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Determining the local density by the Kz force

•basically following the idea of Oort in the 
1930s 

•Take a sample of stars in a towards the 
Galactic Poles up to a certain distance  
from the Galactic Plane. 

•subset of red clump stars gives good 
distances. 

•Change in kinematics with vertical 
distances gives total vertical force (in 
simplest approximation proportional to 
surface density) 

•number counts of stars gives baryonic 
mass distribution
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Fig. 4. Vertical density distribution of Red Clump stars towards
the South Galactic Pole (black symbols: 200 pc binning, red
symbols 50 pc binning.)

within the 2MASS sample, as a function of Kc, or equivalently as
a function of the height |z| (Figure 4). Error bars are determined
from the three counts by using the statistical hypergeometric law.

Two sources of known bias are present but remain small
in this analysis. The first one is the degree of homogeneity of
the sample selections. Due to high S/N (K < 10), the accuracy
on the various measured or used parameters remains high inde-
pendently of the z distance. For instance the median accuracy
in J � K colours (within 0.5-0.8) is 0.03 from K=6 to K=10.
Similarly, the mean S/N of the RAVE spectra used to determine
the gravity remains high for RC stars at 2 kpc (K ⇠10): the mean
S/N is 51 (r.m.s 16). This implies that our selections and cuts
remain homogeneous independently of the distance z.

A second e↵ect is the Malmquist bias: it depends on �M,
the dispersion of luminosity of the stellar candles, and on the
variation of the density along the line of sight. In the case of a
vertical exponential density law, ⌫ ⇠ exp(�z/h), with h = 700 pc
and �M=0.2, at z=1000 pc the bias on the estimated distances is
+2% using a cone for the counts and is �0.7% using a cylinder.
At z=2000 pc the bias is +3% using a cone, and +1.2% using a
cylinder. For the dynamical determination of the total mass per-
pendicular to the Galactic plane, we are interested in the density
gradients, and so just in the variation of this bias: in this study, it
is less than 1%. We note that with other tracers with an absolute
magnitude dispersion of 0.5, the bias from star counts would be
significantly larger: for cone counts, it is of the order of 5% at
z=h and 11% at z=3 h. This implies a systematic error of 6%
on the resulting determination of the Galactic local surface mass
density.

2.3. The RC star kinematics

We need to determine the vertical velocities of RC stars that
combined to counts towards the Galactic Poles will constrain
the vertical potential at the solar position.

Radial velocities, proper motions and distances of RAVE red
clump stars are converted in (u,v,w) velocities relative to the Sun,
and in Galactic velocities, VR � V�,R and Vz � V�,z, uncorrected
for the solar motion, assuming R0=8.5 kpc.

The errors on the velocities are obtained from individual er-
rors on proper motions and radial velocity, adopting a mean un-
certainty on distances of 10% (Figure 5). The median error on
the Vz component is 2.4 km.s�1.

Fig. 5. Distribution of errors on the vertical Galactic velocity
for stars with |z| <2000 pc (continuous black line). For stars with
1300 < |z| <2000 pc (dotted red line).

Fig. 6. Vertical (black symbols) and radial (red symbols) veloc-
ity dispersions: �Vz , �VR . Mean vertical velocity Vz (black line).

The mean vertical velocity is constant with z (Figure 6). The
velocity dispersions �R and �z are measured by applying a 3.5-
sigma-clipping to the VR, Vz Galactic velocity components. The
uncertainties on the dispersions are �/

p
n⇤ � 1. The vertical ve-

locity dispersion �Vz rises up to 38 km s�1 at 1 kpc and then
remains nearly constant (Figure 6).

The velocity ellipsoid tilt is null at z=300 pc and reaches
8±1deg at 1 kpc, pointing not far o↵ the Galactic center. This is
in agreement with the finding by Siebert et al. (2008); Pasetto et
al. (2012a,b) based on a previous release of the RAVE survey.
As discussed in Siebert et al. (2008) a bias on the measure of the
tilt exists if no corrections are applied to consider the anisotropy
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sigma-clipping to the VR, Vz Galactic velocity components. The
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locity dispersion �Vz rises up to 38 km s�1 at 1 kpc and then
remains nearly constant (Figure 6).

The velocity ellipsoid tilt is null at z=300 pc and reaches
8±1deg at 1 kpc, pointing not far o↵ the Galactic center. This is
in agreement with the finding by Siebert et al. (2008); Pasetto et
al. (2012a,b) based on a previous release of the RAVE survey.
As discussed in Siebert et al. (2008) a bias on the measure of the
tilt exists if no corrections are applied to consider the anisotropy
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Local mass densities in solar neighborhood
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Local mass densities in solar neighborhood

•fairly good agreement on the total surface density within z=±1kpc
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Local mass densities in solar neighborhood

•fairly good agreement on the total surface density within z=±1kpc

•DM contribution depends on the assumption for the local stellar 
distribution. Most studies find for the (3D) local DM density 
 
 
(e.g. Bovy & Rix 2013, Piffl et al 2014, McMillan 2016), also 
consistent with rotation curve analysis (McGaugh 2016)  
 

•Bienaymé et al (2014) with RAVE and Hagen&Helmi (2018) with 
RAVE+TGAS find somewhat higher values:

Bienaymé: 

Hagen & Helmi:

•but in particular HH18 use a smaller scale height for the thin disk of 
0.27kpc (with 0.31kpc as in McMillan the would get 0.012 M⊙ pc

-3
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Parameters from Galaxy models

•Mass Model: 
three exponential disks 

flattened bulge 

NFW dark matter halo 

•Binney 2012 model for kinematics (incl. stellar halo) 

•Model fit to vertical RAVE data 

•see e.g. Bovy & Rix 2013, Piffl et al 2014, McMillan 2016
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Figure 7. The full black curve shows the vertical density profile of the disc predicted by the df for ρdm,⊙ = 0.012M⊙ pc−3; the mostly
overlying dashed black curve shows the corresponding density profile in the mass model. The other dashed black lines show the profiles
of the thin and thick discs in the mass model. The dotted curves show the corresponding predictions of the df for both discs and the
stellar halo (which has no explicit counterpart in the mass model). The red and blue error bars show the vertical profile measured by
Jurić et al. (2008) for stars with r − i ∈ [0.7, 0.8] (“a”, red symbols) and with r − i ∈ [0.15, 0.2] (“b”, blue symbols), while green error
bars show the profile measured by Gilmore & Reid (1983).

Table 2. Best-fit parameters.

Model potential parameters

Σ0,thin 570.7 M⊙ pc−2

Σ0,thick 251.0 M⊙ pc−2

Rd 2.68 kpc
zd,thin 0.20 kpc
zd,thick 0.70 kpc
Σ0,gas 94.5 M⊙ pc−2

Rd,gas 5.36 kpc
ρ0,dm 0.01816 M⊙ pc−3

r0,dm 14.4 kpc

df parameters

σr,thin 33.9 km s−1

σz,thin 24.9 km s−1

Rσ,r,thin 9.0 kpc
Rσ,z,thin 9.0 kpc
σr,thick 50.5 km s−1

σz,thick 48.7 km s−1

Rσ,r,thick 12.9 kpc
Rσ,z,thick 4.1 kpc
Fthick 0.460
Fhalo 0.026

which show the star-count data from J08, is excellent both
below and above the Galactic plane. The dashed grey lines
in Fig. 7 show the densities contributed by the thin and
thick stellar discs of the mass model, while the dotted black
curves show the densities yielded by the df for the thin and
thick discs and the stellar halo. At z = 0 the dashed curves
from the mass model are unrealistically cusped on account
of our assumption of naive double-exponential discs. Other-

Figure 6. Red dots: Reduced χ2 distance between the vertical
stellar mass profile predicted by the df and the observational
profiles by Jurić et al. (2008) as a function of the local density
of a spherical dark-matter halo. Green dots show the reduced χ2

distance from the density profile of Gilmore & Reid (1983). The
red and green dashed lines are parabolas fitted to the red/green
dots.

wise the agreement between the densities provided for the
thick disc between the mass model and the df is perfect. The
agreement between the curves for the thin disc is nearly per-
fect within ∼ 1.5 scale heights of the plane, but at greater
heights, where the thick disc strongly dominates, the df pro-
vides slightly lower density than the mass model. This dis-
crepancy implies that the df breaks the total stellar profile
into thin- and thick-disc contributions in a slightly different
way to the mass model. Since a real physical distinction be-
tween these components can only be made on the basis of

c⃝ 2014 RAS, MNRAS 000, 1–17



Parameters from Galaxy models
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Figure 8. Best-fitting value for the local dark-matter density
ρdm,⊙ as a function of the assumed flatting q of the dark-matter
halo. A value of q = 1 implies a spherical halo, while smaller
values lead to oblate configurations. The dashed black line shows
a power-law fitted by eye to the points.

age or chemistry (e.g. Binney & Merrifield 1998), the minor
difference between the two thin-disc curves in Fig. 7 should
not be considered significant at this stage.

