrow \text{effective WIMP Lagrangian}_{Goodman et al. 2010}$ $\mathcal{L}_{\chi} = \frac{1}{\Lambda^3} \sum_{q} \left[C_q^{SS} \bar{\chi} \chi \, m_q \bar{q} q + C_q^{PS} \bar{\chi} i \gamma_5 \chi \, m_q \bar{q} q + C_q^{SP} \bar{\chi} \chi \, m_q \bar{q} i \gamma_5 q + C_q^{PP} \bar{\chi} i \gamma_5 \chi \, m_q \bar{q} i \gamma_5 q \right]$ $+ \frac{1}{\Lambda^2} \sum_{q} \left[C_q^{VV} \bar{\chi} \gamma^{\mu} \chi \, \bar{q} \gamma_{\mu} q + C_q^{AV} \bar{\chi} \gamma^{\mu} \gamma_5 \chi \, \bar{q} \gamma_{\mu} q + C_q^{VA} \bar{\chi} \gamma^{\mu} \chi \, \bar{q} \gamma_{\mu} \gamma_5 q + C_q^{AA} \bar{\chi} \gamma^{\mu} \gamma_5 \chi \, \bar{q} \gamma_{\mu} \gamma_5 q \right]$

$$+ \frac{1}{\Lambda^3} \Big[\frac{\mathcal{C}_g^S}{\chi} \bar{\chi} \chi \, \alpha_s \mathcal{G}_{\mu\nu}^{a} \mathcal{G}_{a}^{\mu\nu} \Big]$$

- Nucleon matrix elements
 - $\langle N(p)|m_q \bar{q}q|N(p)\rangle = m_N f_q^N \qquad \langle N(p)|\bar{q}\gamma^{\mu}\gamma_5 q|N(p)\rangle = \Delta q^N \langle N(p)|\gamma^{\mu}\gamma_5|N(p)\rangle \qquad \dots$
- WIMP-nucleon cross section σ_{χN} depends on BSM Wilson coefficients and nucleon matrix elements

Matching to nonrelativistic EFT

• Operator basis for WIMP and nucleon fields Fan et al. 2010, Fitzpatrick et al. 2012

- $\begin{array}{ccc} \mathcal{O}_1 = \mathbb{1} & \mathcal{O}_2 = (\mathbf{v}^{\perp})^2 & \mathcal{O}_3 = i\mathbf{S}_N \cdot (\mathbf{q} \times \mathbf{v}^{\perp}) & \mathcal{O}_4 = \mathbf{S}_{\chi} \cdot \mathbf{S}_N \\ \mathcal{O}_5 = i\mathbf{S}_{\chi} \cdot (\mathbf{q} \times \mathbf{v}^{\perp}) & \mathcal{O}_6 = \mathbf{S}_{\chi} \cdot \mathbf{q} \mathbf{S}_N \cdot \mathbf{q} & \mathcal{O}_7 = \mathbf{S}_N \cdot \mathbf{v}^{\perp} & \mathcal{O}_8 = \mathbf{S}_{\chi} \cdot \mathbf{v}^{\perp} \\ \mathcal{O}_9 = i\mathbf{S}_{\chi} \cdot (\mathbf{S}_N \times \mathbf{q}) & \mathcal{O}_{10} = i\mathbf{S}_N \cdot \mathbf{q} & \mathcal{O}_{11} = i\mathbf{S}_{\chi} \cdot \mathbf{q} & \dots \end{array}$
- Matching to relativistic amplitudes

