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Friday, May 04, 2018

The path forward, Chair: Julio Navarro (UVIC)

9:30am Jonathan Feng (UCI) Debate 5 (The path forward) Dark Matter: Back to the
Future

10:10am All Discussion
10:30am Morning Break

A rather one-sided debate! Of course, the real goal of a “debate”
IS to encourage people to get to the heart of the matter and give
their frank opinions. In that spirit, I'll provide my perspective
about various topics that have come up at this conference:

 |s dark matter particles?

* Are there small scale structure problems?
* Are WIMPs dead?

« What are promising directions?

 Is our field healthy?
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IS DARK MATTER PARTICLES?
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IS DARK MATTER PARTICLES?

« Solving the dark matter problem is often posed as a choice:
do you want to add new particles or do you want to find a
new theory of gravity?

« But this is a false dichotomy -- we need both! The dark
matter problem does not exist in isolation.
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OUTSTANDING PROBLEMS
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IS DARK MATTER PARTICLES?

« The lesson: our standard models are not crystalline gems of
perfection; they are works in progress. There are many
problems: some demand new particles, some demand new
gravity. New theories of gravity do not save us from needing
new particles.

» Given that we need new particles, could some be dark
matter? In fact, the new particle paradigm solves the dark
matter problem with extraordinary efficiency: one particle
explains a wonderfully broad range of phenomena, a unifying
achievement to rival Maxwell's. (Cf. baryogenesis.)

« Of course, we need to find non-gravitational evidence for
particle dark matter. But absent that, the case for particle
dark matter could not be more compelling.
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ARE THERE SMALL SCALE
STRUCTURE PROBLEMS?
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SMALL SCALE STRUCTURE PROBLEMS?

 Number of subhalos, too big to fail, cusp vs. core: are these
problems? Lots of interesting discussion at this meeting; some
say Yes, some say No.

« But this is not a Yes/No question. The real question is: can
astrophysics tell us more about the particle properties of dark
matter? Given null particle results, this is an essential part of
the path forward.

« Some seem enthusiastic when they confirm collisionless, cold
DM. This seems odd to me. This means that we have failed to
follow in the glorious footsteps of our predecessors by looking
to the heavens and learning something significantly new about
what makes up the universe. Of course, we want to find the
truth, but a twinge of remorse would be more appropriate. (Cf.
LHC experimentalists who gleefully confirm the SM.)
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ARE WIMPS DEAD?
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ARE WIMPS DEAD?

« The WIMP miracle has been a driving force for a long time
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ARE WIMPS DEAD?

* Of course, WIMPs aren’t dead. But a more interesting
guestion is, how about the leading frameworks that include
WIMPs along with other beautiful motivations (e.g
naturalness)? For example: weak-scale supersymmetry.

« There are many constraints on SUSY from the LHC.
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MSSM4G

But there remain viable models that preserve all of the central
motivations for SUSY: e.g., MSSM4G.

Naturalness suggests light stops and

sbottoms; m,, = 125

GeV suggests heavy stops and sbottoms.

A resolution: introduce a vector-
like 4" generation of particles to

raise the Higgs mass. 30 j§

> {5

For example, add a 10 of SU(5) £ %~ 3

consistent with gauge coupling = 20 S

unification: | 5’ 1
Dirac fermions: Ty, By, t4, T4 . ; ’
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Moroi, Okada (1992); Martin (2010)
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MSSM4G DARK MATTER

« MSSM4G predicts heavy Bino-
like dark matter that freezes out
with the right thermal relic
density through yy =2 7,74 .

0\
 Direct detection cross sections 10’}

naturally fall between current
bounds and the neutrino floor.

10710k, ™
10—11
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« Also interesting signals for LHC,
indirect detection (CTA).
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Models like these preserve all the fundamental motivations of
SUSY and promise an exciting program of discovery for DM

and collider searches. The WIMP paradigm is doing fine.
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WHAT ARE PROMISING
DIRECTIONS?



LAMPPOST LANDSCAPE
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WEAKLY INTERACTING, LIGHT PARTICLES

« A new target for new physics searches, but with similarly strong motivations

* Weakly interacting, light particles can be thermal relic dark matter.