The green error bars in Fig. 7 show the stellar densities
inferred by Gilmore & Reid (1983) for stars with absolute
visual magnitude MV between 4 and 5 with an assumed
vertical metallicity gradient of −0.3 dex/ kpc−1 (in their Ta-
ble 2). The green dots in Fig. 6 show the χ2 values we obtain
when we adopt the Gilmore–Reid data points. They indicate
a deeper minimum in χ2 occurring at a smaller dark-halo
density: ρdm,⊙ = 0.01200M⊙ pc−3.

4.1 Systematic uncertainties

The results presented above are based on a very sophis-
ticated model that involves a number of assumptions and
approximations. Deviations of the truth from these assump-
tions and approximations will introduce systematic errors
into our results. We can assess the size of such systematic
errors much more easily in some cases than in others. We
have not assessed the errors arising from:

• the functional form of the mass model;
• the functional form of the df;
• the age-velocity dispersion relation in the thin disc;
• the adopted value of L0 in disc df: variation will affect

the normalisation of stellar halo;
• the power-law slope and quasi-isotropy of the stellar

halo – we will investigate this in a future paper;
• the solar motion w.r.t. the LSR.

We have investigated the sensitivity of our results to:

• R0, which controls the circular speed: a value of R0 =
8kpc reduces ρdm,⊙ by 5%.

• The contribution of the gas disc disc to the local bary-
onic surface density. If we assume 33% instead of our stan-
dard value of 25%, we find slightly different structural pa-
rameters for the stellar discs, but our best-fit value for ρdm,⊙
remains unchanged.

• Rσ,i for the thin disc: using Rσ,i = 6kpc reduces ρdm,⊙
by < 2%.

• The fact that r0,dm changes with ρdm,⊙ on account of
the halo constraints: setting r0,dm = 20 kpc increases ρdm,⊙
by 2%.

• Equal scale radii for thin and thick disc: setting
Rd,thick/Rd,thin = 0.6 (resulting in Rd,thick ≃ 2 kpc and
Rd,thin ≃ 3.5 kpc similar to Bovy et al. (2012)), increases
ρdm,⊙ by 4%.

• Flattening the dark halo: a flatter dark halo increases
ρdm,⊙ significantly. See Fig. 8.

• Systematic uncertainties in the distance scale of J08: if
this distance scale is increased by a factor α, ρdm,⊙ proves to
be almost proportional to α, with a 20% increase in α caus-
ing ρdm,⊙ to increase by 8%. A different value for the binary
fraction has a very similar, but smaller, effect to a general
change of the distance scale, and is hence also covered in
this uncertainty.

The two most critical systematic uncertainties are
therefore the axis ratio q of the dark halo and the distance
scale used to construct the observational vertical stellar den-
sity profile. Simply adding in quadrature the uncertainties
other than halo flattening listed above leads to a combined
systematic uncertainty of ∼ 10%. Combining this with the
uncertainty associated with dark-halo flattening we arrive
at our result

ρdm,⊙ =

{
(0.48× q−α) GeV cm−3 ± 10%

(0.0126× q−α) M⊙ pc−3 ± 10%
(22)

with α = 0.89 and q the axis ratio of the dark halo.
Note, there is an additional potential source of uncer-

tainty that we have not included in our estimate: Schönrich
& Bergemann (2013) find hints that the common practice
of assuming uncorrelated errors in the stellar parameters
when deriving distance estimates is not a good approxima-
tion and leads to over-confident results. Hence the parallax
uncertainties reported by Binney et al. (2014b) might be
under-estimated. To test the possible influence we doubled
the individual parallax uncertainties (a worst case scenario)
and repeated the fit. The best-fitting value for ρdm,⊙ in-
creased by ∼ 7%. A similar uncertainty is shared by all
studies that use distances inferred from stellar parameters.

4.2 Flattening-independent results

The inverse dependence of ρdm,⊙ on q implies that for simi-
lar scale radii r0,dm the mass of the dark matter halo within
an oblate volume with axis ratio q is approximately inde-
pendent of q. This is confirmed by Fig. 9 (upper panel) that
shows the cumulative mass distribution as a function of el-
liptical radius.

The invariance of the dark matter mass profile can be
qualitatively understood by the following consideration: flat-
tening the dark halo at fixed local density reduces its mass
and its contribution to the radial force, KR. But – due to its
still large thickness – its contribution to the vertical force
Kz at low z remains almost constant or slightly grows. To
restore the value of the circular speed at the Sun we have
to either increase the mass of the halo or that of the disc.
However, filling the gap with disc material increases Kz and
consequently compresses the vertical mass profile predicted
by the df. Thus the only possibility is to increase the mass
of the halo and decrease the mass of the disc in order to

c⃝ 2014 RAS, MNRAS 000, 1–17

%DM = 0.0126⇥ q�0.89M� pc�3 ± 10%

�tot(< 0.9kpc) = 69 ± 10M� pc�2
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For the surface density between ±900 pc, we find

!(z = 0.9 kpc) = (69 ± 15) M⊙ pc−2.

Below in Fig. 15, we set these measurements in context with esti-
mates from the literature.

4.3 Other properties

We now give results for the model with a spherical dark halo. The
best-fitting model has a virial mass3 M200 = (1.3 ± 0.1) × 1012 M⊙.
The above-mentioned systematic uncertainties translate into a
<10 per cent uncertainty in the virial mass, but this does not encom-
pass the uncertainty introduced by the assumed shape of the radial
mass profile of the dark matter halo. For the models with flattened
haloes, we find slightly increased virial masses of 1.4 × 1012 M⊙
and 1.6 × 1012 M⊙ for the axis ratios 0.8 and 0.6, respectively.

The total mass of the Galaxy’s stellar disc is
(3.7 ± 1.1) × 1010 M⊙. This is lower but not far from the
canonical value of 5 × 1010 M⊙. It is within the range of 3.6
– 5.4 × 1010 M⊙ estimated by Flynn et al. (2006). Combining
the stellar disc with the bulge and the gas disc, we arrive at a
total baryonic mass (5.6 ± 1.6) × 1010 M⊙, or a baryon fraction
(4.3 ± 0.6) per cent. This value is much lower than the cosmic
baryon fraction of ∼16 per cent (Hinshaw et al. 2013; Planck Col-
laboration XVI 2013), once again illustrating the ‘missing baryon
problem’ (e.g. Klypin et al. 1999). While this baryon fraction does
not include the mass of the Galaxy’s virial-temperature corona,
the mass of the corona within ∼20 kpc of the GC is negligible
(Marinacci et al. 2010); the missing baryons have to lie well outside
the visible Galaxy in the circum- or intergalactic medium.

The thick disc contributes about 32 per cent of the disc’s stellar
mass which is lower than the 70 per cent found by J08. This result
depends, however, on our decision to equate the radial scalelengths
of the two discs. If the scalelength of the thick disc is assumed to
be shorter, as found by Bovy et al. (2012a), the mass fraction in this
component increases to ∼60 per cent. The better agreement with
J08 is only apparent, however, because these authors found a longer
scale radius for the thick disc.

Fig. 12 shows for several fairly successful spherical models the
surface densities of the stellar and gaseous discs at R0 (upper panel)
and the ratio of the radial forces at R0 from the baryons and dark mat-
ter (lower panel). The upper panel shows good agreement with the
estimates of the baryonic surface densities derived from Hipparcos
data by Flynn et al. (2006, coloured bands). The lower panel shows
that equal contributions to the radial force are achieved for local
dark matter densities ρdm, ⊙ that are lower than our favoured value
for a spherical halo, but still within the range encompassed by the
systematic uncertainties, which is shaded grey. In our best-fitting
model, the solar neighbourhood is mildly dark matter dominated
with only 46 per cent of the radial force coming from gas and stars.
Alternatively, we can look at the contribution of disc to the total
rotation curve at 2.2 times the scale radius to check whether our
disc is ‘maximal’ according to the definition of Sackett (1997). We
find a ratio Vc, disc/Vc, all = 0.63 (Vc, baryons/Vc, all = 0.72) that is be-
low the range of 0.75–0.95 for a maximal disc, but slightly above
the typical range of 0.47 ± 0.08 (0.57 ± 0.07) for external spiral

3 We define the virial mass as the mass interior to the radius R200 that
contains a mean density of 200 times the critical density for a flat universe,
ρcrit.

Figure 12. Upper panel: mass surface densities in our models for the stars
(black points and lines) and gas (grey points and lines). The green and orange
shaded area show the corresponding one/two sigma regions reported by
Flynn et al. (2006). Lower panel: the ratio FR,bary/FR,dm of the contributions
to the radial force at R0 from baryons and dark matter. In both panels, the
grey shaded area illustrates the systematic uncertainties of ρdm, ⊙ with the
(interpolated) best-fitting value marked by the black dashed line. For this
value, we have FR,bary/FR,dm ∼ 0.85.

galaxies (Bershady et al. 2011; Martinsson et al. 2013). It is still
lower than the value of 0.83 ± 0.04 found by Bovy & Rix (2013).