$$\begin{split} \mathcal{M}_{1,\mathrm{NR}}^{SS} &= \mathcal{O}_{1} f_{N}(t) \qquad \mathcal{M}_{1,\mathrm{NR}}^{SP} = \mathcal{O}_{10} g_{5}^{N}(t) \qquad \mathcal{M}_{1,\mathrm{NR}}^{PP} = \frac{1}{m_{\chi}} \mathcal{O}_{6} h_{5}^{N}(t) \\ \mathcal{M}_{1,\mathrm{NR}}^{VV} &= \mathcal{O}_{1} \left(f_{1}^{V,N}(t) + \frac{t}{4m_{\chi}^{0}} f_{2}^{V,N}(t) \right) + \frac{1}{m_{N}} \mathcal{O}_{3} t_{2}^{V,N}(t) + \frac{1}{m_{N}m_{\chi}} \left(t\mathcal{O}_{4} + \mathcal{O}_{6} \right) f_{2}^{V,N}(t) \\ \mathcal{M}_{1,\mathrm{NR}}^{AV} &= 2\mathcal{O}_{8} t_{1}^{V,N}(t) + \frac{2}{m_{\chi}} \mathcal{O}_{9} \left(f_{1}^{V,N}(t) + f_{2}^{V,N}(t) \right) \\ \mathcal{M}_{1,\mathrm{NR}}^{AA} &= -4\mathcal{O}_{4} g_{A}^{N}(t) + \frac{1}{m_{\chi}^{0}} \mathcal{O}_{6} g_{P}^{N}(t) \qquad \mathcal{M}_{1,\mathrm{NR}}^{VA} &= \left\{ -2\mathcal{O}_{7} + \frac{2}{m_{\chi}} \mathcal{O}_{9} \right\} h_{A}^{N}(t) \end{split}$$

Observations

- SI: O₁, SD: combination of O₄ and O₆
- Not all the \mathcal{O}_i equally important, QCD implies relations among them
- \hookrightarrow can one analyze QCD constraints more systematically?

Chiral symmetry of QCD

$$\mathcal{L}_{ ext{QCD}} = ar{q}_L i ar{p} q_L + ar{q}_R i ar{p} q_R - ar{q}_L \mathcal{M} q_R - ar{q}_R \mathcal{M} q_L - rac{1}{4} G^a_{\mu
u} G^{\mu
u}_a$$

 \hookrightarrow invariant under L, R rotations for $\mathcal{M} \to 0$

- Pions are (pseudo) Goldstone Bosons of the spontaneous breaking of chiral symmetry
- Expansion in momenta p/Λ_{χ} and quark masses $m_q \sim p^2$
 - $\hookrightarrow \textbf{scale separation}$

Chiral symmetry of QCD

$$\mathcal{L}_{ ext{QCD}} = ar{q}_L i ar{ extsf{D}} q_L + ar{q}_R i ar{ extsf{D}} q_R - ar{q}_L \mathcal{M} q_R - ar{q}_R \mathcal{M} q_L - rac{1}{4} G_{\mu
u}^a G_a^{\mu
u}$$

 \hookrightarrow invariant under L, R rotations for $\mathcal{M} \to 0$

- Pions are (pseudo) Goldstone Bosons of the spontaneous breaking of chiral symmetry
- Expansion in momenta p/Λ_{χ} and quark masses $m_q \sim p^2$
 - \hookrightarrow scale separation
- For WIMPs:
 - Typical momentum transfer $q \lesssim 200 \, {
 m MeV} = {\cal O}(M_\pi)$
 - WIMPs can couple to pions (pion-exchange currents)
 - EFT power counting predicts hierarchy

From nucleons to nuclei

- Hadronic scale: nucleons and pions
 → effective interaction Hamiltonian H_l
- **O** Nuclear scale: $\langle \mathcal{N} | \mathcal{H}_l | \mathcal{N} \rangle$
 - \hookrightarrow nuclear wave function

Spectra and shell-model calculation

- Shell-model diagonalization for Xe isotopes with ¹⁰⁰Sn core
- Uncertainty estimates: currently phenomenological shell-model interaction
 - \hookrightarrow chiral-EFT-based interactions in the future?
 - \hookrightarrow ab-initio calculations for light nuclei?

Full set of coherent contributions

Parameterize cross section as

$$\begin{aligned} \frac{\mathrm{d}\sigma_{X,N}^{\mathrm{SI}}}{\mathrm{d}\mathbf{q}^{2}} &= \frac{1}{4\pi\mathbf{v}^{2}} \left| \left(c_{+}^{M} - \frac{\mathbf{q}^{2}}{m_{N}^{2}} \dot{c}_{+}^{M} \right) \mathcal{F}_{+}^{M}(\mathbf{q}^{2}) + \left(c_{-}^{M} - \frac{\mathbf{q}^{2}}{m_{N}^{2}} \dot{c}_{-}^{M} \right) \mathcal{F}_{-}^{M}(\mathbf{q}^{2}) \right. \\ &+ c_{\pi} \mathcal{F}_{\pi}(\mathbf{q}^{2}) + c_{\pi}^{\theta} \mathcal{F}_{\pi}^{\theta}(\mathbf{q}^{2}) + \frac{\mathbf{q}^{2}}{2m_{N}^{2}} \left[c_{+}^{\Phi^{\prime\prime\prime}} \mathcal{F}_{+}^{\Phi^{\prime\prime\prime}}(\mathbf{q}^{2}) + c_{-}^{\Phi^{\prime\prime\prime}} \mathcal{F}_{-}^{\Phi^{\prime\prime\prime}}(\mathbf{q}^{2}) \right] \right|^{2} \end{aligned}$$