Boehm, Fayet (2003)

 WIMPIless Miracle: in fact, in analogy with the WIMP miracle, the structure of
theories motivated by particle physics alone (SUSY with GMSB, AMSB)
produces particles with exactly the required properties.
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« Weakly-interacting, light particles can naturally have the right thermal relic
density, be probed by the intensity frontier, nuclear, AMO, and CM physics.
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WEAKLY INTERACTING, LIGHT PARTICLES

« Anomalies
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Dark Sector Candidates, Anomalies, and Search Techniques
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THE LIFETIME FRONTIER

» Light, weakly-interacting particles motivate new
connections to other fields of physics: nuclear physics,
condensed matter physics, AMO, etc.

* They also typically live a long time, and so motivate new
particle physics analyses and experiments, including LHCDb,
HPS, Belle-Il, NA62, SHiP, SeaQuest, MilliQan,
MATHUSLA, Codex-b, and many others.

 One example: FASER: ForwArd
Search ExpeRiment. “The acronym
recalls another marvelous
instrument that harnessed highly
collimated particles and was used to
explore strange new worlds.”
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FASER: THE IDEA

New physics searches at the LHC focus on high pr. This is
appropriate for heavy, strongly interacting particles
— o~fbtopb > N~ 103 - 108, produced ~isotropically

« However, if new particles are light and weakly interacting, this
may be completely misguided. Instead should exploit
— Oje ~ 100 mb > N~ 10", 0 ~ Aqcp / E ~ 250 MeV / TeV ~ mrad

« FASER is a small (~1 m3), inexpensive experiment, designed
to catch these particles in the very forward region of
ATLAS/CMS, a few 100m downstream of the IP.
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FASER LOCATION

« We want to place FASER along the beam collision axis
- Far location: ~400 m from IP, after beams curve, ~3 m from the beams
- Near location: 150 m, after TAN, between the beams
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* Here, focus on far location, assume FASER is exactly on-axis

« If ATLAS/CMS beams cross at 285 (590) urad in
vertical/horizontal plane, far location shifts by 6 (12) cm
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DARK PHOTONS

« Dark matter is our most solid evidence for new particles. In
recent years, the idea of dark matter has been generalized

to dark sectors.

« A prominent example: vector portal, leading to dark photons

. ny o
by Fidden

* The resulting theory contains a new gauge boson A’ with
mass m, and €Q; couplings to SM fermions f.

« Dark photons are produced in nt® > A’'y, decay after ~100 m.
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PION PRODUCTION AT THE LHC

« Forward particle po [GeV]
production simulations 104_?5 EPOS-LHC
and models have been ) | 300 fb-"

greatly constrained by 103}
LHC data

« EPOS-LHC, SIBYLL 2.3,
QGSJETII-04 agree very 1o}
well

1 L

« Enormous event rates
(Gipe~70 mb, N._~1077), 10~}
production is peaked at i—1012

N 10—2 . . 4 : ]
Pr ~ Aqco 105 10 10 107 107" 12
6,0
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DARK PHOTON PRODUCTION

« Consider n° decay, n decay, dark bremsstrahlung

« Results for 15t model point: (m,, ) = (20 MeV, 104)

pa [GeV] d[m] palGeV] d[m] pa[GeV] d[m]
104_7(0—)V\A' EPOS-LHC 104_r]—>yA' EPOS-LHC 104_Bremsstrah|unq
ma=20 MeV {10? 2™ me=20 MeV {107 M, ma=20 MeV {10°
3t 31 m —-10~% 3l p% —10-4
10 o 10 5 ];\ o e10t] 0 e=107]
102} 4 102 ". . 102} 1
10} 10H 108 10} . -
10" o7 41071 {107
1072 106 1072 11072
o7l 10 107 107 g0 107 .'-_ 1103
10% . 10% N
10—2 10—2 i 2 . ! A 10—2 . A . A B
Z 10-° 10™* 10~° 1072 107" 12 10> 10™* 10~° 1072 107" 12
O 64 O

« Fromn® > yA, Ey~E_/2(no surprise)
« But note rates: even after 2 suppression, N, ~ 108 ;
LHC may be a dark photon factory!
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DARK PHOTONS IN FASER

* Now require dark photons to 4
decay in FASER: consider /
cylindrical detector with

outer radius

~ 2
volume ~1 m R... =90 cm
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b %, o RO %y, o | %y, oo
10 & 10 % 10 Y
1 ol QQ\ {102 1 Si R 102 1 ol Q‘Z\ {102
1 o 1 o 1 St ™
10~} o 10~} oi 10-1} 3!
100! & far location {103 10! & far location {103 10! & far location 4103
<Ll Lmax_400m .L: Lmax_400m <L.' Lmax_400m
-2 A - 2 -2 A
1005 10% 10 102 10-1 1§ 107 10 104 102 102 10~ 1§ 1005 107 102 102 10- 1’5’
Op Op Op