5 K INEMATICS

Here, we discuss the kinematic properties of our best-fitting model.
The circular speed at the solar radius, vc(R0) = 240 km s−1 is largely
the result of the adopted values of R0 = 8.3 kpc, the proper motion of
Sgr A*, and v⊙, the solar motion w.r.t. to the LSR. Our constraints
for the mass model actually fix the ratio vc(R0)/R0 (McMillan 2011).

For the local escape speed vesc =
√

2#(R0), we find a value
of 613 km s−1. Piffl et al. (2014) recently found a lower value of
533+54

−41 km s−1, but for this they used a modified definition of the
escape speed as the minimum speed needed to reach 3Rvir. If we
apply their definition to our model we find a value of 580 km s−1

which is still on the high side, but within their 90 per cent confi-
dence interval. The uncertainties arising from the above-mentioned
systematics on this value are of order 1 per cent. This comes mainly
from our rather strong prior on the mass within 50 kpc and again
does not cover the uncertainties in the dark matter profile at large
radii.4

The data points in Fig. 13 show histograms for each principal
velocity component and spatial bins defined by 7.3 kpc < R < R0 and
ranges in z that increase from bottom to top: the upper limits of the
bins are at z = 0.3, 0.6, 1, 1.5 kpc and the coordinates of each bin’s
barycentre are given at the lower centre of each panel. The vertical
scales of the plots are logarithmic and cover nearly three orders of
magnitude in star density. The plotted velocity components V1 and

4 Because of this and also because of the focus of Piffl et al. (2014) on the
fastest stars in the RAVE survey, which carry most of the information on the
escape speed, we still consider their value as the more robust one.

MNRAS 445, 3133–3151 (2014)Downloaded from https://academic.oup.com/mnras/article-abstract/445/3/3133/1052064
by guest
on 29 April 2018
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Figure 12. The vertical force 1.1 kpc from the Galactic plane as a func-
tion of radius for our main models, with 1σ uncertainties (solid and dashed
lines, respectively), for the best fitting model of (Piffl et al. 2014a, dashed
red line), and from the fits to individual mono-abundance populations of
(Bovy & Rix 2013, points with error bars).

(2013) (scaled such that R0 = 8.2). While the scatter of points
around our model appears consistent with the error bars, there is
a clear trend for the points at R ! 7 kpc to lie above the line
from our model and the points at R " 7 kpc to lie below it. The
values of Kz,1.1(R) found by Bovy & Rix (2013) are from individ-
ual ‘mono-abundance populations’, treated independently, and as
coming from a single quasi-isothermal distribution function with
an exponential density profile. The values given by Bovy & Rix
(2013) and plotted in Fig. 12 are from the radius where a given
mono-abundance population gives the tightest constraint, but each
population provides constraints over a wide range of radii. The
constraints provided by these different populations are not mutu-
ally consistent. The points in Fig. 12 therefore give the statistical
uncertainty for each population at the radius where it is smallest,
while there is clearly a systematic error (otherwise the different
constraints would be consistent), which may be due to the assump-
tion that each mono-abundance population is well described by a
quasi-isothermal distribution function. This may explain the differ-
ence between the points in Fig. 12 and the two sets of lines.

McGaugh (2016) used a mass discrepancy-acceleration rela-
tion (MDAR) to relate the terminal velocity curve to a disc surface
density profile. The vertical force at 1.1 kpc found was broadly sim-
ilar to that found by Bovy & Rix (2013) – see McGaugh’s fig. 14 –
but with more ‘bumps and wiggles’ and noticeably even further be-
low the Bovy & Rix (2013) values for 5.5 kpc ! R ! 6.5 kpc than
our model.

7.3 Streams and the shape of the dark matter halo

Because of the large number of streams found in the Milky Way
halo in recent years, it has become increasingly popular to attempt
to constrain the potential of the Milky Way by fitting the proper-
ties of these observed streams to models. It is important to note
that these streams are formed when satellites of the Milky Way are
tidally disrupted, putting the stars that were in the satellite onto
differing orbits. The difference between the motion on these orbits

is the primary influence on the observed structure of the stream
(Eyre & Binney 2011).

Gibbons, Belokurov & Evans (2014) find a very low mass for
the Milky Way out to 100 kpc of (4.1±0.4)×1011 M⊙ by modelling
the Sagittarius stream. This is significantly lower than other esti-
mates, (see Bland-Hawthorn & Gerhard 2016, Table 8). It is worth
noting that the comparison between model and data was based en-
tirely on the positions of the apogalactic points of the leading and
trailing tails of the stream, and the precession angle between them.
It is not clear whether the model can explain the other properties
of the Sagittarius dwarf. The study of the Sagittarius stream by
Johnston et al. (2005) had best fitting models with masses in the
range (3.8− 5.6)× 1011 within 50 kpc, which is in keeping with our
prior. We therefore treat this result with caution, and merely note
that it differs substantially from the value we find for the mass in-
side 100 kpc of (8.2 ± 1.1) ± 1011 M⊙. If it is supported by further
results we will have to re-evaluate our assumptions and find new
models.

Küpper et al. (2015) used the position of apparent overdensi-
ties in the tidal tails of Palomar 5 to determine the mass within its
apogalactic radius. However, Ibata et al. (2016) used deeper pho-
tometry of these tidal tails to demonstrate that these overdensities
are very likely to be observational artefacts associated with inho-
mogeneities in the SDSS photometry used to produce the maps of
Palomar 5 used by Küpper et al., (see also Thomas et al. 2016).

The flattening of the Milky Way’s dark-matter halo remains
deeply uncertain. Famously, models of the Sagittarius stream
have been used to argue that the dark-matter halo is oblate (e.g.
Johnston, Law & Majewski 2005), prolate Helmi (2004) or triax-
ial (Law & Majewski 2010, though this is effectively oblate with
the short axis in the plane of the Galaxy). Analyses of the smooth
stellar halo as seen by the SDSS survey has yielded claims of con-
straints on the shape of the equipotential surfaces of the halo rang-
ing from oblate with axis ratio qΦ = 0.7±0.1 (corresponding to axis
ratios in the density distribution of 0.4 ± 0.1, Loebman et al. 2014)
to prolate with axis ratio 1.5 ! qΦ ! 2 (Bowden, Evans & Williams
2016). Analysis of the GD-1 stream, meanwhile, has yielded flat-
tening estimates qΦ ∼ 0.9 (Bowden, Belokurov & Evans 2015).
In the Solar neighbourhood, Read (2014) noted that the compar-
ison of constraints from the rotation curve (which provides an es-
timate of the spherically averaged enclosed dark-matter content)
and estimates of the local density provide a constraint on the
halo shape which is consistent with spherical or slightly prolate.
Piffl et al. (2014a) argued that combining their results with those
of Bienaymé et al. (2014) provided tentative indications of an axis
ratio (in the isodensity contours) of q ∼ 0.8. Piffl et al. (2014a) also
noted that the axis ratio of the dark-matter halo has an important
influence on the derived local density when interpreting dynamical
models of the disc, with ρh,⊙ ∝ q−0.89.

This is a deeply unsatisfying state of affairs, and we have fol-
lowed numerous other authors in simply assuming that the dark-
matter halo is spherically symmetric. This is an assumption that
will need to be revisited to build a better model. Indeed the as-
sumption of a constant axis ratio at all radii will need examination.
The argument of Read (2014), that comparing local and global con-
straints provides a route to solving this problem, indicates the role
that approaches such as the one used in this study may have in the
future. One must be careful, however, as this study has used a local
constraint (from Kuijken & Gilmore 1991), so is not suitable for
making an unbiased comparison between the two approaches.
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Figure 8. Best-fitting value for the local dark-matter density
ρdm,⊙ as a function of the assumed flatting q of the dark-matter
halo. A value of q = 1 implies a spherical halo, while smaller
values lead to oblate configurations. The dashed black line shows
a power-law fitted by eye to the points.

age or chemistry (e.g. Binney & Merrifield 1998), the minor
difference between the two thin-disc curves in Fig. 7 should
not be considered significant at this stage.

The green error bars in Fig. 7 show the stellar densities
inferred by Gilmore & Reid (1983) for stars with absolute
visual magnitude MV between 4 and 5 with an assumed
vertical metallicity gradient of −0.3 dex/ kpc−1 (in their Ta-
ble 2). The green dots in Fig. 6 show the χ2 values we obtain
when we adopt the Gilmore–Reid data points. They indicate
a deeper minimum in χ2 occurring at a smaller dark-halo
density: ρdm,⊙ = 0.01200M⊙ pc−3.