• Single-nucleon cross section: $\sigma_{\chi N}^{\rm SI} = \mu_N^2 |c_+^M|^2 / \pi$

 $\hookrightarrow \text{reproduces SI search}$

- SI and SD single-nucleon cross sections
 - correspond to particular slices through the WIMP parameter space
 - are not truly "single-nucleon" quantities (but see SD two-body currents below)
 - provide constraints on a combination of BSM Wilson coefficients and nucleon matrix elements
- Chiral EFT predicts
 - a hierarchy of the subleading corrections
 - new class thereof (pion-exchange currents) that emerge as the most relevant coherent ones
- Of course, all of this becomes much more relevant once there is a signal!

Discriminating different response functions

- White region accessible to XENON-type experiment
- Can one tell these curves apart in a realistic experimental setting?
- Consider XENON1T-like, XENONnT-like, DARWIN-like settings

Discriminating different response functions

- DARWIN-like setting, $m_{\chi} = 100 \,\text{GeV}$
- q-dependent responses more easily distinguishable
- If interaction not much weaker than current limits, DARWIN could discriminate most responses from standard SI structure factor

Two-body currents: SD case

Nuclear structure factors for

spin-dependent interactions Klos et al. 2013

- Clos et al. 2013
 - Based on chiral EFT currents (1b+2b)
 - Shell model
 - $u = q^2 b^2 / 2$ related to momentum transfer
- 2b currents absorbed into redefinition of 1b current

M. Hoferichter (Institute for Nuclear Theory)

Two-body currents: SD case

Xenon becomes competitive for σ_p thanks to two-body currents!

Higgs Portal dark matter

- Higgs Portal: WIMP interacts with SM via the Higgs
 - Scalar: H[†] H S²
 - Vector: $H^{\dagger}HV_{\mu}V^{\mu}$
 - Fermion: H[†]H[†]f
- If m_h > 2m_χ, should happen at the LHC
 → limits on invisible Higgs decays

Higgs Portal dark matter

- Higgs Portal: WIMP interacts with SM via the Higgs
 - Scalar: H[†] H S²
 - Vector: $H^{\dagger}HV_{\mu}V^{\mu}$
 - Fermion: H[†]H[†]ff
- If m_h > 2m_χ, should happen at the LHC
 ⇒ limits on invisible Higgs decays

• Translation requires input for Higgs-nucleon coupling

$$f_{\mathsf{N}} = \sum_{q=u,d,s,c,b,t} f_{q}^{\mathsf{N}} = \frac{2}{9} + \frac{7}{9} \sum_{q=u,d,s} f_{q}^{\mathsf{N}} + \mathcal{O}(\alpha_{s}) \qquad \qquad m_{\mathsf{N}} f_{q}^{\mathsf{N}} = \langle \mathsf{N} | m_{q} \bar{q} q | \mathsf{N} \rangle$$

Issues: input for f_N = 0.260...0.629 outdated, two-body currents missing

Higgs-nucleon coupling

One-body contribution

$$f_N^{1b} = 0.307(9)_{ud}(15)_s(5)_{pert} = 0.307(18)$$

- Limits on WIMP-nucleon cross section subsume two-body effects
 - \hookrightarrow have to be included for meaningful comparison

Two-body contribution

- Need s and θ^{μ}_{μ} currents
- Treatment of θ^{μ}_{μ} tricky: several ill-defined terms combine to $\langle \Psi | T + V_{NN} | \Psi \rangle = E_{b}$
- A cancellation makes the final result anomalously small

$$f_{N}^{2b} = \left[-3.2(0.2)_{A}(2.1)_{ChEFT} + 5.0(0.4)_{A} \right] \times 10^{-3} = 1.8(2.1) \times 10^{-3}$$

Improved limits for Higgs Portal dark matter

Improved limits for Higgs Portal dark matter