* Only the highest energy A’s survive, but there are still many
of them, and they are highly collimated
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DARK PHOTON EVENT RATES AND REACH

« Up to 10° dark photons decay in FASER in 300 fb-' in
parameter regions with m,~ 10 - 500 MeV, ¢ ~ 10° - 103

1073 1073

FASER: far location
Linax=400m, A=10m, R=20cm
L=300fb~", E;>100GeV .
1074k LHCb A’y

. N, w 10-5 N
10-5 4 R
N=3 contours
/ 1
10-6 300 -1 i
10—6 n 1 F @ TTmssaa-c SeaQuest

FASER: far location
Lmax=400m.4 =10m; R=20cm

1072 107" 1
my [GeV]

1072 1071 1
my [GeV]

* Note that at upper € boundary, rates are extremely
sensitive to € and the reach is quite insensitive to

background, provided it is known
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DARK HIGGS BOSONS

* Another renormalizable coupling: Higgs portal

== hih == -

* The resulting theory contains a new scalar boson ¢ with
mass m, , Higgs-like couplings suppressed by sin, and a
trilinear coupling A

L= —m¢gb —sinf 2L qﬁff ANVhOO + ..
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DARK HIGGS EVENT RATES AND REACH

FASER: far location
Lmax=400m, A=1 Om, R=1m
NAG2 L"=3 ab™

FASER: far location
Lmax=400m, A=1 Om, R=1 m
Lint=3 ab—1

10~ ©10-4
B->Xs¢
107° 1075
SHiP
10 1 10 10557 i 10
my [GeV] mgy [GeV]

 FASER probes a large swath of new parameter space and is
complementary to other current and proposed experiments

4 May 2018 Feng 28



FASER: LOCATION

SPS

Point 1

PM15
PX16 CI;XI@ PX14
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COMPLEMENTARY PROPOSED EXPERIMENTS

s | 1 - L?WF‘T CODEX b “‘

L
p

= = -
[T i

~1000 m3, ~100M CHF + beam

Alekhin et al. (2015)

Multi-layer /
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Air
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detector "'
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Surface ’
*
SIGNAL: ¢ ’
o MATHUSLA
s e QCD hadrons
— - e stopped in rock LHC beam pipe

| ~1 m3 ~ 1 uIKEA
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Feng, Galon, Kling, Trojanowski (2017)
Chou, Curtin, Lubatti (2016)

4 May 2018 Feng 34



IS OUR FIELD HEALTHY?
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NEWTON AND NATURALNESS

 In 1687, Isaac Newton published the
Principia. 6 years later, a clergyman,
Robert Bentley, asked him how the law
of universal gravitation could be
consistent with a static universe.

« Newton’s rueful reply: “That
there should be a central
particle, so accurately placed
in the middle, as to be always
equally attracted on all sides,
and thereby continue without
motion, seems to me a
supposition fully as hard as to
make the sharpest needle
stand upright on its point upon
a looking-glass.”
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IS OUR FIELD HEALTHY?

It would be hundreds of years before the answer was
clear: the universe is not actually static.

 We are in a similar situation: we are 6 years past a
triumphant discovery, the completion of the standad
model, and it seems to have a small naturalness
problem.

» |t would be great to discover dark matter tomorrow, and it
could very well happen, but there is no guarantee of fast
answers.
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IS OUR FIELD HEALTHY?

 There are many good signs, though.

* Huge influx of new ideas, cross pollination between particle
physics and astrophysics, of course, but also now nuclear
physics, condensed matter physics, AMO.

« Experiments: ~10 collaborators, ~$1M, ~few years.

« The barrier between experiment and theory (on the particle
side) has never been lower in my scientific lifetime.
(Overheard conversation among theory graduate students:
“The only way to get a job now is to propose and build an
experiment.”)

« Lots of interested, talented young people. (Compare DMSAG
and Cosmic Visions.)
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CONCLUSIONS

 |s dark matter particles?
SURE LOOKS LIKE IT

« Small scale structure problems?
LET'S HOPE SO

« Are WIMPs dead?
NO

« What are promising directions?
LIGHT DM

 Is our field healthy?
YES!
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