4.1 Systematic uncertainties

The results presented above are based on a very sophis-
ticated model that involves a number of assumptions and
approximations. Deviations of the truth from these assump-
tions and approximations will introduce systematic errors
into our results. We can assess the size of such systematic
errors much more easily in some cases than in others. We
have not assessed the errors arising from:

• the functional form of the mass model;
• the functional form of the df;
• the age-velocity dispersion relation in the thin disc;
• the adopted value of L0 in disc df: variation will affect

the normalisation of stellar halo;
• the power-law slope and quasi-isotropy of the stellar

halo – we will investigate this in a future paper;
• the solar motion w.r.t. the LSR.

We have investigated the sensitivity of our results to:

• R0, which controls the circular speed: a value of R0 =
8kpc reduces ρdm,⊙ by 5%.

• The contribution of the gas disc disc to the local bary-
onic surface density. If we assume 33% instead of our stan-
dard value of 25%, we find slightly different structural pa-
rameters for the stellar discs, but our best-fit value for ρdm,⊙
remains unchanged.

• Rσ,i for the thin disc: using Rσ,i = 6kpc reduces ρdm,⊙
by < 2%.

• The fact that r0,dm changes with ρdm,⊙ on account of
the halo constraints: setting r0,dm = 20 kpc increases ρdm,⊙
by 2%.

• Equal scale radii for thin and thick disc: setting
Rd,thick/Rd,thin = 0.6 (resulting in Rd,thick ≃ 2 kpc and
Rd,thin ≃ 3.5 kpc similar to Bovy et al. (2012)), increases
ρdm,⊙ by 4%.

• Flattening the dark halo: a flatter dark halo increases
ρdm,⊙ significantly. See Fig. 8.

• Systematic uncertainties in the distance scale of J08: if
this distance scale is increased by a factor α, ρdm,⊙ proves to
be almost proportional to α, with a 20% increase in α caus-
ing ρdm,⊙ to increase by 8%. A different value for the binary
fraction has a very similar, but smaller, effect to a general
change of the distance scale, and is hence also covered in
this uncertainty.

The two most critical systematic uncertainties are
therefore the axis ratio q of the dark halo and the distance
scale used to construct the observational vertical stellar den-
sity profile. Simply adding in quadrature the uncertainties
other than halo flattening listed above leads to a combined
systematic uncertainty of ∼ 10%. Combining this with the
uncertainty associated with dark-halo flattening we arrive
at our result

ρdm,⊙ =

{
(0.48× q−α) GeV cm−3 ± 10%

(0.0126× q−α) M⊙ pc−3 ± 10%
(22)

with α = 0.89 and q the axis ratio of the dark halo.
Note, there is an additional potential source of uncer-

tainty that we have not included in our estimate: Schönrich
& Bergemann (2013) find hints that the common practice
of assuming uncorrelated errors in the stellar parameters
when deriving distance estimates is not a good approxima-
tion and leads to over-confident results. Hence the parallax
uncertainties reported by Binney et al. (2014b) might be
under-estimated. To test the possible influence we doubled
the individual parallax uncertainties (a worst case scenario)
and repeated the fit. The best-fitting value for ρdm,⊙ in-
creased by ∼ 7%. A similar uncertainty is shared by all
studies that use distances inferred from stellar parameters.

4.2 Flattening-independent results

The inverse dependence of ρdm,⊙ on q implies that for simi-
lar scale radii r0,dm the mass of the dark matter halo within
an oblate volume with axis ratio q is approximately inde-
pendent of q. This is confirmed by Fig. 9 (upper panel) that
shows the cumulative mass distribution as a function of el-
liptical radius.

The invariance of the dark matter mass profile can be
qualitatively understood by the following consideration: flat-
tening the dark halo at fixed local density reduces its mass
and its contribution to the radial force, KR. But – due to its
still large thickness – its contribution to the vertical force
Kz at low z remains almost constant or slightly grows. To
restore the value of the circular speed at the Sun we have
to either increase the mass of the halo or that of the disc.
However, filling the gap with disc material increases Kz and
consequently compresses the vertical mass profile predicted
by the df. Thus the only possibility is to increase the mass
of the halo and decrease the mass of the disc in order to
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For the surface density between ±900 pc, we find

!(z = 0.9 kpc) = (69 ± 15) M⊙ pc−2.

Below in Fig. 15, we set these measurements in context with esti-
mates from the literature.

4.3 Other properties

We now give results for the model with a spherical dark halo. The
best-fitting model has a virial mass3 M200 = (1.3 ± 0.1) × 1012 M⊙.
The above-mentioned systematic uncertainties translate into a
<10 per cent uncertainty in the virial mass, but this does not encom-
pass the uncertainty introduced by the assumed shape of the radial
mass profile of the dark matter halo. For the models with flattened
haloes, we find slightly increased virial masses of 1.4 × 1012 M⊙
and 1.6 × 1012 M⊙ for the axis ratios 0.8 and 0.6, respectively.

The total mass of the Galaxy’s stellar disc is
(3.7 ± 1.1) × 1010 M⊙. This is lower but not far from the
canonical value of 5 × 1010 M⊙. It is within the range of 3.6
– 5.4 × 1010 M⊙ estimated by Flynn et al. (2006). Combining
the stellar disc with the bulge and the gas disc, we arrive at a
total baryonic mass (5.6 ± 1.6) × 1010 M⊙, or a baryon fraction
(4.3 ± 0.6) per cent. This value is much lower than the cosmic
baryon fraction of ∼16 per cent (Hinshaw et al. 2013; Planck Col-
laboration XVI 2013), once again illustrating the ‘missing baryon
problem’ (e.g. Klypin et al. 1999). While this baryon fraction does
not include the mass of the Galaxy’s virial-temperature corona,
the mass of the corona within ∼20 kpc of the GC is negligible
(Marinacci et al. 2010); the missing baryons have to lie well outside
the visible Galaxy in the circum- or intergalactic medium.

The thick disc contributes about 32 per cent of the disc’s stellar
mass which is lower than the 70 per cent found by J08. This result
depends, however, on our decision to equate the radial scalelengths
of the two discs. If the scalelength of the thick disc is assumed to
be shorter, as found by Bovy et al. (2012a), the mass fraction in this
component increases to ∼60 per cent. The better agreement with
J08 is only apparent, however, because these authors found a longer
scale radius for the thick disc.

Fig. 12 shows for several fairly successful spherical models the
surface densities of the stellar and gaseous discs at R0 (upper panel)
and the ratio of the radial forces at R0 from the baryons and dark mat-
ter (lower panel). The upper panel shows good agreement with the
estimates of the baryonic surface densities derived from Hipparcos
data by Flynn et al. (2006, coloured bands). The lower panel shows
that equal contributions to the radial force are achieved for local
dark matter densities ρdm, ⊙ that are lower than our favoured value
for a spherical halo, but still within the range encompassed by the
systematic uncertainties, which is shaded grey. In our best-fitting
model, the solar neighbourhood is mildly dark matter dominated
with only 46 per cent of the radial force coming from gas and stars.
Alternatively, we can look at the contribution of disc to the total
rotation curve at 2.2 times the scale radius to check whether our
disc is ‘maximal’ according to the definition of Sackett (1997). We
find a ratio Vc, disc/Vc, all = 0.63 (Vc, baryons/Vc, all = 0.72) that is be-
low the range of 0.75–0.95 for a maximal disc, but slightly above
the typical range of 0.47 ± 0.08 (0.57 ± 0.07) for external spiral

3 We define the virial mass as the mass interior to the radius R200 that
contains a mean density of 200 times the critical density for a flat universe,
ρcrit.

Figure 12. Upper panel: mass surface densities in our models for the stars
(black points and lines) and gas (grey points and lines). The green and orange
shaded area show the corresponding one/two sigma regions reported by
Flynn et al. (2006). Lower panel: the ratio FR,bary/FR,dm of the contributions
to the radial force at R0 from baryons and dark matter. In both panels, the
grey shaded area illustrates the systematic uncertainties of ρdm, ⊙ with the
(interpolated) best-fitting value marked by the black dashed line. For this
value, we have FR,bary/FR,dm ∼ 0.85.

galaxies (Bershady et al. 2011; Martinsson et al. 2013). It is still
lower than the value of 0.83 ± 0.04 found by Bovy & Rix (2013).

5 K INEMATICS

Here, we discuss the kinematic properties of our best-fitting model.
The circular speed at the solar radius, vc(R0) = 240 km s−1 is largely
the result of the adopted values of R0 = 8.3 kpc, the proper motion of
Sgr A*, and v⊙, the solar motion w.r.t. to the LSR. Our constraints
for the mass model actually fix the ratio vc(R0)/R0 (McMillan 2011).

For the local escape speed vesc =
√

2#(R0), we find a value
of 613 km s−1. Piffl et al. (2014) recently found a lower value of
533+54

−41 km s−1, but for this they used a modified definition of the
escape speed as the minimum speed needed to reach 3Rvir. If we
apply their definition to our model we find a value of 580 km s−1

which is still on the high side, but within their 90 per cent confi-
dence interval. The uncertainties arising from the above-mentioned
systematics on this value are of order 1 per cent. This comes mainly
from our rather strong prior on the mass within 50 kpc and again
does not cover the uncertainties in the dark matter profile at large
radii.4

The data points in Fig. 13 show histograms for each principal
velocity component and spatial bins defined by 7.3 kpc < R < R0 and
ranges in z that increase from bottom to top: the upper limits of the
bins are at z = 0.3, 0.6, 1, 1.5 kpc and the coordinates of each bin’s
barycentre are given at the lower centre of each panel. The vertical
scales of the plots are logarithmic and cover nearly three orders of
magnitude in star density. The plotted velocity components V1 and

4 Because of this and also because of the focus of Piffl et al. (2014) on the
fastest stars in the RAVE survey, which carry most of the information on the
escape speed, we still consider their value as the more robust one.
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Fig. 2. Normalized velocity distributions of the stellar halo population
in our eight simulations plotted as a function of 1−!∥/!esc. Only counter-
rotating particles that have Galactocentric distances r between 4 and
12 kpc are considered to select for halo particles (see Sect. 3.1) and to
match the volume observed by the RAVE survey. To allow a compari-
son, each velocity was divided by the escape speed at the particle’s po-
sition. Different colors indicate different simulations, and for each sim-
ulation the !∥ distribution is shown for four different observer positions.
The top bundle of curves shows the mean of these four distributions for
each simulation plotted on top of each other to allow a comparison. The
profiles are shifted vertically in the plot for better visibility. The gray
lines illustrate Eq. (3) with power-law index k = 3.

However, because we restrict ourselves the line-of-sight compo-
nent of the velocities, only in the unlikely case that a particle is
located exactly on the line-of-sight between two observer posi-
tions, it would gain an incorrect double weight in the combined
statistical analysis.

Figure 2 shows the velocity-space density of star particles as
a function of 1− !∥/!esc, and we see that, remarkably, these plots
have a reasonably straight section at the highest speeds, just as
Leonard & Tremaine (1990) hypothesized. The slopes of these
rectilinear sections scatter around k = 3 as we see later.

We also considered the functional form proposed by S07 for
the velocity DF; that is, n(!) ∝ (!2esc − !2)k. Figure 3 tests this DF
with the simulation data. The curvature implies that this DF does
not represent the simulation data as well as the formula proposed
by Leonard & Tremaine (1990).

If we fit Eq. (3) to the velocity distributions while fixing k
to 3, we recover the escape speeds within 6%. This confirms our
choice of the cut-off radius for the gravitational potential, 3R340,
that was used during the definition of the escape speeds.

Fig. 3. Same as the top bundle of lines in Fig. 2 but plotted as a function
of 1− !2∥/!2esc. If the data follows the velocity DF proposed by S07 (gray
line), the data should form a straight line in this representation.

Fig. 4. Median values of the likelihood distributions of the power-law
index k as a function of the applied threshold velocity !min.

3.1. The velocity threshold

We now try to find the best value for the lower threshold veloc-
ity !min. S07 had to use a high threshold value for their radial
velocities of 300 km s−1, because the threshold had an additional
purpose, namely to select stars from the non-rotating halo com-
ponent. If one can identify these stars by other means, the veloc-
ity threshold can be lowered significantly. This adds more stars
to the sample, thereby putting our analysis on a broader basis.
If the stellar halo had the shape of an isotropic Plummer (1911)
sphere, the threshold could be set to zero, because for this model
the S07 version of our approximated velocity distribution func-
tion would be exact. However, for other DFs we need to choose
a higher value to avoid regions where our approximation breaks
down. Again, we use the simulations to select an appropriate
value.

We compute the likelihood distribution of k in each sim-
ulation using different velocity thresholds using the likelihood
estimator

Ltot(k | !min) =
∏

i

L(!∥,i). (7)

Figure 4 plots the median values of the likelihood distributions
as a function of the threshold velocity. We see a trend toward
increasing k for !min <∼ 150 km s−1 and roughly random behav-
ior above. For low values of !min, simulation G does not fol-
low the general trend. This simulation is the only one in the

A91, page 5 of 16



Escape speed of the Milky Way at the Solar Circle

• Leonard & Tremaine (1990): 

consider distribution function f(E)

f → 0 as E → Φ(rvir) ⇒ n(v) ∝ (vesc-v)k

• k-dependence verified via simulations

• Measure distribution n(v‖) for high velocity  
RAVE stars on counterrotating orbits

T. Piffl et al.: The RAVE survey: the Galactic escape speed and the mass of the Milky Way

Fig. 2. Normalized velocity distributions of the stellar halo population
in our eight simulations plotted as a function of 1−!∥/!esc. Only counter-
rotating particles that have Galactocentric distances r between 4 and
12 kpc are considered to select for halo particles (see Sect. 3.1) and to
match the volume observed by the RAVE survey. To allow a compari-
son, each velocity was divided by the escape speed at the particle’s po-
sition. Different colors indicate different simulations, and for each sim-
ulation the !∥ distribution is shown for four different observer positions.
The top bundle of curves shows the mean of these four distributions for
each simulation plotted on top of each other to allow a comparison. The
profiles are shifted vertically in the plot for better visibility. The gray
lines illustrate Eq. (3) with power-law index k = 3.
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the velocity DF; that is, n(!) ∝ (!2esc − !2)k. Figure 3 tests this DF
with the simulation data. The curvature implies that this DF does
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that was used during the definition of the escape speeds.
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ity !min. S07 had to use a high threshold value for their radial
velocities of 300 km s−1, because the threshold had an additional
purpose, namely to select stars from the non-rotating halo com-
ponent. If one can identify these stars by other means, the veloc-
ity threshold can be lowered significantly. This adds more stars
to the sample, thereby putting our analysis on a broader basis.
If the stellar halo had the shape of an isotropic Plummer (1911)
sphere, the threshold could be set to zero, because for this model
the S07 version of our approximated velocity distribution func-
tion would be exact. However, for other DFs we need to choose
a higher value to avoid regions where our approximation breaks
down. Again, we use the simulations to select an appropriate
value.

We compute the likelihood distribution of k in each sim-
ulation using different velocity thresholds using the likelihood
estimator
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Fig. 2. Normalized velocity distributions of the stellar halo population
in our eight simulations plotted as a function of 1−!∥/!esc. Only counter-
rotating particles that have Galactocentric distances r between 4 and
12 kpc are considered to select for halo particles (see Sect. 3.1) and to
match the volume observed by the RAVE survey. To allow a compari-
son, each velocity was divided by the escape speed at the particle’s po-
sition. Different colors indicate different simulations, and for each sim-
ulation the !∥ distribution is shown for four different observer positions.
The top bundle of curves shows the mean of these four distributions for
each simulation plotted on top of each other to allow a comparison. The
profiles are shifted vertically in the plot for better visibility. The gray
lines illustrate Eq. (3) with power-law index k = 3.
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Figure 2 shows the velocity-space density of star particles as
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have a reasonably straight section at the highest speeds, just as
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rectilinear sections scatter around k = 3 as we see later.
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velocities of 300 km s−1, because the threshold had an additional
purpose, namely to select stars from the non-rotating halo com-
ponent. If one can identify these stars by other means, the veloc-
ity threshold can be lowered significantly. This adds more stars
to the sample, thereby putting our analysis on a broader basis.
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tion would be exact. However, for other DFs we need to choose
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Fig. 2. Normalized velocity distributions of the stellar halo population
in our eight simulations plotted as a function of 1−!∥/!esc. Only counter-
rotating particles that have Galactocentric distances r between 4 and
12 kpc are considered to select for halo particles (see Sect. 3.1) and to
match the volume observed by the RAVE survey. To allow a compari-
son, each velocity was divided by the escape speed at the particle’s po-
sition. Different colors indicate different simulations, and for each sim-
ulation the !∥ distribution is shown for four different observer positions.
The top bundle of curves shows the mean of these four distributions for
each simulation plotted on top of each other to allow a comparison. The
profiles are shifted vertically in the plot for better visibility. The gray
lines illustrate Eq. (3) with power-law index k = 3.

However, because we restrict ourselves the line-of-sight compo-
nent of the velocities, only in the unlikely case that a particle is
located exactly on the line-of-sight between two observer posi-
tions, it would gain an incorrect double weight in the combined
statistical analysis.

Figure 2 shows the velocity-space density of star particles as
a function of 1− !∥/!esc, and we see that, remarkably, these plots
have a reasonably straight section at the highest speeds, just as
Leonard & Tremaine (1990) hypothesized. The slopes of these
rectilinear sections scatter around k = 3 as we see later.

We also considered the functional form proposed by S07 for
the velocity DF; that is, n(!) ∝ (!2esc − !2)k. Figure 3 tests this DF
with the simulation data. The curvature implies that this DF does
not represent the simulation data as well as the formula proposed
by Leonard & Tremaine (1990).

If we fit Eq. (3) to the velocity distributions while fixing k
to 3, we recover the escape speeds within 6%. This confirms our
choice of the cut-off radius for the gravitational potential, 3R340,
that was used during the definition of the escape speeds.

Fig. 3. Same as the top bundle of lines in Fig. 2 but plotted as a function
of 1− !2∥/!2esc. If the data follows the velocity DF proposed by S07 (gray
line), the data should form a straight line in this representation.

Fig. 4. Median values of the likelihood distributions of the power-law
index k as a function of the applied threshold velocity !min.

3.1. The velocity threshold

We now try to find the best value for the lower threshold veloc-
ity !min. S07 had to use a high threshold value for their radial
velocities of 300 km s−1, because the threshold had an additional
purpose, namely to select stars from the non-rotating halo com-
ponent. If one can identify these stars by other means, the veloc-
ity threshold can be lowered significantly. This adds more stars
to the sample, thereby putting our analysis on a broader basis.
If the stellar halo had the shape of an isotropic Plummer (1911)
sphere, the threshold could be set to zero, because for this model
the S07 version of our approximated velocity distribution func-
tion would be exact. However, for other DFs we need to choose
a higher value to avoid regions where our approximation breaks
down. Again, we use the simulations to select an appropriate
value.

We compute the likelihood distribution of k in each sim-
ulation using different velocity thresholds using the likelihood
estimator

Ltot(k | !min) =
∏

i

L(!∥,i). (7)

Figure 4 plots the median values of the likelihood distributions
as a function of the threshold velocity. We see a trend toward
increasing k for !min <∼ 150 km s−1 and roughly random behav-
ior above. For low values of !min, simulation G does not fol-
low the general trend. This simulation is the only one in the
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match the volume observed by the RAVE survey. To allow a compari-
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sition. Different colors indicate different simulations, and for each sim-
ulation the !∥ distribution is shown for four different observer positions.
The top bundle of curves shows the mean of these four distributions for
each simulation plotted on top of each other to allow a comparison. The
profiles are shifted vertically in the plot for better visibility. The gray
lines illustrate Eq. (3) with power-law index k = 3.
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located exactly on the line-of-sight between two observer posi-
tions, it would gain an incorrect double weight in the combined
statistical analysis.
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a function of 1− !∥/!esc, and we see that, remarkably, these plots
have a reasonably straight section at the highest speeds, just as
Leonard & Tremaine (1990) hypothesized. The slopes of these
rectilinear sections scatter around k = 3 as we see later.

We also considered the functional form proposed by S07 for
the velocity DF; that is, n(!) ∝ (!2esc − !2)k. Figure 3 tests this DF
with the simulation data. The curvature implies that this DF does
not represent the simulation data as well as the formula proposed
by Leonard & Tremaine (1990).

If we fit Eq. (3) to the velocity distributions while fixing k
to 3, we recover the escape speeds within 6%. This confirms our
choice of the cut-off radius for the gravitational potential, 3R340,
that was used during the definition of the escape speeds.
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Fig. 4. Median values of the likelihood distributions of the power-law
index k as a function of the applied threshold velocity !min.

3.1. The velocity threshold

We now try to find the best value for the lower threshold veloc-
ity !min. S07 had to use a high threshold value for their radial
velocities of 300 km s−1, because the threshold had an additional
purpose, namely to select stars from the non-rotating halo com-
ponent. If one can identify these stars by other means, the veloc-
ity threshold can be lowered significantly. This adds more stars
to the sample, thereby putting our analysis on a broader basis.
If the stellar halo had the shape of an isotropic Plummer (1911)
sphere, the threshold could be set to zero, because for this model
the S07 version of our approximated velocity distribution func-
tion would be exact. However, for other DFs we need to choose
a higher value to avoid regions where our approximation breaks
down. Again, we use the simulations to select an appropriate
value.

We compute the likelihood distribution of k in each sim-
ulation using different velocity thresholds using the likelihood
estimator

Ltot(k | !min) =
∏

i

L(!∥,i). (7)

Figure 4 plots the median values of the likelihood distributions
as a function of the threshold velocity. We see a trend toward
increasing k for !min <∼ 150 km s−1 and roughly random behav-
ior above. For low values of !min, simulation G does not fol-
low the general trend. This simulation is the only one in the
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Figure 3. Our inference on the escape speed as a function of
Galactocentric radius. The median posterior result is shown as
a dark blue line, and the 68% (94%) credible interval is a
dark (light) blue band. The result using RAVE data from P14
and the associated 90% credible interval is also shown, and is
in good agreement with our inference. We measure a significant
gradient in the escape speed, such that it has already fallen by
⇠ 100 km s�1 by a radius of 30 kpc.

Figure 4. The distribution of our mother samples of stars in the
r � v|| plane, with horizontal dashed lines at v|| = ±200 km s�1,
our cut in radial velocity. The coloured bands are our inference
on the escape speed as a function of radius. The ‘spur’ at nega-
tive radial velocities is from K-giants belonging to the Sagittarius
stream. Note that the contamination in our high speed sample
from these stars is negligible, since the maximum velocity that
the stream centroid reaches is ⇠ 150 km s�1 (Belokurov et al.
2014) with a dispersion of ⇠ 20 km s�1.

Leonard & Tremaine (1990) point out that violent relaxation
would lead to k = 3/2, whereas collisional relaxation gives
k = 1 (Spitzer & Shapiro 1972). S07 further showed that the
Plummer and Hernquist spheres (Binney & Tremaine 2008)
have k = 2.5 and k = 3.5, respectively. The simulations
analysed by S07 and P14 both suggest k ' 3. Clearly, there
is a relatively large range of possible values. Due to small

sample sizes in previous studies, k has never been measured
from data on the Milky Way. Given our significantly larger
sample of stars, we are able to do this for the first time.
The two tracer samples containing the most stars, MSTO
and K-giants, both favour k ' 4 ± 1, which is in comfort-
able agreement with simulations. These results also suggest
that k is not a strong function of position, given the rather
di↵erent radial ranges probed by the MSTO and K-giant
samples. The inference on k for the BHB sample is much
weaker, and favours a slightly higher value. S07 points out
that this is to be expected for small sample sizes. Nonethe-
less, the inference on kBHB is not in significant tension with
the hypothesis that k is constant. Our results vindicate the
choice of prior by S07, while the range used by P14 is a
touch on the low side.

Figure 2 shows a strong degeneracy between kMSTO and
vesc(R�), which can be encoded by the empirical covariance
matrix of the samples

Cov (kMSTO , vesc(R�)) =


0.84 37 km s�1

37 km s�1 1713km2s�2

�
. (27)

This is to be expected, and is the reason why a narrow prior
on k was necessary in previous work. Figure 1 of P14 nicely
demonstrates the appearance of this degeneracy for vary-
ing sample sizes. Fortunately, our sample is large enough to
locate the maximum along the degeneracy. The same degen-
eracy is seen between kK�giant and the local escape speed,
though it is broader. Note that this explains why our sta-
tistical uncertainty on the local escape speed is larger than
that of of P14, who found 533+54

�41 km s�1 at 90% confidence,
compared to our 90% credible interval of 521+88

�45 km s�1. Our
larger 95th percentile of 690 km s�1 is a consequence of the
degeneracy between k and vesc(R�): the 95th percentile of
the posterior on kMSTO is 6, which is considerably larger
than the upper end of P14’s prior.

The inferred outlier fraction is very small, f ' 0.001,
but non-zero. This suggests that there are one or two out-
liers in our sample. Inspection of Figure 1 suggests one clear
candidate: there is an MSTO star at r ' 10 kpc, shown
as a black point, with a measured line of sight velocity of
518.2 km s�1, which is more than 100 km s�1 larger than any
other star at a comparable radius in our sample. Otherwise,
there are no obvious outliers through visual inspection. As a
check of this intuition, we calculated the outlier probability
of each star in our sample as

p(outlier | v||, `, b, s) =
f̄ pout(v||)

f̄ pout(v||) + (1� f̄) p(v|||`, b, s, ✓̄, k̄)
,

(28)

using the model parameters obtained by taking the median
values of each of the one dimensional marginalised posterior
distributions, ⇥̄. The largest outlier probability is > 0.999,
and belongs to the object identified visually in Figure 1. Oth-
erwise, the largest outlier probability is < 0.01, and so we
conclude that this object is the only probable outlier in the
sample. Having identified this outlier, we visually inspected
its spectrum and image data from SDSS. From the image
data it is clear that this object is a galaxy, and has been
misclassified by the spectroscopic pipeline of SDSS. Having
found a galaxy contaminant in our sample, we added a fur-
ther constraint to our SQL query that all of the MSTO tar-
gets should be morphologically classified as stars (as well as

c� 2016 RAS, MNRAS 000, 1–??

Williams et al., 2017
•fairly rapid decline to 376km/s at 50kpc



Comparison with halo stars and dwarf gals

•if tangential velocity of high velocity dwarfs is 
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Figure 8. Left: cumulative mass distribution within spherical shells, predicted by the SPL model. The 68% (94%) credible interval is
shown as a dark (light) blue band around our median result. We predict a relatively light Milky Way within 50 kpc, with M(50 kpc) =
29.8+6.9

�5.2 ⇥ 1010M�. In both panels are the results from various other studies, see text for discussion.

each tracer in radius and fitting a cubic spline to the re-
sulting histogram. The two integrals in Equation (37) are
then computed using 12 point Gauss-Legendre quadrature.
We then draw samples from the posterior predictive distri-
bution

p(v|| | data) =
Z

p(v|| |⇥) p(⇥ | data) d⇥, (38)

which is the predicted distribution of v|| given the knowledge
we have gained by analysing our SDSS sample. To sample
this distribution, we first take the discrete samples from the
posterior generated by our MCMC runs. Then, for each set
of parameters ⇥, we draw a sample from Equation (37) that
is the same size as the data, giving us many replicated data
sets (Gelman et al. 2013). If the model is performing well, a
typical replicated data set should look like the SDSS sample.
In order to sample from Equation (37), we use inverse trans-
form sampling, where we numerically compute the CDF

F (v|| |⇥) =

v||Z

vmin

p(v||
0 |⇥) dv||

0 (39)

on a grid of points in v||, and compute the inverse function
F

�1 as a cubic spline. Finally, we draw a set of points u,
uniformly distributed between 0 and 1, and compute the
corresponding velocities via v|| = F

�1(u).
Figure 10 shows the comparison of the posterior predic-

tive distributions with the data for our MSTO, K-giant and
BHB samples. For each tracer, we constructed a histogram
in radial velocity, and show the number of counts as a black
point at each bin centroid. The median number of counts in
each bin from our replicated data sets is shown as a solid
line in each panel. The 68% and 95% intervals are shown as
bands around the median, and the final band shows the full
extent of the number of counts. Our model reproduces the
data very well over a range of ⇠ 2.5 orders of magnitude in
the number of counts for the MSTO sample. Similarly good
agreement is seen for our other two tracers.

Besides verifying that the model is a good representa-
tion of the data, we also seek to understand some of the

possible sources of systematic uncertainty. We investigated
three possibilities: our choice of the local standard of rest
vLSR, our choice of the cut velocity vmin, and inconsistencies
between the di↵erent tracer groups. In the analysis presented
in the rest of the paper, we assumed vLSR = 240 km s�1. In
order to test the influence that this assumption has on our
inference, we re–ran all of our analyses with a lower value of
vLSR = 220 km s�1. The local escape speed is then inferred
to be 542+56

�37 km s�1, which is consistent with our previous
analysis (note that di↵erent stars will enter our high-speed
sample when a di↵erent value of vLSR is used). The same is
true for the rest of the model parameters.

We chose vmin = 200 km s�1 because we were not par-
ticularly concerned about contamination from disc stars. In
order to check the sensitivity of our work to this value, we
re–ran the analysis with vmin = 250 km s�1. This results in
a significantly smaller sample of 644 stars (539 MSTO, 99
K-giants, 6 BHBs). We thus expect much larger uncertain-
ties on all of our model parameters. This is indeed the case,
and we find that the values of k for each of the tracers are
poorly constrained compared to our full analysis, leading to
a worse determination of the local escape speed. This is be-
cause the degeneracy between k and vesc(R�) is not broken
as e↵ectively by these data, which pushes up our estimates
of k and vesc(R�), as predicted by S07. Specifically, we find
vesc(R�) = 617+77

�84 km s�1. This value is nonetheless consis-
tent with our full analysis, due to the inflated uncertainties.
Correspondingly, the inferred values of k are ⇠ 6, with un-
certainties ⇠ 2, which again are consistent with our previous
estimates, but systematically higher. Given how well our full
model represents the data, we would suggest that the speed
distribution of halo stars does not significantly deviate from
a power law at speeds > 200 km s�1, thus vindicating our
choice of vmin = 200 km s�1. Larger choices of vmin should
only be necessary in circumstances where disc contamina-
tion is a more serious concern. If this is the case, then our
checks with vmin = 250 km s�1 imply that a prior on the
value of k is probably necessary.

Our final check was to understand whether there is any
tension between the di↵erent tracer samples. We ran our

c� 2016 RAS, MNRAS 000, 1–??
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cally symmetric escape speed profile, we have

M(r) =
�r

2
vesc

G

dvesc
dr

, (29)

vc(r) =

r
�r vesc

dvesc
dr

. (30)

Given our model of vesc(r), and our inference on its param-
eters, we can compute posterior distributions on M(r) and
vc(r) using these formulae. For example, the local circular
speed that we measure is

vc(R�) = 223+40
�34 km s�1

. (31)

Note that our inferences on the mass profile and rotation
curve rest heavily on the assumption that the speed distribu-
tion of stars in the Galaxy truncates at

p
�2�. If the stars do

not fill out to the this value, then our analysis will underes-
timate the depth of the potential well, which will lead to un-
derestimates in the inferred mass profile and rotation curve
of the Galaxy. P14 showed that the inferred halo virial mass
increased by 20% if the escape speed was instead defined
as

p
�2 (�(r)� �(rmax)), with rmax = 3Rvir ⇠ 600 kpc.

Since we do not attempt to track the Galaxy’s mass out
to such large radii, the possible bias incurred by e↵ectively
setting rmax = 1 will be significantly smaller than 20%,
and so we henceforth assume that the velocity distribution
reaches

p
�2�. The value of vc(R�) that we obtain while

making this assumption is pleasingly aligned with a mul-
titude of other methods, and provides us with confidence
that systematic uncertainty caused by these considerations
is unimportant relative to our statistical uncertainties.

It is worth noting that our method clearly possesses
very di↵erent systematic uncertainties when compared to
more common approaches in the literature. Most dynamical
models of halo tracers, like distribution function and Jeans
analyses, are most sensitive to the central parts of the veloc-
ity distributions. This is particularly true of Jeans analyses,
which generally only model the first and second moments of
the velocity distributions. Distribution functions satisfy the
full collisionless Boltzmann equation, and therefore the en-
tire infinite hierarchy of Jeans equations, but this generally
comes at the cost of large systematic uncertainties that arise
from the chosen form of the model (Wang et al. 2015). Our
approach moves the focus to the tail of the velocity distri-
bution, and is therefore complimentary to other approaches.

Figure 8 shows the mass and circular speed profiles im-
plied by the SPL model, along with associated 68% and
94% credible regions. Our model predicts M(50 kpc) =
29.8+6.9

�5.2 ⇥ 1010M�. For reference, we have also plotted the
results from a selection of other studies. Xue et al. (2008,
X08), Deason et al. (2012, D12) and Williams & Evans
(2015, WE15) all used samples of halo BHBs taken from
SDSS. D12 and WE15 applied distribution function models
to the data, and infer systematically higher masses than we
do here, with M(50 kpc) ' 45⇥1010M�. Both are consistent
with the 94% credible interval of our inference, but there is
a hint that there is a discrepancy between distribution func-
tion methods and the present approach. X08, on the other
hand, compared SDSS BHBs to cosmological simulations,
and their result is comfortably in agreement with ours.

W99, like D12 and WE15, used a distribution function
approach, but applied their method to globular clusters and
dwarf galaxies. Their sample was small, with only 27 ob-
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Figure 7. The distribution of dwarf galaxies around the Milky
Way in the r�

p
3 v|| plane. The blue bands are our inference on

the escape speed as a function of radius. Radial velocities have
been multiplied by

p
3, as is done in the literature to account for

unknown tangential velocities. If the true speeds of Triangulum
II, Tucana II, Grus 1, Bootes III and Hercules are close to

p
3 v||,

then they are likely to be unbound.

jects, and so their uncertainty is large. Their preferred mass
of M(50 kpc) = 54+2

�36 ⇥ 1010M�, like the other two distri-
bution function approaches, is significantly larger than our
result, although the large asymmetric uncertainty removes
any possible tension.

The final study to which we compare is that of Gib-
bons et al. (2014, G14), who modelled the disruption of the
Sagittarius stream. They exploited the fact that the apoc-
entric precession of the stream should be sensitive to the
details of the gravitational potential. Their inference pro-
duces very similar results to our work, with M(50 kpc) =
29± 5⇥ 1010M�. We can make this comparison even more
explicit because we have also estimated the parameters of
the model they used in their analysis (TF). When we use the
TF model, the mass enclosed isM(50 kpc) = 33+8

�6⇥1010M�.
The two analyses, though very di↵erent in detail, produce
near identical results.

6.2 The orbits of Milky Way dwarf galaxies

Figure 7 shows the distribution of known Milky Way dwarf
galaxies in the r�

p
3 v|| plane. It is typical in the literature

to multiply the radial velocity by
p
3 as a crude way of ac-

counting for unknown tangential velocities. We see that most
of the dwarfs are enveloped by the escape speed curves, with
a similar shape to the r � v|| distribution of stars (Figure
4). However, some of the dwarfs seem likely unbound based
on our estimate of the escape speed. On the other hand,
⇤CDM simulations predict that 99.9% of subhalos should
be bound to their hosts (Boylan-Kolchin et al. 2013). A rec-
onciliation of these two statements is to conclude that thep
3v|| approximation for the total speed of these dwarfs is

likely unrealistic in these cases. Given our inference on the
escape speed, the assumption that these objects are bound
allows us to place constraints on their orbits. The red points
in Figure 7 are Bootes III (Grillmair 2009), Triangulum II

c� 2016 RAS, MNRAS 000, 1–??
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Figure 1. Summary of the recent mass measurements of the M31 galaxy obtained from the di↵erent literature sources (as labelled)
that use varieties of techniques. The black solid line with grey shade (showing uncertainties) is the mass profile of the galaxy calculated
in this paper by modelling the high velocity Planetary Nebulae (PNe). To convert the projected radius (R) to spherical radius (r), an
approximate relation R = 2 r/⇡ is assumed (Schneider 2006).

(v) the timing and angular momentum arguments (van
der Marel et al. 2012; Diaz et al. 2014; González et al. 2014).

For an exhaustive review of the topic we refer the reader to
Fardal et al. (2013) while in Fig. 1 we provide a crude vi-
sual summary of the range of the galaxy masses taken from
recent literature sources. The use of di↵erent mass tracers,
measurements at range of radii, and di↵erences in the ap-
proaches to infer the masses make a fair comparison be-
tween the reported measurements a daunting task, nonethe-
less, a convenient summary of all this work is that the to-
tal mass of M31 is still uncertain, estimated to be as low
as ⇠ 0.7 ⇥ 1012 M� (Evans et al. 2000; Tamm et al. 2012)
and as high as ⇠ 2.5 ⇥ 1012 M� (Evans et al. 2000; Watkins
et al. 2010) with plethora of measurements in the intermedi-
ate range (e.g. Lee et al. 2008; Fardal et al. 2013; Veljanoski
et al. 2014).

In the light of the huge scatter in the quoted mass of
the galaxy, we seek for an alternative way to improve the
measurement. In this, we attempt an independent measure-
ment of the mass of M31 using the escape velocity inferred
from the high velocity tracers, the method first proposed by
Leonard & Tremaine (1990). The method has remained suc-
cessful in inferring the escape speed and dynamical mass of
the MW, of which the studies by Smith et al. (2007) and
Pi✏ et al. (2014) have remained influential. Both the stud-
ies use the same Radial Velocity Experiment (RAVE, Stein-
metz et al. 2006) survey, albeit di↵erent version of the data,
of the Galactic disc. While Smith et al. (2007) study is only
limited to the solar neighbourhood, Pi✏ et al. (2014) im-

proves the method further to explore the radial dependence
of the Galactic escape velocity. More recently, Williams et al.
(2017) use the halo sample from the Sloan Digital Sky Sur-
vey (SDSS) and were able to extend the method out to the
MW centric distance of 50 kpc.

The key reasons for the success of this method are that
it is relatively simple and it is empirically powerful as it can
estimate the escape velocity from the line-of-sight velocities
alone with a similar level of accuracy that can be achieved
even when the full phase-space motions are used (Leonard
& Tremaine 1990; Fich & Tremaine 1991). The method can
be easily adopted for the case of the M31 galaxy or for that
matter to any galaxy provided we have enough tracers with
high velocity residing in a galaxy. In this paper, we first im-
prove on the original method by adding additional features
such as providing a Bayesian framework, a proper model to
capture potential outliers, provisions for the marginalization
of the unknown variables and propagation of uncertainties
in the observables, a parametric and non-parametric radial
fitting for the escape velocities, and eventually use the for-
malism to make independent predictions for the mass model
of M31.

The paper is arranged as follows: In Section 2, we intro-
duce our sample of the dynamical tracers of M31, namely
Planetary Nebulae (PNe). Section 3 presents Bayesian
framework of our modelling scheme. Our results and some
model predictions are given in Section 4. In Section 5 we
discuss our result to provide it a proper cosmological con-
text. Finally, we draw our main conclusions in Section 6.

MNRAS 000, 1–14 (2018)
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Misalignment between disk and halo
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Past Research Highlights
Baryonic physics: Halos less flattened (c/a~0.8), twisted. (Bailin et al. 2005; 80+ citations)

•
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Baryonic vs total mass of MW & M31

If Mass of the Milky way (or even M31) is 
below ≈10

12
 M⊙ 

•MW/M31 unusually efficient in cooling/star 
formation 

•Angular momentum 

•local dynamics? 

•Where is the mass in the Local Group?
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Behroozi et al. (2010) relation

M31

Milky Way (Kafle et al 2014)

Milky Way (Pi� et al. 2014)

Figure 7. Comparison with the prediction of the ⇤CDM. Left panel (a) showing concentration (c)–virial mass (M
vir

) joint probability
distributions where green contour is our best estimate for the M31 whereas the heat map shows similar relation for the Milky Way taken
from Kafle et al. (2014). The black dashed and dash-dotted lines demonstrate a typical c � M

vir

relations predicted by ⇤CDM dark
matter simulations of Macciò et al. (2007); Du↵y et al. (2008) respectively. Right panel (b): Stellar mass–halo mass relation expected
from the abundance matching in the dark matter simulation, shown with the black dashed lines and grey shaded regions, where blue
marker show the observed positions of the M31, and orange (from Kafle et al. 2014) and green (from Pi✏ et al. 2014) markers show the
Milky Way galaxies respectively.

�
esc

(r) and then derive the total galactic potential to which
finally we fit a three component (bulge, disk and dark mat-
ter halo) mass model and infer the virial properties of the
galaxy. In the end, to provide a proper cosmological con-
text, we discuss how the newly estimated mass of the M31
compares to the mass of our own the MW and also, to some
generic predictions of the ⇤CDM such as the concentration-
virial mass relation, the stellar mass–halo mass relation and
the stellar Tully-Fisher relation.

Following are the main conclusions of the paper:

(i) We present both the parametric and non-parametric
�
esc

(r) profiles of the M31. Assuming the minimum thresh-
old velocity �

min

= 300 km s�1, the criteria set to classify
high velocity stars, we measure �

esc

= 470 ± 40 km s�1 at
the galacto-centric radius of r = 15 kpc. Additionally, we
are also able to constrain the logarithmic power-law slope of
the profile � = 0.26 ± 0.07.

(ii) Using the derived �
esc

(r) profile and assuming spher-
ical symmetry we are able to further derive the cumulative
mass profile, the circular velocity profile as well as the total
potential of the galaxy. To the derived potential we then fit
a three component model of the galaxy — Hernquist bulge,
Miyamoto-Nagai disk and NFW dark matter halo model, of
which we adopt the bulge and disk structural models from
the literature (Bekki et al. 2001; Tamm et al. 2012) and keep
them fixed. It is important to keep these components fixed
because we only restrict our fitting to the derived potentials
at r & 10 kpc as we observe that only in this regime the
derived circular velocity profile is in a good agreement with
the rotation curve constructed from the H i measurements.
However, we keep the two defining parameters that is the
concentration and the virial mass of the dark matter halo
free. We find that assuming literature averaged bulge mass
of 3.4⇥1010 M� and disk mass of 6.9⇥1010 M�, the derived
potential of the galaxy is best fit by a halo of the virial mass

M
vir

(M
200

) = 0.8±0.1 (0.7±0.1)⇥1012M� that corresponds
to the virial radius of 240 ± 10 (188+7

�11

) kpc.
(iii) We find that the circular velocity curve (�

circ

) be-
tween 10 . R/ kpc < 35 estimated by us is in good agree-
ment with an independent prediction from the H i observa-
tion. Similarly, the value of �

circ

= 250 km s�1 we obtain at
the flat part of the curve at R ' 15 kpc is consistent with
the prediction from the baryonic Tully-Fisher relation. We
note that the measured c � M

vir

joint distributions and the
observed locus of the stellar and dark matter halo masses of
the M31 barely agree to the theoretical predictions at only
2� levels.
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Summary 

•Local Dynamics:       MMW = 1.3 × 1012 M⊙ 

•Dwarf orbits  

Sag Dwarf included    MMW = 0.85 × 1012 M⊙  

Sag Dwarf excluded     MMW = 0.96 × 1012 M⊙  

•Globular Clusters 

HST PM:        MMW = 1.87 × 1012 M⊙ 

Gaia PM:       MMW = 1.41 × 1012 M⊙ 

HST+Gaia PM:     MMW = 1.67 × 1012 M⊙ 

•Typical mass for M*= 6 × 1012 M⊙ 

abundance matching     MMW ≈ 2 × 1012 M⊙ 

•Mass of the Local Group   MLG ≈ 4 - 5 × 1012 M⊙
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